summaryrefslogtreecommitdiff
path: root/compiler/iface/TcIface.lhs-boot
Commit message (Collapse)AuthorAgeFilesLines
* Implement overlapping type family instances.Richard Eisenberg2012-12-211-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | An ordered, overlapping type family instance is introduced by 'type instance where', followed by equations. See the new section in the user manual (7.7.2.2) for details. The canonical example is Boolean equality at the type level: type family Equals (a :: k) (b :: k) :: Bool type instance where Equals a a = True Equals a b = False A branched family instance, such as this one, checks its equations in order and applies only the first the matches. As explained in the note [Instance checking within groups] in FamInstEnv.lhs, we must be careful not to simplify, say, (Equals Int b) to False, because b might later unify with Int. This commit includes all of the commits on the overlapping-tyfams branch. SPJ requested that I combine all my commits over the past several months into one monolithic commit. The following GHC repos are affected: ghc, testsuite, utils/haddock, libraries/template-haskell, and libraries/dph. Here are some details for the interested: - The definition of CoAxiom has been moved from TyCon.lhs to a new file CoAxiom.lhs. I made this decision because of the number of definitions necessary to support BranchList. - BranchList is a GADT whose type tracks whether it is a singleton list or not-necessarily-a-singleton-list. The reason I introduced this type is to increase static checking of places where GHC code assumes that a FamInst or CoAxiom is indeed a singleton. This assumption takes place roughly 10 times throughout the code. I was worried that a future change to GHC would invalidate the assumption, and GHC might subtly fail to do the right thing. By explicitly labeling CoAxioms and FamInsts as being Unbranched (singleton) or Branched (not-necessarily-singleton), we make this assumption explicit and checkable. Furthermore, to enforce the accuracy of this label, the list of branches of a CoAxiom or FamInst is stored using a BranchList, whose constructors constrain its type index appropriately. I think that the decision to use BranchList is probably the most controversial decision I made from a code design point of view. Although I provide conversions to/from ordinary lists, it is more efficient to use the brList... functions provided in CoAxiom than always to convert. The use of these functions does not wander far from the core CoAxiom/FamInst logic. BranchLists are motivated and explained in the note [Branched axioms] in CoAxiom.lhs. - The CoAxiom type has changed significantly. You can see the new type in CoAxiom.lhs. It uses a CoAxBranch type to track branches of the CoAxiom. Correspondingly various functions producing and consuming CoAxioms had to change, including the binary layout of interface files. - To get branched axioms to work correctly, it is important to have a notion of type "apartness": two types are apart if they cannot unify, and no substitution of variables can ever get them to unify, even after type family simplification. (This is different than the normal failure to unify because of the type family bit.) This notion in encoded in tcApartTys, in Unify.lhs. Because apartness is finer-grained than unification, the tcUnifyTys now calls tcApartTys. - CoreLinting axioms has been updated, both to reflect the new form of CoAxiom and to enforce the apartness rules of branch application. The formalization of the new rules is in docs/core-spec/core-spec.pdf. - The FamInst type (in types/FamInstEnv.lhs) has changed significantly, paralleling the changes to CoAxiom. Of course, this forced minor changes in many files. - There are several new Notes in FamInstEnv.lhs, including one discussing confluent overlap and why we're not doing it. - lookupFamInstEnv, lookupFamInstEnvConflicts, and lookup_fam_inst_env' (the function that actually does the work) have all been more-or-less completely rewritten. There is a Note [lookup_fam_inst_env' implementation] describing the implementation. One of the changes that affects other files is to change the type of matches from a pair of (FamInst, [Type]) to a new datatype (which now includes the index of the matching branch). This seemed a better design. - The TySynInstD constructor in Template Haskell was updated to use the new datatype TySynEqn. I also bumped the TH version number, requiring changes to DPH cabal files. (That's why the DPH repo has an overlapping-tyfams branch.) - As SPJ requested, I refactored some of the code in HsDecls: * splitting up TyDecl into SynDecl and DataDecl, correspondingly changing HsTyDefn to HsDataDefn (with only one constructor) * splitting FamInstD into TyFamInstD and DataFamInstD and splitting FamInstDecl into DataFamInstDecl and TyFamInstDecl * making the ClsInstD take a ClsInstDecl, for parallelism with InstDecl's other constructors * changing constructor TyFamily into FamDecl * creating a FamilyDecl type that stores the details for a family declaration; this is useful because FamilyDecls can appear in classes but other decls cannot * restricting the associated types and associated type defaults for a * class to be the new, more restrictive types * splitting cid_fam_insts into cid_tyfam_insts and cid_datafam_insts, according to the new types * perhaps one or two more that I'm overlooking None of these changes has far-reaching implications. - The user manual, section 7.7.2.2, is updated to describe the new type family instances.
* Major refactoring of CoAxiomsSimon Peyton Jones2012-01-031-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch should have no user-visible effect. It implements a significant internal refactoring of the way that FC axioms are handled. The ultimate goal is to put us in a position to implement "pattern-matching axioms". But the changes here are only does refactoring; there is no change in functionality. Specifically: * We now treat data/type family instance declarations very, very similarly to types class instance declarations: - Renamed InstEnv.Instance as InstEnv.ClsInst, for symmetry with FamInstEnv.FamInst. This change does affect the GHC API, but for the better I think. - Previously, each family type/data instance declaration gave rise to a *TyCon*; typechecking a type/data instance decl produced that TyCon. Now, each type/data instance gives rise to a *FamInst*, by direct analogy with each class instance declaration giving rise to a ClsInst. - Just as each ClsInst contains its evidence, a DFunId, so each FamInst contains its evidence, a CoAxiom. See Note [FamInsts and CoAxioms] in FamInstEnv. The CoAxiom is a System-FC thing, and can relate any two types, whereas the FamInst relates directly to the Haskell source language construct, and always has a function (F tys) on the LHS. - Just as a DFunId has its own declaration in an interface file, so now do CoAxioms (see IfaceSyn.IfaceAxiom). These changes give rise to almost all the refactoring. * We used to have a hack whereby a type family instance produced a dummy type synonym, thus type instance F Int = Bool -> Bool translated to axiom FInt :: F Int ~ R:FInt type R:FInt = Bool -> Bool This was always a hack, and now it's gone. Instead the type instance declaration produces a FamInst, whose axiom has kind axiom FInt :: F Int ~ Bool -> Bool just as you'd expect. * Newtypes are done just as before; they generate a CoAxiom. These CoAxioms are "implicit" (do not generate an IfaceAxiom declaration), unlike the ones coming from family instance declarations. See Note [Implicit axioms] in TyCon On the whole the code gets significantly nicer. There were consequential tidy-ups in the vectoriser, but I think I got them right.
* Fix loading VectInfo for type constructorsManuel M T Chakravarty2011-11-141-2/+2
|
* Clean up and complete the vectorisation of type classesManuel M T Chakravarty2011-11-041-2/+2
|
* SafeHaskell: Fix validation errors when Safe base used.David Terei2011-06-171-1/+1
|
* SafeHaskell: Move safe haskell flag into Overlap flagDavid Terei2011-06-171-1/+1
| | | | | | For instance decls we no longer store the SafeHaskell mode in this data structure but instead store it as a bool field in the overlap flag structure.
* SafeHaskell: Restrict OverlappingInstances.David Terei2011-06-171-13/+14
| | | | | OverlappingInstances in Safe modules can only overlap instances defined in the same module.
* Add (a) CoreM monad, (b) new Annotations featuresimonpj@microsoft.com2008-10-301-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch, written by Max Bolingbroke, does two things 1. It adds a new CoreM monad (defined in simplCore/CoreMonad), which is used as the top-level monad for all the Core-to-Core transformations (starting at SimplCore). It supports * I/O (for debug printing) * Unique supply * Statistics gathering * Access to the HscEnv, RuleBase, Annotations, Module The patch therefore refactors the top "skin" of every Core-to-Core pass, but does not change their functionality. 2. It adds a completely new facility to GHC: Core "annotations". The idea is that you can say {#- ANN foo (Just "Hello") #-} which adds the annotation (Just "Hello") to the top level function foo. These annotations can be looked up in any Core-to-Core pass, and are persisted into interface files. (Hence a Core-to-Core pass can also query the annotations of imported things.) Furthermore, a Core-to-Core pass can add new annotations (eg strictness info) of its own, which can be queried by importing modules. The design of the annotation system is somewhat in flux. It's designed to work with the (upcoming) dynamic plug-ins mechanism, but is meanwhile independently useful. Do not merge to 6.10!
* Improved VectInfoManuel M T Chakravarty2007-05-081-0/+3
| | | | | | | | | | - We need to keep pairs of (f, f_CC) in VectInfo as it is difficult to obtain Names from OccNames (of imported modules) in Core passes. - There is a choice of keeping Names or Vars in VectInfo. We go with Vars for now; mainly to avoid converting between Names and Vars repeatedly for the same VectInfo in other than one-shot mode. Again goes to the HEAD straight away to avoid conflicts down the road.
* Rough matches for family instancesManuel M T Chakravarty2006-10-101-8/+10
| | | | | | | | | | | | | | | | | - Class and type family instances just got a lot more similar. - FamInst, like Instance, now has a rough match signature. The idea is the same: if the rough match doesn't match, there is no need to pull in the while tycon describing the instance (from a lazily read iface). - IfaceFamInst changes in a similar way and the list of all IFaceFamInsts is now written into the binary iface (as for class instances), as deriving it from the tycon (as before) would render the whole rough matching useless. - As a result of this, the plumbing of class instances and type instances through the various environments, ModIface, ModGuts, and ModDetails is now almost the same. (The remaining difference are mostly because the dfun of a class instance is an Id, but type instance refer to a TyCon, not an Id.) *** WARNING: The interface file format changed! *** *** Rebuild from scratch. ***
* Fix up the typechecking of interface files during --makesimonpj@microsoft.com2006-10-061-2/+2
| | | | | | | | | | | | This patch fixes Trac #909. The problem was that when compiling the base package, the handling of wired-in things wasn't right; in TcIface.tcWiredInTyCon it repeatedly loaded GHC.Base.hi into the PIT, even though that was the very module it was compiling. The main fix is by introducing TcIface.ifCheckWiredInThing. But I did some minor refactoring as well.
* Reorganisation of the source treeSimon Marlow2006-04-071-0/+13
Most of the other users of the fptools build system have migrated to Cabal, and with the move to darcs we can now flatten the source tree without losing history, so here goes. The main change is that the ghc/ subdir is gone, and most of what it contained is now at the top level. The build system now makes no pretense at being multi-project, it is just the GHC build system. No doubt this will break many things, and there will be a period of instability while we fix the dependencies. A straightforward build should work, but I haven't yet fixed binary/source distributions. Changes to the Building Guide will follow, too.