| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
Add StgToCmm module hierarchy. Platform modules that are used in several
other places (NCG, LLVM codegen, Cmm transformations) are put into
GHC.Platform.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The splitter is an evil Perl script that processes assembler code.
Its job can be done better by the linker's --gc-sections flag. GHC
passes this flag to the linker whenever -split-sections is passed on
the command line.
This is based on @DemiMarie's D2768.
Fixes Trac #11315
Fixes Trac #9832
Fixes Trac #8964
Fixes Trac #8685
Fixes Trac #8629
|
|
|
|
| |
Also used ByteString in some other relevant places
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This implements a selective lambda-lifting pass late in the STG
pipeline.
Lambda lifting has the effect of avoiding closure allocation at the cost
of having to make former free vars available at call sites, possibly
enlarging closures surrounding call sites in turn.
We identify beneficial cases by means of an analysis that estimates
closure growth.
There's a Wiki page at
https://ghc.haskell.org/trac/ghc/wiki/LateLamLift.
Reviewers: simonpj, bgamari, simonmar
Reviewed By: simonpj
Subscribers: rwbarton, carter
GHC Trac Issues: #9476
Differential Revision: https://phabricator.haskell.org/D5224
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Currently, `CoreToStg` annotates `StgRhsClosure`s with their set of non-global
free variables. This free variable information is only needed in the final
code generation step (i.e. `StgCmm.codeGen`), which leads to transformations
such as `StgCse` and `StgUnarise` having to maintain this information.
This is tiresome and unnecessary, so this patch introduces a trees-to-grow-like
approach that only introduces the free variable set into the syntax tree in the
code gen pass, along with a free variable analysis on STG terms to generate
that information.
Fixes #15754.
Reviewers: simonpj, osa1, bgamari, simonmar
Reviewed By: osa1
Subscribers: rwbarton, carter
GHC Trac Issues: #15754
Differential Revision: https://phabricator.haskell.org/D5324
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- The StgBinderInfo type was never used in the code gen, so the type, related
computation in CoreToStg, and some comments about it are removed. See #15770
for more details.
- Simplified CoreToStg after removing the StgBinderInfo computation: removed
StgBinderInfo arguments and mfix stuff.
The StgBinderInfo values were not used in the code gen, but I still run nofib
just to make sure: 0.0% change in allocations and binary sizes.
Test Plan: Validated locally
Reviewers: simonpj, simonmar, bgamari, sgraf
Reviewed By: sgraf
Subscribers: AndreasK, sgraf, rwbarton, carter
Differential Revision: https://phabricator.haskell.org/D5232
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The simplifier can simplify this without any trouble. Moreover, the
unboxed tuples cause bootstrapping issues due #14123.
I also went ahead and inlined a few definitions into the Monad instance.
Test Plan: Validate
Reviewers: austin, simonmar
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D4026
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches the compiler/ component to get compiled with
-XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
modules.
This is motivated by the upcoming "Prelude" re-export of
`Semigroup((<>))` which would cause lots of name clashes in every
modulewhich imports also `Outputable`
Reviewers: austin, goldfire, bgamari, alanz, simonmar
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
Differential Revision: https://phabricator.haskell.org/D3989
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before ghc-7.2 hs_add_root() had to be used to initialize haskell
modules when haskell was called from FFI.
commit a52ff7619e8b7d74a9d933d922eeea49f580bca8
("Change the way module initialisation is done (#3252, #4417)")
removed needs for hs_add_root() and made function a no-op.
For backward compatibility '__stginit_<module>' symbol was
not removed.
This change removes no-op hs_add_root() function and unused
'__stginit_<module>' symbol from each haskell module.
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Test Plan: ./validate
Reviewers: simonmar, austin, bgamari, erikd
Reviewed By: simonmar
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3460
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commits relaxes the invariants of the Core syntax so that a
top-level variable can be bound to a primitive string literal of type
Addr#.
This commit:
* Relaxes the invatiants of the Core, and allows top-level bindings whose
type is Addr# as long as their RHS is either a primitive string literal or
another variable.
* Allows the simplifier and the full-laziness transformer to float out
primitive string literals to the top leve.
* Introduces the new StgGenTopBinding type to accomodate top-level Addr#
bindings.
* Introduces a new type of labels in the object code, with the suffix "_bytes",
for exported top-level Addr# bindings.
* Makes some built-in rules more robust. This was necessary to keep them
functional after the above changes.
This is a continuation of D2554.
Rebasing notes:
This had two slightly suspicious performance regressions:
* T12425: bytes allocated regressed by roughly 5%
* T4029: bytes allocated regressed by a bit over 1%
* T13035: bytes allocated regressed by a bit over 5%
These deserve additional investigation.
Rebased by: bgamari.
Test Plan: ./validate --slow
Reviewers: goldfire, trofi, simonmar, simonpj, austin, hvr, bgamari
Reviewed By: trofi, simonpj, bgamari
Subscribers: trofi, simonpj, gridaphobe, thomie
Differential Revision: https://phabricator.haskell.org/D2605
GHC Trac Issues: #8472
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit implements the proposal in
https://github.com/ghc-proposals/ghc-proposals/pull/29 and
https://github.com/ghc-proposals/ghc-proposals/pull/35.
Here are some of the pieces of that proposal:
* Some of RuntimeRep's constructors have been shortened.
* TupleRep and SumRep are now parameterized over a list of RuntimeReps.
* This
means that two types with the same kind surely have the same
representation.
Previously, all unboxed tuples had the same kind, and thus the fact
above was
false.
* RepType.typePrimRep and friends now return a *list* of PrimReps. These
functions can now work successfully on unboxed tuples. This change is
necessary because we allow abstraction over unboxed tuple types and so
cannot
always handle unboxed tuples specially as we did before.
* We sometimes have to create an Id from a PrimRep. I thus split PtrRep
* into
LiftedRep and UnliftedRep, so that the created Ids have the right
strictness.
* The RepType.RepType type was removed, as it didn't seem to help with
* much.
* The RepType.repType function is also removed, in favor of typePrimRep.
* I have waffled a good deal on whether or not to keep VoidRep in
TyCon.PrimRep. In the end, I decided to keep it there. PrimRep is *not*
represented in RuntimeRep, and typePrimRep will never return a list
including
VoidRep. But it's handy to have in, e.g., ByteCodeGen and friends. I can
imagine another design choice where we have a PrimRepV type that is
PrimRep
with an extra constructor. That seemed to be a heavier design, though,
and I'm
not sure what the benefit would be.
* The last, unused vestiges of # (unliftedTypeKind) have been removed.
* There were several pretty-printing bugs that this change exposed;
* these are fixed.
* We previously checked for levity polymorphism in the types of binders.
* But we
also must exclude levity polymorphism in function arguments. This is
hard to check
for, requiring a good deal of care in the desugarer. See Note [Levity
polymorphism
checking] in DsMonad.
* In order to efficiently check for levity polymorphism in functions, it
* was necessary
to add a new bit of IdInfo. See Note [Levity info] in IdInfo.
* It is now safe for unlifted types to be unsaturated in Core. Core Lint
* is updated
accordingly.
* We can only know strictness after zonking, so several checks around
* strictness
in the type-checker (checkStrictBinds, the check for unlifted variables
under a ~
pattern) have been moved to the desugarer.
* Along the way, I improved the treatment of unlifted vs. banged
* bindings. See
Note [Strict binds checks] in DsBinds and #13075.
* Now that we print type-checked source, we must be careful to print
* ConLikes correctly.
This is facilitated by a new HsConLikeOut constructor to HsExpr.
Particularly troublesome
are unlifted pattern synonyms that get an extra void# argument.
* Includes a submodule update for haddock, getting rid of #.
* New testcases:
typecheck/should_fail/StrictBinds
typecheck/should_fail/T12973
typecheck/should_run/StrictPats
typecheck/should_run/T12809
typecheck/should_fail/T13105
patsyn/should_fail/UnliftedPSBind
typecheck/should_fail/LevPolyBounded
typecheck/should_compile/T12987
typecheck/should_compile/T11736
* Fixed tickets:
#12809
#12973
#11736
#13075
#12987
* This also adds a test case for #13105. This test case is
* "compile_fail" and
succeeds, because I want the testsuite to monitor the error message.
When #13105 is fixed, the test case will compile cleanly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We currently have two info tables for a constructor
* XXX_con_info: the info table for a heap-resident instance of the
constructor, It has type CONSTR, or one of the specialised types like
CONSTR_1_0
* XXX_static_info: the info table for a static instance of this
constructor, which has type CONSTR_STATIC or CONSTR_STATIC_NOCAF.
I'm getting rid of the latter, and using the `con_info` info table for
both static and dynamic constructors. For rationale and more details
see Note [static constructors] in SMRep.hs.
I also removed these macros: `isSTATIC()`, `ip_STATIC()`,
`closure_STATIC()`, since they relied on the CONSTR/CONSTR_STATIC
distinction, and anyway HEAP_ALLOCED() does the same job.
Test Plan: validate
Reviewers: bgamari, simonpj, austin, gcampax, hvr, niteria, erikd
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2690
GHC Trac Issues: #12455
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
New unarise (714bebf) eliminates void binders in patterns already, so no
need to eliminate them here. I leave assertions to make sure this is the
case.
Assertion failure -> bug in unarise
Reviewers: bgamari, simonpj, austin, simonmar, hvr
Reviewed By: simonpj
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2416
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The idea behind adding special "rubbish" arguments was in unboxed sum types
depending on the tag some arguments are not used and we don't want to move some
special values (like 0 for literals and some special pointer for boxed slots)
for those arguments (to stack locations or registers). "StgRubbishArg" was an
indicator to the code generator that the value won't be used. During Stg-to-Cmm
we were then not generating any move or store instructions at all.
This caused problems in the register allocator because some variables were only
initialized in some code paths. As an example, suppose we have this STG: (after
unarise)
Lib.$WT =
\r [dt_sit]
case
case dt_sit of {
Lib.F dt_siv [Occ=Once] ->
(#,,#) [1# dt_siv StgRubbishArg::GHC.Prim.Int#];
Lib.I dt_siw [Occ=Once] ->
(#,,#) [2# StgRubbishArg::GHC.Types.Any dt_siw];
}
of
dt_six
{ (#,,#) us_giC us_giD us_giE -> Lib.T [us_giC us_giD us_giE];
};
This basically unpacks a sum type to an unboxed sum with 3 fields, and then
moves the unboxed sum to a constructor (`Lib.T`).
This is the Cmm for the inner case expression (case expression in the scrutinee
position of the outer case):
ciN:
...
-- look at dt_sit's tag
if (_ciT::P64 != 1) goto ciS; else goto ciR;
ciS: -- Tag is 2, i.e. Lib.F
_siw::I64 = I64[_siu::P64 + 6];
_giE::I64 = _siw::I64;
_giD::P64 = stg_RUBBISH_ENTRY_info;
_giC::I64 = 2;
goto ciU;
ciR: -- Tag is 1, i.e. Lib.I
_siv::P64 = P64[_siu::P64 + 7];
_giD::P64 = _siv::P64;
_giC::I64 = 1;
goto ciU;
Here one of the blocks `ciS` and `ciR` is executed and then the execution
continues to `ciR`, but only `ciS` initializes `_giE`, in the other branch
`_giE` is not initialized, because it's "rubbish" in the STG and so we don't
generate an assignment during code generator. The code generator then panics
during the register allocations:
ghc-stage1: panic! (the 'impossible' happened)
(GHC version 8.1.20160722 for x86_64-unknown-linux):
LocalReg's live-in to graph ciY {_giE::I64}
(`_giD` is also "rubbish" in `ciS`, but it's still initialized because it's a
pointer slot, we have to initialize it otherwise garbage collector follows the
pointer to some random place. So we only remove assignment if the "rubbish" arg
has unboxed type.)
This patch removes `StgRubbishArg` and `CmmArg`. We now always initialize
rubbish slots. If the slot is for boxed types we use the existing `absentError`,
otherwise we initialize the slot with literal 0.
Reviewers: simonpj, erikd, austin, simonmar, bgamari
Reviewed By: erikd
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2446
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements primitive unboxed sum types, as described in
https://ghc.haskell.org/trac/ghc/wiki/UnpackedSumTypes.
Main changes are:
- Add new syntax for unboxed sums types, terms and patterns. Hidden
behind `-XUnboxedSums`.
- Add unlifted unboxed sum type constructors and data constructors,
extend type and pattern checkers and desugarer.
- Add new RuntimeRep for unboxed sums.
- Extend unarise pass to translate unboxed sums to unboxed tuples right
before code generation.
- Add `StgRubbishArg` to `StgArg`, and a new type `CmmArg` for better
code generation when sum values are involved.
- Add user manual section for unboxed sums.
Some other changes:
- Generalize `UbxTupleRep` to `MultiRep` and `UbxTupAlt` to
`MultiValAlt` to be able to use those with both sums and tuples.
- Don't use `tyConPrimRep` in `isVoidTy`: `tyConPrimRep` is really
wrong, given an `Any` `TyCon`, there's no way to tell what its kind
is, but `kindPrimRep` and in turn `tyConPrimRep` returns `PtrRep`.
- Fix some bugs on the way: #12375.
Not included in this patch:
- Update Haddock for new the new unboxed sum syntax.
- `TemplateHaskell` support is left as future work.
For reviewers:
- Front-end code is mostly trivial and adapted from unboxed tuple code
for type checking, pattern checking, renaming, desugaring etc.
- Main translation routines are in `RepType` and `UnariseStg`.
Documentation in `UnariseStg` should be enough for understanding
what's going on.
Credits:
- Johan Tibell wrote the initial front-end and interface file
extensions.
- Simon Peyton Jones reviewed this patch many times, wrote some code,
and helped with debugging.
Reviewers: bgamari, alanz, goldfire, RyanGlScott, simonpj, austin,
simonmar, hvr, erikd
Reviewed By: simonpj
Subscribers: Iceland_jack, ggreif, ezyang, RyanGlScott, goldfire,
thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D2259
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: austin, bgamari, simonmar, hvr
Reviewed By: hvr
Subscribers: hvr, thomie
Differential Revision: https://phabricator.haskell.org/D2285
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We also need to update `stgBindHasCafRefs` assertion with this change,
as we no longer have the pre-computed SRT, LiveVars etc. We rename it to
`topStgBindHasCafRefs` and implement it like this:
A non-updatable top-level binding may refer to a CAF by referring to a
top-level definition with CAFs. A top-level definition may have CAFs if
it's updatable. At this point (because this is done after TidyPgm)
top-level Ids (whether imported or defined in this module) are
GlobalIds, so the top-levelness test is easy. (see also comments in the
code)
Reviewers: bgamari, simonpj, austin
Reviewed By: simonpj
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1889
GHC Trac Issues: #11550
|
|
|
|
| |
This reverts commit 4f9967aa3d1f7cfd539d0c173cafac0fe290e26f.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Also remove the functions and types that became useless after removing
the fields:
- SRT functions
- LiveInfo type and functions
- freeVarsToLiveVars
- unariseLives and unariseSRT
Reviewers: bgamari, simonpj, austin
Reviewed By: simonpj
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1880
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a flag -split-sections that does similar things to
-split-objs, but using sections in single object files instead of
relying on the Satanic Splitter and other abominations. This is very
similar to the GCC flags -ffunction-sections and -fdata-sections.
The --gc-sections linker flag, which allows unused sections to actually
be removed, is added to all link commands (if the linker supports it) so
that space savings from having base compiled with sections can be
realized.
Supported both in LLVM and the native code-gen, in theory for all
architectures, but really tested on x86 only.
In the GHC build, a new SplitSections variable enables -split-sections
for relevant parts of the build.
Test Plan: validate with both settings of SplitSections
Reviewers: dterei, Phyx, austin, simonmar, thomie, bgamari
Reviewed By: simonmar, thomie, bgamari
Subscribers: hsyl20, erikd, kgardas, thomie
Differential Revision: https://phabricator.haskell.org/D1242
GHC Trac Issues: #8405
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In some cases, the layout of the LANGUAGE/OPTIONS_GHC lines has been
reorganized, while following the convention, to
- place `{-# LANGUAGE #-}` pragmas at the top of the source file, before
any `{-# OPTIONS_GHC #-}`-lines.
- Moreover, if the list of language extensions fit into a single
`{-# LANGUAGE ... -#}`-line (shorter than 80 characters), keep it on one
line. Otherwise split into `{-# LANGUAGE ... -#}`-lines for each
individual language extension. In both cases, try to keep the
enumeration alphabetically ordered.
(The latter layout is preferable as it's more diff-friendly)
While at it, this also replaces obsolete `{-# OPTIONS ... #-}` pragma
occurences by `{-# OPTIONS_GHC ... #-}` pragmas.
|
| |
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This cleanup includes:
* removing dead code. This includes forkStatics function,
which was in fact one big noop, and global bindings in
CgInfoDownwards,
* converting functions that used FCode monad only to
access DynFlags into functions that take DynFlags
as a parameter and don't work in a monad,
* addBindC function is now smarter. It extracts Id from
CgIdInfo passed to it in the same way addBindsC does.
Previously this was done at every call site, which was
redundant.
|
|
|
|
|
| |
A major cleanup of trailing whitespaces and tabs in codeGen/
directory. I also adjusted code formatting in some places.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Top-level indirections are often generated when there is a cast, e.g.
foo :: T
foo = bar `cast` (some coercion)
For these we were generating a full-blown CAF, which is a fair chunk
of code.
This patch makes these indirections generate a single IND_STATIC
closure (4 words) instead. This is exactly what the CAF would
evaluate to eventually anyway, we're just shortcutting the whole
process.
|
|
|
|
|
| |
Mostly d -> g (matching DynFlag -> GeneralFlag).
Also renamed if* to when*, matching the Haskell if/when names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main change here is that the Cmm parser now allows high-level cmm
code with argument-passing and function calls. For example:
foo ( gcptr a, bits32 b )
{
if (b > 0) {
// we can make tail calls passing arguments:
jump stg_ap_0_fast(a);
}
return (x,y);
}
More details on the new cmm syntax are in Note [Syntax of .cmm files]
in CmmParse.y.
The old syntax is still more-or-less supported for those occasional
code fragments that really need to explicitly manipulate the stack.
However there are a couple of differences: it is now obligatory to
give a list of live GlobalRegs on every jump, e.g.
jump %ENTRY_CODE(Sp(0)) [R1];
Again, more details in Note [Syntax of .cmm files].
I have rewritten most of the .cmm files in the RTS into the new
syntax, except for AutoApply.cmm which is generated by the genapply
program: this file could be generated in the new syntax instead and
would probably be better off for it, but I ran out of enthusiasm.
Some other changes in this batch:
- The PrimOp calling convention is gone, primops now use the ordinary
NativeNodeCall convention. This means that primops and "foreign
import prim" code must be written in high-level cmm, but they can
now take more than 10 arguments.
- CmmSink now does constant-folding (should fix #7219)
- .cmm files now go through the cmmPipeline, and as a result we
generate better code in many cases. All the object files generated
for the RTS .cmm files are now smaller. Performance should be
better too, but I haven't measured it yet.
- RET_DYN frames are removed from the RTS, lots of code goes away
- we now have some more canned GC points to cover unboxed-tuples with
2-4 pointers, which will reduce code size a little.
|
| |
|
| |
|
|
|
|
|
|
| |
I've switched to passing DynFlags rather than Platform, as (a) it's
simpler to not have to extract targetPlatform in so many places, and
(b) it may be useful to have DynFlags around in future.
|
|
|
|
|
|
| |
We need to make the SRT label external and unique when splitting,
because it is shared amongst all the functions in the module. Also
some SRT-related cleanup.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
| |
Instead of relying on common-block-elimination to share return
continuations in the common case (case-alternative heap checks) we do
it explicitly. This isn't hard to do, is more robust, and saves some
compilation time. Full commentary in Note [sharing continuations].
|
|
|
|
| |
All the flags that 'ways' imply are now dynamic
|
| |
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* origin/master: (756 commits)
don't crash if argv[0] == NULL (#7037)
-package P was loading all versions of P in GHCi (#7030)
Add a Note, copying text from #2437
improve the --help docs a bit (#7008)
Copy Data.HashTable's hashString into our Util module
Build fix
Build fixes
Parse error: suggest brackets and indentation.
Don't build the ghc DLL on Windows; works around trac #5987
On Windows, detect if DLLs have too many symbols; trac #5987
Add some more Integer rules; fixes #6111
Fix PA dfun construction with silent superclass args
Add silent superclass parameters to the vectoriser
Add silent superclass parameters (again)
Mention Generic1 in the user's guide
Make the GHC API a little more powerful.
tweak llvm version warning message
New version of the patch for #5461.
Fix Word64ToInteger conversion rule.
Implemented feature request on reconfigurable pretty-printing in GHCi (#5461)
...
Conflicts:
compiler/basicTypes/UniqSupply.lhs
compiler/cmm/CmmBuildInfoTables.hs
compiler/cmm/CmmLint.hs
compiler/cmm/CmmOpt.hs
compiler/cmm/CmmPipeline.hs
compiler/cmm/CmmStackLayout.hs
compiler/cmm/MkGraph.hs
compiler/cmm/OldPprCmm.hs
compiler/codeGen/CodeGen.lhs
compiler/codeGen/StgCmm.hs
compiler/codeGen/StgCmmBind.hs
compiler/codeGen/StgCmmLayout.hs
compiler/codeGen/StgCmmUtils.hs
compiler/main/CodeOutput.lhs
compiler/main/HscMain.hs
compiler/nativeGen/AsmCodeGen.lhs
compiler/simplStg/SimplStg.lhs
|
| |\ |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This is done by a 'unarisation' pre-pass at the STG level which
translates away all (live) binders binding something of unboxed
tuple type.
This has the following knock-on effects:
* The subkind hierarchy is vastly simplified (no UbxTupleKind or ArgKind)
* Various relaxed type checks in typechecker, 'foreign import prim' etc
* All case binders may be live at the Core level
|
| |/
| |
| |
| |
| | |
By using Haskell's debugIsOn rather than CPP's "#ifdef DEBUG", we
don't need to kludge things to keep the warning checker happy etc.
|
|/
|
|
|
|
|
|
|
| |
This is so that we can process the Stg code in constant space. Before
we were generating all the C-- up front, leading to a large space
leak.
I haven't converted the LLVM or C back ends to the incremental scheme,
but it's not hard to do.
|
|
|
|
|
| |
We only use it for "compiler" sources, i.e. not for libraries.
Many modules have a -fno-warn-tabs kludge for now.
|
| |
|
| |
|
| |
|