| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes a bunch of unnecessary includes of `HsVersions.h` along
with unnecessary CPP (e.g., due to checking for DEBUG which can be
achieved by looking at `debugIsOn`)
Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>
Test Plan: ./validate
Reviewers: bgamari, simonmar
Reviewed By: bgamari
Subscribers: rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4462
|
|
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: validate
Reviewers: bgamari, erikd
Reviewed By: bgamari
Subscribers: rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4380
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches the compiler/ component to get compiled with
-XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
modules.
This is motivated by the upcoming "Prelude" re-export of
`Semigroup((<>))` which would cause lots of name clashes in every
modulewhich imports also `Outputable`
Reviewers: austin, goldfire, bgamari, alanz, simonmar
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
Differential Revision: https://phabricator.haskell.org/D3989
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This copies the subset of Hoopl's functionality needed by GHC to
`cmm/Hoopl` and removes the dependency on the Hoopl package.
The main motivation for this change is the confusing/noisy interface
between GHC and Hoopl:
- Hoopl has `Label` which is GHC's `BlockId` but different than
GHC's `CLabel`
- Hoopl has `Unique` which is different than GHC's `Unique`
- Hoopl has `Unique{Map,Set}` which are different than GHC's
`Uniq{FM,Set}`
- GHC has its own specialized copy of `Dataflow`, so `cmm/Hoopl` is
needed just to filter the exposed functions (filter out some of the
Hoopl's and add the GHC ones)
With this change, we'll be able to simplify this significantly.
It'll also be much easier to do invasive changes (Hoopl is a public
package on Hackage with users that depend on the current behavior)
This should introduce no changes in functionality - it merely
copies the relevant code.
Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>
Test Plan: ./validate
Reviewers: austin, bgamari, simonmar
Reviewed By: bgamari, simonmar
Subscribers: simonpj, kavon, rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3616
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As discussed in D1532, Trac Trac #11337, and Trac Trac #11338, the stack
unwinding information produced by GHC is currently quite approximate.
Essentially we assume that register values do not change at all within a
basic block. While this is somewhat true in normal Haskell code, blocks
containing foreign calls often break this assumption. This results in
unreliable call stacks, especially in the code containing foreign calls.
This is worse than it sounds as unreliable unwinding information can at
times result in segmentation faults.
This patch set attempts to improve this situation by tracking unwinding
information with finer granularity. By dispensing with the assumption of
one unwinding table per block, we allow the compiler to accurately
represent the areas surrounding foreign calls.
Towards this end we generalize the representation of unwind information
in the backend in three ways,
* Multiple CmmUnwind nodes can occur per block
* CmmUnwind nodes can now carry unwind information for multiple
registers (while not strictly necessary; this makes emitting
unwinding information a bit more convenient in the compiler)
* The NCG backend is given an opportunity to modify the unwinding
records since it may need to make adjustments due to, for instance,
native calling convention requirements for foreign calls (see
#11353).
This sets the stage for resolving #11337 and #11338.
Test Plan: Validate
Reviewers: scpmw, simonmar, austin, erikd
Subscribers: qnikst, thomie
Differential Revision: https://phabricator.haskell.org/D2741
|
|
|
|
|
|
|
|
|
|
| |
We will need to use these to setup proper unwinding information for the
stg_stop_thread closure. This pokes a hole in the STG abstraction,
exposing the machine's stack pointer register so that we can accomplish
this. We also expose a dummy return address register, which corresponds
to the register used to hold the DWARF return address.
Differential Revision: https://phabricator.haskell.org/D1225
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
| |
|
| |
|
|
|
|
|
|
|
| |
This patch adds support for 6 XMM registers on x86-64 which overlap with the F
and D registers and may hold 128-bit wide SIMD vectors. Because there is not a
good way to attach type information to STG registers, we aggressively bitcast in
the LLVM back-end.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes the OldCmm data type and the CmmCvt pass that converts
new Cmm to OldCmm. The backends (NCGs, LLVM and C) have all been
converted to consume new Cmm.
The main difference between the two data types is that conditional
branches in new Cmm have both true/false successors, whereas in OldCmm
the false case was a fallthrough. To generate slightly better code we
occasionally need to invert a conditional to ensure that the
branch-not-taken becomes a fallthrough; this was previously done in
CmmCvt, and it is now done in CmmContFlowOpt.
We could go further and use the Hoopl Block representation for native
code, which would mean that we could use Hoopl's postorderDfs and
analyses for native code, but for now I've left it as is, using the
old ListGraph representation for native code.
|
|
|
|
|
|
|
|
|
|
|
|
| |
x86-64.
On x86-64 F and D registers are both drawn from SSE registers, so there is no
reason not to draw them from the same pool of available SSE registers. This
means that whereas previously a function could only receive two Double arguments
in registers even if it did not have any Float arguments, now it can receive up
to 6 arguments that are any mix of Float and Double in registers.
This patch breaks the LLVM back end. The next patch will fix this breakage.
|
|
|
|
|
|
|
| |
All Cmm procedures now include the set of global registers that are live on
procedure entry, i.e., the global registers used to pass arguments to the
procedure. Only global registers that are use to pass arguments are included in
this list.
|
|
|
|
|
| |
Except for CgUtils.fixStgRegisters that is used in the NCG and LLVM
backends, and should probably be moved somewhere else.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main change here is that the Cmm parser now allows high-level cmm
code with argument-passing and function calls. For example:
foo ( gcptr a, bits32 b )
{
if (b > 0) {
// we can make tail calls passing arguments:
jump stg_ap_0_fast(a);
}
return (x,y);
}
More details on the new cmm syntax are in Note [Syntax of .cmm files]
in CmmParse.y.
The old syntax is still more-or-less supported for those occasional
code fragments that really need to explicitly manipulate the stack.
However there are a couple of differences: it is now obligatory to
give a list of live GlobalRegs on every jump, e.g.
jump %ENTRY_CODE(Sp(0)) [R1];
Again, more details in Note [Syntax of .cmm files].
I have rewritten most of the .cmm files in the RTS into the new
syntax, except for AutoApply.cmm which is generated by the genapply
program: this file could be generated in the new syntax instead and
would probably be better off for it, but I ran out of enthusiasm.
Some other changes in this batch:
- The PrimOp calling convention is gone, primops now use the ordinary
NativeNodeCall convention. This means that primops and "foreign
import prim" code must be written in high-level cmm, but they can
now take more than 10 arguments.
- CmmSink now does constant-folding (should fix #7219)
- .cmm files now go through the cmmPipeline, and as a result we
generate better code in many cases. All the object files generated
for the RTS .cmm files are now smaller. Performance should be
better too, but I haven't measured it yet.
- RET_DYN frames are removed from the RTS, lots of code goes away
- we now have some more canned GC points to cover unboxed-tuples with
2-4 pointers, which will reduce code size a little.
|
| |
|
|
|
|
|
| |
StgWord is a newtyped Word64, as it needed to be something that
has a UArray instance.
|
|
|
|
|
| |
It's now a newtyped Integer. Perhaps a newtyped Word32 would make more
sense, though.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
I've switched to passing DynFlags rather than Platform, as (a) it's
simpler to not have to extract targetPlatform in so many places, and
(b) it may be useful to have DynFlags around in future.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Simon Marlow spotted that we were #include'ing MachRegs.h several times,
but that doesn't work as (a) it uses ifdeffery to avoid being included
multiple times, and (b) even if we work around that, then the #define's
from previous inclusions are still defined when we #include it again.
So we now put the platform code for each platform in a separate .hs file.
|
|
|
|
|
|
|
|
| |
This means that we now generate the same code whatever platform we are
on, which should help avoid changes on one platform breaking the build
on another.
It's also another step towards full cross-compilation.
|
|
|
|
| |
No functional differences yet
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a first step on the way to refactoring the FastString type.
FastBytes currently has no unique, mainly because there isn't currently
a nice way to produce them in Binary.
Also, we don't currently do the "Dictionary" thing with FastBytes in
Binary. I'm not sure whether this is important.
We can change both decisions later, but in the meantime this gets the
refactoring underway.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
We now carry around with CmmJump statements a list of
the STG registers that are live at that jump site.
This is used by the LLVM backend so it can avoid
unnesecarily passing around dead registers, improving
perfromance. This gives us the framework to finally
fix trac #4308.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This means that both time and heap profiling work for parallel
programs. Main internal changes:
- CCCS is no longer a global variable; it is now another
pseudo-register in the StgRegTable struct. Thus every
Capability has its own CCCS.
- There is a new built-in CCS called "IDLE", which records ticks for
Capabilities in the idle state. If you profile a single-threaded
program with +RTS -N2, you'll see about 50% of time in "IDLE".
- There is appropriate locking in rts/Profiling.c to protect the
shared cost-centre-stack data structures.
This patch does enough to get it working, I have cut one big corner:
the cost-centre-stack data structure is still shared amongst all
Capabilities, which means that multiple Capabilities will race when
updating the "allocations" and "entries" fields of a CCS. Not only
does this give unpredictable results, but it runs very slowly due to
cache line bouncing.
It is strongly recommended that you use -fno-prof-count-entries to
disable the "entries" count when profiling parallel programs. (I shall
add a note to this effect to the docs).
|
|
|
|
|
| |
This field was doing nothing. I think it originally appeared in a
very old incarnation of the new code generator.
|
| |
|
|
|
|
|
|
| |
It's still a panic, as it wouldn't be trivial to give a proper error
at the point that we generate it, but it's now a bit nicer:
Registers above R10 are not supported (tried to use R11)
|
|
|
|
| |
See Note [atomic CAFs] in rts/sm/Storage.c
|
|
|
|
|
|
|
|
|
| |
LitInteger now carries around the id of mkInteger, which it uses
to construct the core to build Integer literals. This way we don't
have to build in info about lots of Ids.
We also no longer have any special-casing for integer-simple, so
there is less code involved.
|
|
|
|
|
|
| |
We now treat them as literals until CorePrep, when we finally
convert them into the real Core representation. This makes it a lot
simpler to implement built-in rules on them.
|
| |
|
| |
|
|
|
|
|
| |
CmmTop -> CmmDecl
CmmPgm -> CmmGroup
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I observed that the [CmmStatics] within CmmData uses the list in a very stylised way.
The first item in the list is almost invariably a CmmDataLabel. Many parts of the
compiler pattern match on this list and fail if this is not true.
This patch makes the invariant explicit by introducing a structured type CmmStatics
that holds the label and the list of remaining [CmmStatic].
There is one wrinkle: the x86 backend sometimes wants to output an alignment directive just
before the label. However, this can be easily fixed up by parameterising the native codegen
over the type of CmmStatics (though the GenCmmTop parameterisation) and using a pair
(Alignment, CmmStatics) there instead.
As a result, I think we will be able to remove CmmAlign and CmmDataLabel from the CmmStatic
data type, thus nuking a lot of code and failing pattern matches. This change will come as part
of my next patch.
|
|
|
|
|
|
| |
assignTemp_ is intended to make sure that the expression gets assigned
to a temporary in case that's needed in order to avoid a register
getting trashed due to a function call.
|