| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
Add StgToCmm module hierarchy. Platform modules that are used in several
other places (NCG, LLVM codegen, Cmm transformations) are put into
GHC.Platform.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches the compiler/ component to get compiled with
-XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
modules.
This is motivated by the upcoming "Prelude" re-export of
`Semigroup((<>))` which would cause lots of name clashes in every
modulewhich imports also `Outputable`
Reviewers: austin, goldfire, bgamari, alanz, simonmar
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
Differential Revision: https://phabricator.haskell.org/D3989
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This seems like a clearer name and the fewer functions that
one needs to remember, the better.
Test Plan: validate
Reviewers: austin, simonmar, michalt
Reviewed By: simonmar, michalt
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2735
|
|
|
|
|
|
| |
Starting with GHC 7.10 and base-4.8, `Monad` implies `Applicative`,
which allows to simplify some definitions to exploit the superclass
relationship. This a first refactoring to that end.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since GHC 8.1/8.2 only needs to be bootstrap-able by GHC 7.10 and
GHC 8.0 (and GHC 8.2), we can now finally drop all that pre-AMP
compatibility CPP-mess for good!
Reviewers: austin, goldfire, bgamari
Subscribers: goldfire, thomie, erikd
Differential Revision: https://phabricator.haskell.org/D1724
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch refactors pure/(*>) and return/(>>) in MRP-friendly way, i.e.
such that the explicit definitions for `return` and `(>>)` match the
MRP-style default-implementation, i.e.
return = pure
and
(>>) = (*>)
This way, e.g. all `return = pure` definitions can easily be grepped and
removed in GHC 8.1;
Test Plan: Harbormaster
Reviewers: goldfire, alanz, bgamari, quchen, austin
Reviewed By: quchen, austin
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1312
|
|
|
|
|
|
| |
Comes with Haddock submodule update.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch solves the scoping problem of CmmTick nodes: If we just put
CmmTicks into blocks we have no idea what exactly they are meant to
cover. Here we introduce tick scopes, which allow us to create
sub-scopes and merged scopes easily.
Notes:
* Given that the code often passes Cmm around "head-less", we have to
make sure that its intended scope does not get lost. To keep the amount
of passing-around to a minimum we define a CmmAGraphScoped type synonym
here that just bundles the scope with a portion of Cmm to be assembled
later.
* We introduce new scopes at somewhat random places, aligning with
getCode calls. This works surprisingly well, but we might have to
add new scopes into the mix later on if we find things too be too
coarse-grained.
(From Phabricator D169)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds CmmTick nodes to Cmm code. This is relatively
straight-forward, but also not very useful, as many blocks will simply
end up with no annotations whatosever.
Notes:
* We use this design over, say, putting ticks into the entry node of all
blocks, as it seems to work better alongside existing optimisations.
Now granted, the reason for this is that currently GHC's main Cmm
optimisations seem to mainly reorganize and merge code, so this might
change in the future.
* We have the Cmm parser generate a few source notes as well. This is
relatively easy to do - worst part is that it complicates the CmmParse
implementation a bit.
(From Phabricator D169)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This includes pretty much all the changes needed to make `Applicative`
a superclass of `Monad` finally. There's mostly reshuffling in the
interests of avoid orphans and boot files, but luckily we can resolve
all of them, pretty much. The only catch was that
Alternative/MonadPlus also had to go into Prelude to avoid this.
As a result, we must update the hsc2hs and haddock submodules.
Signed-off-by: Austin Seipp <austin@well-typed.com>
Test Plan: Build things, they might not explode horribly.
Reviewers: hvr, simonmar
Subscribers: simonmar
Differential Revision: https://phabricator.haskell.org/D13
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Previously, both Cabal and GHC defined the type PackageId, and we expected
them to be roughly equivalent (but represented differently). This refactoring
separates these two notions.
A package ID is a user-visible identifier; it's the thing you write in a
Cabal file, e.g. containers-0.9. The components of this ID are semantically
meaningful, and decompose into a package name and a package vrsion.
A package key is an opaque identifier used by GHC to generate linking symbols.
Presently, it just consists of a package name and a package version, but
pursuant to #9265 we are planning to extend it to record other information.
Within a single executable, it uniquely identifies a package. It is *not* an
InstalledPackageId, as the choice of a package key affects the ABI of a package
(whereas an InstalledPackageId is computed after compilation.) Cabal computes
a package key for the package and passes it to GHC using -package-name (now
*extremely* misnamed).
As an added bonus, we don't have to worry about shadowing anymore.
As a follow on, we should introduce -current-package-key having the same role as
-package-name, and deprecate the old flag. This commit is just renaming.
The haddock submodule needed to be updated.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Test Plan: validate
Reviewers: simonpj, simonmar, hvr, austin
Subscribers: simonmar, relrod, carter
Differential Revision: https://phabricator.haskell.org/D79
Conflicts:
compiler/main/HscTypes.lhs
compiler/main/Packages.lhs
utils/haddock
|
|
|
|
|
| |
Authored-by: David Luposchainsky <dluposchainsky@gmail.com>
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
| |
A major cleanup of trailing whitespaces and tabs in codeGen/
directory. I also adjusted code formatting in some places.
|
| |
|
|
|
|
|
| |
In loopDecls, as far as I can see the globalDecls will always
already be in the environment, so don't add them again.
|
| |
|
| |
|
|
The main change here is that the Cmm parser now allows high-level cmm
code with argument-passing and function calls. For example:
foo ( gcptr a, bits32 b )
{
if (b > 0) {
// we can make tail calls passing arguments:
jump stg_ap_0_fast(a);
}
return (x,y);
}
More details on the new cmm syntax are in Note [Syntax of .cmm files]
in CmmParse.y.
The old syntax is still more-or-less supported for those occasional
code fragments that really need to explicitly manipulate the stack.
However there are a couple of differences: it is now obligatory to
give a list of live GlobalRegs on every jump, e.g.
jump %ENTRY_CODE(Sp(0)) [R1];
Again, more details in Note [Syntax of .cmm files].
I have rewritten most of the .cmm files in the RTS into the new
syntax, except for AutoApply.cmm which is generated by the genapply
program: this file could be generated in the new syntax instead and
would probably be better off for it, but I ran out of enthusiasm.
Some other changes in this batch:
- The PrimOp calling convention is gone, primops now use the ordinary
NativeNodeCall convention. This means that primops and "foreign
import prim" code must be written in high-level cmm, but they can
now take more than 10 arguments.
- CmmSink now does constant-folding (should fix #7219)
- .cmm files now go through the cmmPipeline, and as a result we
generate better code in many cases. All the object files generated
for the RTS .cmm files are now smaller. Performance should be
better too, but I haven't measured it yet.
- RET_DYN frames are removed from the RTS, lots of code goes away
- we now have some more canned GC points to cover unboxed-tuples with
2-4 pointers, which will reduce code size a little.
|