summaryrefslogtreecommitdiff
path: root/compiler/main
Commit message (Collapse)AuthorAgeFilesLines
* Modules: Utils and Data (#13009)Sylvain Henry2020-04-267-1839/+0
| | | | | | | Update Haddock submodule Metric Increase: haddock.compiler
* Avoid DynFlags in Ppr code (#17957)Sylvain Henry2020-04-211-12/+13
| | | | | | | | | | * replace `DynFlags` parameters with `SDocContext` parameters for a few Ppr related functions: `bufLeftRenderSDoc`, `printSDoc`, `printSDocLn`, `showSDocOneLine`. * remove the use of `pprCols :: DynFlags -> Int` in Outputable. We already have the information via `sdocLineLength :: SDocContext -> Int`
* Modules (#13009)Sylvain Henry2020-04-1819-3996/+1
| | | | | | | | | | | | | | * SysTools * Parser * GHC.Builtin * GHC.Iface.Recomp * Settings Update Haddock submodule Metric Decrease: Naperian parsing001
* GHC.Core.Opt renamingSylvain Henry2020-04-181-1/+1
| | | | | | | | | | | * GHC.Core.Op => GHC.Core.Opt * GHC.Core.Opt.Simplify.Driver => GHC.Core.Opt.Driver * GHC.Core.Opt.Tidy => GHC.Core.Tidy * GHC.Core.Opt.WorkWrap.Lib => GHC.Core.Opt.WorkWrap.Utils As discussed in: * https://mail.haskell.org/pipermail/ghc-devs/2020-April/018758.html * https://gitlab.haskell.org/ghc/ghc/issues/13009#note_264650
* Make NoExtCon fields strictwip/strict-NoExtConRyan Scott2020-04-071-3/+2
| | | | | | | | | | | | | | | | This changes every unused TTG extension constructor to be strict in its field so that the pattern-match coverage checker is smart enough any such constructors are unreachable in pattern matches. This lets us remove nearly every use of `noExtCon` in the GHC API. The only ones we cannot remove are ones underneath uses of `ghcPass`, but that is only because GHC 8.8's and 8.10's coverage checkers weren't smart enough to perform this kind of reasoning. GHC HEAD's coverage checker, on the other hand, _is_ smart enough, so we guard these uses of `noExtCon` with CPP for now. Bumps the `haddock` submodule. Fixes #17992.
* Modules: type-checker (#13009)Sylvain Henry2020-04-071-2/+2
| | | | Update Haddock submodule
* Session: Memoize stderrSupportsAnsiColorsBen Gamari2020-04-021-2/+10
| | | | | Not only is this a reasonable efficiency measure but it avoids making reentrant calls into ncurses, which is not thread-safe. See #17922.
* Simplify stderrSupportsAnsiColorsÖmer Sinan Ağacan2020-03-311-13/+6
| | | | | The combinator andM is used only once, and the code is shorter and simpler if you inline it.
* Require GHC 8.8 as the minimum compiler for bootstrappingRyan Scott2020-03-311-4/+0
| | | | | | | | This allows us to remove several bits of CPP that are either always true or no longer reachable. As an added bonus, we no longer need to worry about importing `Control.Monad.Fail.fail` qualified to avoid clashing with `Control.Monad.fail`, since the latter is now the same as the former.
* Store ComponentId detailsSylvain Henry2020-03-291-1/+4
| | | | | | | | | | | | | | | | As far as GHC is concerned, installed package components ("units") are identified by an opaque ComponentId string provided by Cabal. But we don't want to display it to users (as it contains a hash) so GHC queries the database to retrieve some infos about the original source package (name, version, component name). This patch caches these infos in the ComponentId itself so that we don't need to provide DynFlags (which contains installed package informations) to print a ComponentId. In the future we want GHC to support several independent package states (e.g. for plugins and for target code), hence we need to avoid implicitly querying a single global package state.
* Modules: Types (#13009)Sylvain Henry2020-03-2911-162/+20
| | | | | | | Update Haddock submodule Metric Increase: haddock.compiler
* DynFlags refactoring IIISylvain Henry2020-03-252-5/+10
| | | | | | | | | | | | | Use Platform instead of DynFlags when possible: * `tARGET_MIN_INT` et al. replaced with `platformMinInt` et al. * no more DynFlags in PreRules: added a new `RuleOpts` datatype * don't use `wORD_SIZE` in the compiler * make `wordAlignment` use `Platform` * make `dOUBLE_SIZE` a constant Metric Decrease: T13035 T1969
* Fix event message in withTiming'Sergej Jaskiewicz2020-03-201-1/+1
| | | | This typo caused generating 'end' events without the corresponding 'begin' events.
* Modules: Core operations (#13009)Sylvain Henry2020-03-181-1/+1
|
* Don't update ModDetails with CafInfos when opts are disabledÖmer Sinan Ağacan2020-03-171-2/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is consistent with the interface file behavior where we omit HsNoCafRefs annotations with -fomit-interface-pragmas (implied by -O0). ModDetails and ModIface are just different representations of the same thing, so they really need to be in sync. This patch does the right thing and does not need too much explanation, but here's an example of a problem not doing this causes in !2842: -- MyInteger.hs module MyInteger ( MyInteger (MyInteger) , ToMyInteger (toMyInteger) ) where newtype MyInteger = MyInteger Integer class ToMyInteger a where toMyInteger :: a -> MyInteger instance ToMyInteger Integer where toMyInteger = MyInteger {- . succ -} -- Main.hs module Main ( main ) where import MyInteger (MyInteger (MyInteger), toMyInteger) main :: IO () main = do let (MyInteger i) = (id . toMyInteger) (41 :: Integer) print i If I build this with -O0, without this fix, we generate a ModDetails with accurate LFInfo for toMyInteger (MyInteger.$fToMyIntegerInteger) which says that it's a LFReEntrant with arity 1. This means in the use site (Main) we tag the value: R3 = MyInteger.$fToMyIntegerInteger_closure + 1; R2 = GHC.Base.id_closure; R1 = GHC.Base.._closure; Sp = Sp - 16; call stg_ap_ppp_fast(R4, R3, R2, R1) args: 24, res: 0, upd: 24; Now we change the definition by uncommenting the `succ` part and it becomes a thunk: MyInteger.$fToMyIntegerInteger [InlPrag=INLINE (sat-args=0)] :: MyInteger.ToMyInteger GHC.Integer.Type.Integer [GblId[DFunId(nt)]] = {} \u [] $ctoMyInteger_rEA; and its LFInfo is now LFThunk. This change in LFInfo makes a difference in the use site: we can no longer tag it. But becuase the interface fingerprint does not change (because ModIface does not change) we don't rebuild Main and tag the thunk. (1.2% increase in allocations when building T12545 on armv7 because we generate more code without CafInfos) Metric Increase: T12545
* Modules: Core (#13009)Sylvain Henry2020-03-162-3/+3
| | | | Update submodule: haddock
* Refactor CmmToAsm (disentangle DynFlags)Sylvain Henry2020-03-152-7/+9
| | | | | | | | | | | | | | | | | | | | | This patch disentangles a bit more DynFlags from the native code generator (CmmToAsm). In more details: - add a new NCGConfig datatype in GHC.CmmToAsm.Config which contains the configuration of a native code generation session - explicitly pass NCGConfig/Platform arguments when necessary - as a consequence `sdocWithPlatform` is gone and there are only a few `sdocWithDynFlags` left - remove the use of `unsafeGlobalDynFlags` from GHC.CmmToAsm.CFG - remove `sdocDebugLevel` (now we pass the debug level via NCGConfig) There are still some places where DynFlags is used, especially because of pretty-printing (CLabel), because of Cmm helpers (such as `cmmExprType`) and because of `Outputable` instance for the instructions. These are left for future refactoring as this patch is already big.
* Remove some dead codeBrian Foley2020-03-151-6/+0
| | | | From the notes.ghc.drop list found using weeder in #17713
* Use a Set to represent WaysSylvain Henry2020-03-111-1/+3
| | | | | | | | Should make `member` queries faster and avoid messing up with missing `nubSort`. Metric Increase: hie002
* SysTools: Ensure that error parser can handle absolute paths on WindowsBen Gamari2020-03-101-3/+14
| | | | | | | This fixes #17786, where the error parser fails to correctly handle the drive name in absolute Windows paths. Unfortunately I couldn't find a satisfactory way to test this.
* Rename ghci.sh and build.sh to ghci and build respectivelyXavier Denis2020-02-291-1/+1
| | | | | | Convert hadrian buildscripts to unsuffixed, dashed form final cleanups
* Monotonic locations (#17632)Vladislav Zavialov2020-02-292-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When GHC is parsing a file generated by a tool, e.g. by the C preprocessor, the tool may insert #line pragmas to adjust the locations reported to the user. As the result, the locations recorded in RealSrcLoc are not monotonic. Elements that appear later in the StringBuffer are not guaranteed to have a higher line/column number. In fact, there are no guarantees whatsoever, as #line pragmas can arbitrarily modify locations. This lack of guarantees makes ideas such as #17544 infeasible. This patch adds an additional bit of information to every SrcLoc: newtype BufPos = BufPos { bufPos :: Int } A BufPos represents the location in the StringBuffer, unaffected by any pragmas. Updates haddock submodule. Metric Increase: haddock.Cabal haddock.base haddock.compiler MultiLayerModules Naperian parsing001 T12150
* Modules: Core (#13009)Sylvain Henry2020-02-263-209/+4
| | | | Update haddock submodule
* SysTools: Don't use process jobs if they are brokenBen Gamari2020-02-261-8/+22
|
* Remove Ord SrcLoc, Ord SrcSpanVladislav Zavialov2020-02-241-7/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Before this patch, GHC relied on Ord SrcSpan to identify source elements, by using SrcSpan as Map keys: blackList :: Map SrcSpan () -- compiler/GHC/HsToCore/Coverage.hs instanceMap :: Map SrcSpan Name -- compiler/GHC/HsToCore/Docs.hs Firstly, this design is not valid in presence of UnhelpfulSpan, as it distinguishes between UnhelpfulSpan "X" and UnhelpfulSpan "Y", but those strings are messages for the user, unfit to serve as identifiers for source elements. Secondly, this design made it hard to extend SrcSpan with additional data. Recall that the definition of SrcSpan is: data SrcSpan = RealSrcSpan !RealSrcSpan | UnhelpfulSpan !FastString Say we want to extend the RealSrcSpan constructor with additional information: data SrcSpan = RealSrcSpan !RealSrcSpan !AdditionalInformation | UnhelpfulSpan !FastString getAdditionalInformation :: SrcSpan -> AdditionalInformation getAdditionalInformation (RealSrcSpan _ a) = a Now, in order for Map SrcSpan to keep working correctly, we must *ignore* additional information when comparing SrcSpan values: instance Ord SrcSpan where compare (RealSrcSpan r1 _) (RealSrcSpan r2 _) = compare r1 r2 ... However, this would violate an important law: a == b therefore f a == f b Ignoring AdditionalInformation in comparisons would mean that with f=getAdditionalInformation, the law above does not hold. A more robust design is to avoid Ord SrcSpan altogether, which is what this patch implements. The mappings are changed to use RealSrcSpan instead: blackList :: Set RealSrcSpan -- compiler/GHC/HsToCore/Coverage.hs instanceMap :: Map RealSrcSpan Name -- compiler/GHC/HsToCore/Docs.hs All SrcSpan comparisons are now done with explicit comparison strategies: SrcLoc.leftmost_smallest SrcLoc.leftmost_largest SrcLoc.rightmost_smallest These strategies are not subject to the law mentioned above and can easily discard both the string stored in UnhelpfulSpan and AdditionalInformation. Updates haddock submodule.
* Modules: Driver (#13009)Sylvain Henry2020-02-2134-23307/+21
| | | | submodule updates: nofib, haddock
* Parser API annotations: RealSrcLocVladislav Zavialov2020-02-212-6/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | During parsing, GHC collects lexical information about AST nodes and stores it in a map. It is needed to faithfully restore original source code, e.g. compare these expressions: a = b a = b The position of the equality sign is not recorded in the AST, so it must be stored elsewhere. This system is described in Note [Api annotations]. Before this patch, the mapping was represented by: Map (SrcSpan, AnnKeywordId) SrcSpan After this patch, the mapping is represented by: Map (RealSrcSpan, AnnKeywordId) RealSrcSpan The motivation behind this change is to avoid using the Ord SrcSpan instance (required by Map here), as it interferes with #17632 (see the discussion there). SrcSpan is isomorphic to Either String RealSrcSpan, but we shouldn't use those strings as Map keys. Those strings are intended as hints to the user, e.g. "<interactive>" or "<compiler-generated code>", so they are not a valid way to identify nodes in the source code.
* Enable -Wstar-is-type in -WallBen Gamari2020-02-201-1/+2
| | | | | | | | | | As noted in [proposal 0143][proposal] this is supposed to happen in 8.12. Also fix an incorrect claim in the users guide that -Wstar-is-type is enabled by default. [proposal]: https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0143-remove-star-kind.rst
* Use concatMap(M) instead of `concat . map` and the monadic variantÖmer Sinan Ağacan2020-02-202-4/+4
|
* Disentangle DynFlags and SDocSylvain Henry2020-02-203-46/+63
| | | | | | | | | | | | | Remove several uses of `sdocWithDynFlags`. The remaining ones are mostly CodeGen related (e.g. depend on target platform constants) and will be fixed separately. Metric Decrease: T12425 T9961 WWRec T1969 T14683
* Re-implement unsafe coercions in terms of unsafe equality proofsSimon Peyton Jones2020-02-203-8/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (Commit message written by Omer, most of the code is written by Simon and Richard) See Note [Implementing unsafeCoerce] for how unsafe equality proofs and the new unsafeCoerce# are implemented. New notes added: - [Checking for levity polymorphism] in CoreLint.hs - [Implementing unsafeCoerce] in base/Unsafe/Coerce.hs - [Patching magic definitions] in Desugar.hs - [Wiring in unsafeCoerce#] in Desugar.hs Only breaking change in this patch is unsafeCoerce# is not exported from GHC.Exts, instead of GHC.Prim. Fixes #17443 Fixes #16893 NoFib ----- -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- CS -0.1% 0.0% -0.0% -0.0% -0.0% CSD -0.1% 0.0% -0.0% -0.0% -0.0% FS -0.1% 0.0% -0.0% -0.0% -0.0% S -0.1% 0.0% -0.0% -0.0% -0.0% VS -0.1% 0.0% -0.0% -0.0% -0.0% VSD -0.1% 0.0% -0.0% -0.0% -0.1% VSM -0.1% 0.0% -0.0% -0.0% -0.0% anna -0.0% 0.0% -0.0% -0.0% -0.0% ansi -0.1% 0.0% -0.0% -0.0% -0.0% atom -0.1% 0.0% -0.0% -0.0% -0.0% awards -0.1% 0.0% -0.0% -0.0% -0.0% banner -0.1% 0.0% -0.0% -0.0% -0.0% bernouilli -0.1% 0.0% -0.0% -0.0% -0.0% binary-trees -0.1% 0.0% -0.0% -0.0% -0.0% boyer -0.1% 0.0% -0.0% -0.0% -0.0% boyer2 -0.1% 0.0% -0.0% -0.0% -0.0% bspt -0.1% 0.0% -0.0% -0.0% -0.0% cacheprof -0.1% 0.0% -0.0% -0.0% -0.0% calendar -0.1% 0.0% -0.0% -0.0% -0.0% cichelli -0.1% 0.0% -0.0% -0.0% -0.0% circsim -0.1% 0.0% -0.0% -0.0% -0.0% clausify -0.1% 0.0% -0.0% -0.0% -0.0% comp_lab_zift -0.1% 0.0% -0.0% -0.0% -0.0% compress -0.1% 0.0% -0.0% -0.0% -0.0% compress2 -0.1% 0.0% -0.0% -0.0% -0.0% constraints -0.1% 0.0% -0.0% -0.0% -0.0% cryptarithm1 -0.1% 0.0% -0.0% -0.0% -0.0% cryptarithm2 -0.1% 0.0% -0.0% -0.0% -0.0% cse -0.1% 0.0% -0.0% -0.0% -0.0% digits-of-e1 -0.1% 0.0% -0.0% -0.0% -0.0% digits-of-e2 -0.1% 0.0% -0.0% -0.0% -0.0% dom-lt -0.1% 0.0% -0.0% -0.0% -0.0% eliza -0.1% 0.0% -0.0% -0.0% -0.0% event -0.1% 0.0% -0.0% -0.0% -0.0% exact-reals -0.1% 0.0% -0.0% -0.0% -0.0% exp3_8 -0.1% 0.0% -0.0% -0.0% -0.0% expert -0.1% 0.0% -0.0% -0.0% -0.0% fannkuch-redux -0.1% 0.0% -0.0% -0.0% -0.0% fasta -0.1% 0.0% -0.5% -0.3% -0.4% fem -0.1% 0.0% -0.0% -0.0% -0.0% fft -0.1% 0.0% -0.0% -0.0% -0.0% fft2 -0.1% 0.0% -0.0% -0.0% -0.0% fibheaps -0.1% 0.0% -0.0% -0.0% -0.0% fish -0.1% 0.0% -0.0% -0.0% -0.0% fluid -0.1% 0.0% -0.0% -0.0% -0.0% fulsom -0.1% 0.0% +0.0% +0.0% +0.0% gamteb -0.1% 0.0% -0.0% -0.0% -0.0% gcd -0.1% 0.0% -0.0% -0.0% -0.0% gen_regexps -0.1% 0.0% -0.0% -0.0% -0.0% genfft -0.1% 0.0% -0.0% -0.0% -0.0% gg -0.1% 0.0% -0.0% -0.0% -0.0% grep -0.1% 0.0% -0.0% -0.0% -0.0% hidden -0.1% 0.0% -0.0% -0.0% -0.0% hpg -0.1% 0.0% -0.0% -0.0% -0.0% ida -0.1% 0.0% -0.0% -0.0% -0.0% infer -0.1% 0.0% -0.0% -0.0% -0.0% integer -0.1% 0.0% -0.0% -0.0% -0.0% integrate -0.1% 0.0% -0.0% -0.0% -0.0% k-nucleotide -0.1% 0.0% -0.0% -0.0% -0.0% kahan -0.1% 0.0% -0.0% -0.0% -0.0% knights -0.1% 0.0% -0.0% -0.0% -0.0% lambda -0.1% 0.0% -0.0% -0.0% -0.0% last-piece -0.1% 0.0% -0.0% -0.0% -0.0% lcss -0.1% 0.0% -0.0% -0.0% -0.0% life -0.1% 0.0% -0.0% -0.0% -0.0% lift -0.1% 0.0% -0.0% -0.0% -0.0% linear -0.1% 0.0% -0.0% -0.0% -0.0% listcompr -0.1% 0.0% -0.0% -0.0% -0.0% listcopy -0.1% 0.0% -0.0% -0.0% -0.0% maillist -0.1% 0.0% -0.0% -0.0% -0.0% mandel -0.1% 0.0% -0.0% -0.0% -0.0% mandel2 -0.1% 0.0% -0.0% -0.0% -0.0% mate -0.1% 0.0% -0.0% -0.0% -0.0% minimax -0.1% 0.0% -0.0% -0.0% -0.0% mkhprog -0.1% 0.0% -0.0% -0.0% -0.0% multiplier -0.1% 0.0% -0.0% -0.0% -0.0% n-body -0.1% 0.0% -0.0% -0.0% -0.0% nucleic2 -0.1% 0.0% -0.0% -0.0% -0.0% para -0.1% 0.0% -0.0% -0.0% -0.0% paraffins -0.1% 0.0% -0.0% -0.0% -0.0% parser -0.1% 0.0% -0.0% -0.0% -0.0% parstof -0.1% 0.0% -0.0% -0.0% -0.0% pic -0.1% 0.0% -0.0% -0.0% -0.0% pidigits -0.1% 0.0% -0.0% -0.0% -0.0% power -0.1% 0.0% -0.0% -0.0% -0.0% pretty -0.1% 0.0% -0.1% -0.1% -0.1% primes -0.1% 0.0% -0.0% -0.0% -0.0% primetest -0.1% 0.0% -0.0% -0.0% -0.0% prolog -0.1% 0.0% -0.0% -0.0% -0.0% puzzle -0.1% 0.0% -0.0% -0.0% -0.0% queens -0.1% 0.0% -0.0% -0.0% -0.0% reptile -0.1% 0.0% -0.0% -0.0% -0.0% reverse-complem -0.1% 0.0% -0.0% -0.0% -0.0% rewrite -0.1% 0.0% -0.0% -0.0% -0.0% rfib -0.1% 0.0% -0.0% -0.0% -0.0% rsa -0.1% 0.0% -0.0% -0.0% -0.0% scc -0.1% 0.0% -0.1% -0.1% -0.1% sched -0.1% 0.0% -0.0% -0.0% -0.0% scs -0.1% 0.0% -0.0% -0.0% -0.0% simple -0.1% 0.0% -0.0% -0.0% -0.0% solid -0.1% 0.0% -0.0% -0.0% -0.0% sorting -0.1% 0.0% -0.0% -0.0% -0.0% spectral-norm -0.1% 0.0% -0.0% -0.0% -0.0% sphere -0.1% 0.0% -0.0% -0.0% -0.0% symalg -0.1% 0.0% -0.0% -0.0% -0.0% tak -0.1% 0.0% -0.0% -0.0% -0.0% transform -0.1% 0.0% -0.0% -0.0% -0.0% treejoin -0.1% 0.0% -0.0% -0.0% -0.0% typecheck -0.1% 0.0% -0.0% -0.0% -0.0% veritas -0.0% 0.0% -0.0% -0.0% -0.0% wang -0.1% 0.0% -0.0% -0.0% -0.0% wave4main -0.1% 0.0% -0.0% -0.0% -0.0% wheel-sieve1 -0.1% 0.0% -0.0% -0.0% -0.0% wheel-sieve2 -0.1% 0.0% -0.0% -0.0% -0.0% x2n1 -0.1% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.5% -0.3% -0.4% Max -0.0% 0.0% +0.0% +0.0% +0.0% Geometric Mean -0.1% -0.0% -0.0% -0.0% -0.0% Test changes ------------ - break006 is marked as broken, see #17833 - The compiler allocates less when building T14683 (an unsafeCoerce#- heavy happy-generated code) on 64-platforms. Allocates more on 32-bit platforms. - Rest of the increases are tiny amounts (still enough to pass the threshold) in micro-benchmarks. I briefly looked at each one in a profiling build: most of the increased allocations seem to be because of random changes in the generated code. Metric Decrease: T14683 Metric Increase: T12150 T12234 T12425 T13035 T14683 T5837 T6048 Co-Authored-By: Richard Eisenberg <rae@cs.brynmawr.edu> Co-Authored-By: Ömer Sinan Ağacan <omeragacan@gmail.com>
* Modules: Llvm (#13009)Sylvain Henry2020-02-183-3/+3
|
* If a :reload finds syntax errors in the module graph, remove the loaded ↵Roland Senn2020-02-182-19/+35
| | | | | | | | | | modules. (Fixes #17549) The processing in `compiler/main/GhcMake.hs` computes the ModuleGraph. If it finds errors in the module header or in the import specifications, then the new module graph is incomplete and should not be used. The code before #17549 just reported the errors and left the old ModuleGraph in place. The new code of this MR replaces the old ModuleGraph with an empty one.
* SysTools: Use "process job" when spawning processes on WindowsTamar Christina2020-02-141-3/+16
| | | | | | | | | | | | | | GHC should make calls using process jobs when calling out to GCC and LD. The reason is these use the exec () family of posix functions. Window's process model doesn't allow replacement of processes so this is emulated by creating a new process and immediately exiting the old one. Because of this when using normal Windows wait functions you would return even without the child process having finished. In this case if you are depending on data from the child you will enter a race condition. The usual fix for this is to use process jobs and wait for the termination of all children that have ever been spawn by the process you called. But also waiting for the freeing of all resources.
* Pass -Wno-unused-command-line-arguments during link on FreeBSDBen Gamari2020-02-141-1/+3
| | | | | FreeBSD cc throws a warning if we pass -pthread without actually using any pthread symbols.
* Module hierarchy: HsToCore (cf #13009)Sylvain Henry2020-02-143-5/+5
|
* Remove -ddump-srts flagSylvain Henry2020-02-131-3/+0
| | | | This flag is deemed not useful.
* Separate CPR analysis from the Demand analyserwip/sep-cprSebastian Graf2020-02-121-0/+6
| | | | | | | | | | | | | | | | | | | The reasons for that can be found in the wiki: https://gitlab.haskell.org/ghc/ghc/wikis/nested-cpr/split-off-cpr We now run CPR after demand analysis (except for after the final demand analysis run just before code gen). CPR got its own dump flags (`-ddump-cpr-anal`, `-ddump-cpr-signatures`), but not its own flag to activate/deactivate. It will run with `-fstrictness`/`-fworker-wrapper`. As explained on the wiki page, this step is necessary for a sane Nested CPR analysis. And it has quite positive impact on compiler performance: Metric Decrease: T9233 T9675 T9961 T15263
* Module hierarchy: ByteCode and Runtime (cf #13009)Sylvain Henry2020-02-128-1663/+20
| | | | Update haddock submodule
* Fix -ddump-stg-final.Andreas Klebinger2020-02-091-1/+2
| | | | Once again make sure this dumps the STG used for codegen.
* Remove redundant caseSylvain Henry2020-02-081-4/+2
| | | | This alternative is redundant and triggers no warning when building with 8.6.5
* Introduce -Wcompat-unqualified-importsBen Gamari2020-02-081-1/+4
| | | | | | | | | | | | | This implements the warning proposed in option (B) of the Data.List.singleton CLC [discussion][]. This warning, which is included in `-Wcompat` is intended to help users identify imports of modules that will change incompatibly in future GHC releases. This currently only includes `Data.List` due to the expected specialisation and addition of `Data.List.singleton`. Fixes #17244. [discussion]: https://groups.google.com/d/msg/haskell-core-libraries/q3zHLmzBa5E/PmlAs_kYAQAJ
* compiler: Qualify imports of Data.ListBen Gamari2020-02-082-2/+2
|
* Delete some superfluous helper functions in HscMainJohn Ericson2020-02-041-35/+16
| | | | | | | | The driver code is some of the nastiest in GHC, and I am worried about being able to untangle all the tech debt. In `HscMain` we have a number of helpers which are either not-used or little used. I delete them so we can reduce cognative load, distilling the essential complexity away from the cruft.
* Refactor HscMain.finishJohn Ericson2020-02-031-30/+32
| | | | | | | | | | I found the old control flow a bit hard to follow; I rewrote it to first decide whether to desugar, and then use that choice when computing whether to simplify / what sort of interface file to write. I hope eventually we will always write post-tc interface files, which will make the logic of this function even simpler, and continue the thrust of this refactor.
* A few optimizations in STG and Cmm parts:Andreas Klebinger2020-01-312-2/+22
| | | | | | | | | | (Guided by the profiler output) - Add a few bang patterns, INLINABLE annotations, and a seqList in a few places in Cmm and STG parts. - Do not add external variables as dependencies in STG dependency analysis (GHC.Stg.DepAnal).
* Do CafInfo/SRT analysis in CmmÖmer Sinan Ağacan2020-01-315-37/+174
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch removes all CafInfo predictions and various hacks to preserve predicted CafInfos from the compiler and assigns final CafInfos to interface Ids after code generation. SRT analysis is extended to support static data, and Cmm generator is modified to allow generating static_link fields after SRT analysis. This also fixes `-fcatch-bottoms`, which introduces error calls in case expressions in CorePrep, which runs *after* CoreTidy (which is where we decide on CafInfos) and turns previously non-CAFFY things into CAFFY. Fixes #17648 Fixes #9718 Evaluation ========== NoFib ----- Boot with: `make boot mode=fast` Run: `make mode=fast EXTRA_RUNTEST_OPTS="-cachegrind" NoFibRuns=1` -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- CS -0.0% 0.0% -0.0% -0.0% -0.0% CSD -0.0% 0.0% -0.0% -0.0% -0.0% FS -0.0% 0.0% -0.0% -0.0% -0.0% S -0.0% 0.0% -0.0% -0.0% -0.0% VS -0.0% 0.0% -0.0% -0.0% -0.0% VSD -0.0% 0.0% -0.0% -0.0% -0.5% VSM -0.0% 0.0% -0.0% -0.0% -0.0% anna -0.1% 0.0% -0.0% -0.0% -0.0% ansi -0.0% 0.0% -0.0% -0.0% -0.0% atom -0.0% 0.0% -0.0% -0.0% -0.0% awards -0.0% 0.0% -0.0% -0.0% -0.0% banner -0.0% 0.0% -0.0% -0.0% -0.0% bernouilli -0.0% 0.0% -0.0% -0.0% -0.0% binary-trees -0.0% 0.0% -0.0% -0.0% -0.0% boyer -0.0% 0.0% -0.0% -0.0% -0.0% boyer2 -0.0% 0.0% -0.0% -0.0% -0.0% bspt -0.0% 0.0% -0.0% -0.0% -0.0% cacheprof -0.0% 0.0% -0.0% -0.0% -0.0% calendar -0.0% 0.0% -0.0% -0.0% -0.0% cichelli -0.0% 0.0% -0.0% -0.0% -0.0% circsim -0.0% 0.0% -0.0% -0.0% -0.0% clausify -0.0% 0.0% -0.0% -0.0% -0.0% comp_lab_zift -0.0% 0.0% -0.0% -0.0% -0.0% compress -0.0% 0.0% -0.0% -0.0% -0.0% compress2 -0.0% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm1 -0.0% 0.0% -0.0% -0.0% -0.0% cryptarithm2 -0.0% 0.0% -0.0% -0.0% -0.0% cse -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e1 -0.0% 0.0% -0.0% -0.0% -0.0% digits-of-e2 -0.0% 0.0% -0.0% -0.0% -0.0% dom-lt -0.0% 0.0% -0.0% -0.0% -0.0% eliza -0.0% 0.0% -0.0% -0.0% -0.0% event -0.0% 0.0% -0.0% -0.0% -0.0% exact-reals -0.0% 0.0% -0.0% -0.0% -0.0% exp3_8 -0.0% 0.0% -0.0% -0.0% -0.0% expert -0.0% 0.0% -0.0% -0.0% -0.0% fannkuch-redux -0.0% 0.0% -0.0% -0.0% -0.0% fasta -0.0% 0.0% -0.0% -0.0% -0.0% fem -0.0% 0.0% -0.0% -0.0% -0.0% fft -0.0% 0.0% -0.0% -0.0% -0.0% fft2 -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% fish -0.0% 0.0% -0.0% -0.0% -0.0% fluid -0.1% 0.0% -0.0% -0.0% -0.0% fulsom -0.0% 0.0% -0.0% -0.0% -0.0% gamteb -0.0% 0.0% -0.0% -0.0% -0.0% gcd -0.0% 0.0% -0.0% -0.0% -0.0% gen_regexps -0.0% 0.0% -0.0% -0.0% -0.0% genfft -0.0% 0.0% -0.0% -0.0% -0.0% gg -0.0% 0.0% -0.0% -0.0% -0.0% grep -0.0% 0.0% -0.0% -0.0% -0.0% hidden -0.0% 0.0% -0.0% -0.0% -0.0% hpg -0.1% 0.0% -0.0% -0.0% -0.0% ida -0.0% 0.0% -0.0% -0.0% -0.0% infer -0.0% 0.0% -0.0% -0.0% -0.0% integer -0.0% 0.0% -0.0% -0.0% -0.0% integrate -0.0% 0.0% -0.0% -0.0% -0.0% k-nucleotide -0.0% 0.0% -0.0% -0.0% -0.0% kahan -0.0% 0.0% -0.0% -0.0% -0.0% knights -0.0% 0.0% -0.0% -0.0% -0.0% lambda -0.0% 0.0% -0.0% -0.0% -0.0% last-piece -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% life -0.0% 0.0% -0.0% -0.0% -0.0% lift -0.0% 0.0% -0.0% -0.0% -0.0% linear -0.1% 0.0% -0.0% -0.0% -0.0% listcompr -0.0% 0.0% -0.0% -0.0% -0.0% listcopy -0.0% 0.0% -0.0% -0.0% -0.0% maillist -0.0% 0.0% -0.0% -0.0% -0.0% mandel -0.0% 0.0% -0.0% -0.0% -0.0% mandel2 -0.0% 0.0% -0.0% -0.0% -0.0% mate -0.0% 0.0% -0.0% -0.0% -0.0% minimax -0.0% 0.0% -0.0% -0.0% -0.0% mkhprog -0.0% 0.0% -0.0% -0.0% -0.0% multiplier -0.0% 0.0% -0.0% -0.0% -0.0% n-body -0.0% 0.0% -0.0% -0.0% -0.0% nucleic2 -0.0% 0.0% -0.0% -0.0% -0.0% para -0.0% 0.0% -0.0% -0.0% -0.0% paraffins -0.0% 0.0% -0.0% -0.0% -0.0% parser -0.1% 0.0% -0.0% -0.0% -0.0% parstof -0.1% 0.0% -0.0% -0.0% -0.0% pic -0.0% 0.0% -0.0% -0.0% -0.0% pidigits -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% pretty -0.0% 0.0% -0.3% -0.4% -0.4% primes -0.0% 0.0% -0.0% -0.0% -0.0% primetest -0.0% 0.0% -0.0% -0.0% -0.0% prolog -0.0% 0.0% -0.0% -0.0% -0.0% puzzle -0.0% 0.0% -0.0% -0.0% -0.0% queens -0.0% 0.0% -0.0% -0.0% -0.0% reptile -0.0% 0.0% -0.0% -0.0% -0.0% reverse-complem -0.0% 0.0% -0.0% -0.0% -0.0% rewrite -0.0% 0.0% -0.0% -0.0% -0.0% rfib -0.0% 0.0% -0.0% -0.0% -0.0% rsa -0.0% 0.0% -0.0% -0.0% -0.0% scc -0.0% 0.0% -0.3% -0.5% -0.4% sched -0.0% 0.0% -0.0% -0.0% -0.0% scs -0.0% 0.0% -0.0% -0.0% -0.0% simple -0.1% 0.0% -0.0% -0.0% -0.0% solid -0.0% 0.0% -0.0% -0.0% -0.0% sorting -0.0% 0.0% -0.0% -0.0% -0.0% spectral-norm -0.0% 0.0% -0.0% -0.0% -0.0% sphere -0.0% 0.0% -0.0% -0.0% -0.0% symalg -0.0% 0.0% -0.0% -0.0% -0.0% tak -0.0% 0.0% -0.0% -0.0% -0.0% transform -0.0% 0.0% -0.0% -0.0% -0.0% treejoin -0.0% 0.0% -0.0% -0.0% -0.0% typecheck -0.0% 0.0% -0.0% -0.0% -0.0% veritas -0.0% 0.0% -0.0% -0.0% -0.0% wang -0.0% 0.0% -0.0% -0.0% -0.0% wave4main -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve1 -0.0% 0.0% -0.0% -0.0% -0.0% wheel-sieve2 -0.0% 0.0% -0.0% -0.0% -0.0% x2n1 -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.3% -0.5% -0.5% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% -0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Program Size Allocs Instrs Reads Writes -------------------------------------------------------------------------------- circsim -0.1% 0.0% -0.0% -0.0% -0.0% constraints -0.0% 0.0% -0.0% -0.0% -0.0% fibheaps -0.0% 0.0% -0.0% -0.0% -0.0% gc_bench -0.0% 0.0% -0.0% -0.0% -0.0% hash -0.0% 0.0% -0.0% -0.0% -0.0% lcss -0.0% 0.0% -0.0% -0.0% -0.0% power -0.0% 0.0% -0.0% -0.0% -0.0% spellcheck -0.0% 0.0% -0.0% -0.0% -0.0% -------------------------------------------------------------------------------- Min -0.1% 0.0% -0.0% -0.0% -0.0% Max -0.0% 0.0% -0.0% -0.0% -0.0% Geometric Mean -0.0% +0.0% -0.0% -0.0% -0.0% Manual inspection of programs in testsuite/tests/programs --------------------------------------------------------- I built these programs with a bunch of dump flags and `-O` and compared STG, Cmm, and Asm dumps and file sizes. (Below the numbers in parenthesis show number of modules in the program) These programs have identical compiler (same .hi and .o sizes, STG, and Cmm and Asm dumps): - Queens (1), andre_monad (1), cholewo-eval (2), cvh_unboxing (3), andy_cherry (7), fun_insts (1), hs-boot (4), fast2haskell (2), jl_defaults (1), jq_readsPrec (1), jules_xref (1), jtod_circint (4), jules_xref2 (1), lennart_range (1), lex (1), life_space_leak (1), bargon-mangler-bug (7), record_upd (1), rittri (1), sanders_array (1), strict_anns (1), thurston-module-arith (2), okeefe_neural (1), joao-circular (6), 10queens (1) Programs with different compiler outputs: - jl_defaults (1): For some reason GHC HEAD marks a lot of top-level `[Int]` closures as CAFFY for no reason. With this patch we no longer make them CAFFY and generate less SRT entries. For some reason Main.o is slightly larger with this patch (1.3%) and the executable sizes are the same. (I'd expect both to be smaller) - launchbury (1): Same as jl_defaults: top-level `[Int]` closures marked as CAFFY for no reason. Similarly `Main.o` is 1.4% larger but the executable sizes are the same. - galois_raytrace (13): Differences are in the Parse module. There are a lot, but some of the changes are caused by the fact that for some reason (I think a bug) GHC HEAD marks the dictionary for `Functor Identity` as CAFFY. Parse.o is 0.4% larger, the executable size is the same. - north_array: We now generate less SRT entries because some of array primops used in this program like `NewArrayOp` get eliminated during Stg-to-Cmm and turn some CAFFY things into non-CAFFY. Main.o gets 24% larger (9224 bytes from 9000 bytes), executable sizes are the same. - seward-space-leak: Difference in this program is better shown by this smaller example: module Lib where data CDS = Case [CDS] [(Int, CDS)] | Call CDS CDS instance Eq CDS where Case sels1 rets1 == Case sels2 rets2 = sels1 == sels2 && rets1 == rets2 Call a1 b1 == Call a2 b2 = a1 == a2 && b1 == b2 _ == _ = False In this program GHC HEAD builds a new SRT for the recursive group of `(==)`, `(/=)` and the dictionary closure. Then `/=` points to `==` in its SRT field, and `==` uses the SRT object as its SRT. With this patch we use the closure for `/=` as the SRT and add `==` there. Then `/=` gets an empty SRT field and `==` points to `/=` in its SRT field. This change looks fine to me. Main.o gets 0.07% larger, executable sizes are identical. head.hackage ------------ head.hackage's CI script builds 428 packages from Hackage using this patch with no failures. Compiler performance -------------------- The compiler perf tests report that the compiler allocates slightly more (worst case observed so far is 4%). However most programs in the test suite are small, single file programs. To benchmark compiler performance on something more realistic I build Cabal (the library, 236 modules) with different optimisation levels. For the "max residency" row I run GHC with `+RTS -s -A100k -i0 -h` for more accurate numbers. Other rows are generated with just `-s`. (This is because `-i0` causes running GC much more frequently and as a result "bytes copied" gets inflated by more than 25x in some cases) * -O0 | | GHC HEAD | This MR | Diff | | --------------- | -------------- | -------------- | ------ | | Bytes allocated | 54,413,350,872 | 54,701,099,464 | +0.52% | | Bytes copied | 4,926,037,184 | 4,990,638,760 | +1.31% | | Max residency | 421,225,624 | 424,324,264 | +0.73% | * -O1 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 245,849,209,992 | 246,562,088,672 | +0.28% | | Bytes copied | 26,943,452,560 | 27,089,972,296 | +0.54% | | Max residency | 982,643,440 | 991,663,432 | +0.91% | * -O2 | | GHC HEAD | This MR | Diff | | --------------- | --------------- | --------------- | ------ | | Bytes allocated | 291,044,511,408 | 291,863,910,912 | +0.28% | | Bytes copied | 37,044,237,616 | 36,121,690,472 | -2.49% | | Max residency | 1,071,600,328 | 1,086,396,256 | +1.38% | Extra compiler allocations -------------------------- Runtime allocations of programs are as reported above (NoFib section). The compiler now allocates more than before. Main source of allocation in this patch compared to base commit is the new SRT algorithm (GHC.Cmm.Info.Build). Below is some of the extra work we do with this patch, numbers generated by profiled stage 2 compiler when building a pathological case (the test 'ManyConstructors') with '-O2': - We now sort the final STG for a module, which means traversing the entire program, generating free variable set for each top-level binding, doing SCC analysis, and re-ordering the program. In ManyConstructors this step allocates 97,889,952 bytes. - We now do SRT analysis on static data, which in a program like ManyConstructors causes analysing 10,000 bindings that we would previously just skip. This step allocates 70,898,352 bytes. - We now maintain an SRT map for the entire module as we compile Cmm groups: data ModuleSRTInfo = ModuleSRTInfo { ... , moduleSRTMap :: SRTMap } (SRTMap is just a strict Map from the 'containers' library) This map gets an entry for most bindings in a module (exceptions are THUNKs and CAFFY static functions). For ManyConstructors this map gets 50015 entries. - Once we're done with code generation we generate a NameSet from SRTMap for the non-CAFFY names in the current module. This set gets the same number of entries as the SRTMap. - Finally we update CafInfos in ModDetails for the non-CAFFY Ids, using the NameSet generated in the previous step. This usually does the least amount of allocation among the work listed here. Only place with this patch where we do less work in the CAF analysis in the tidying pass (CoreTidy). However that doesn't save us much, as the pass still needs to traverse the whole program and update IdInfos for other reasons. Only thing we don't here do is the `hasCafRefs` pass over the RHS of bindings, which is a stateless pass that returns a boolean value, so it doesn't allocate much. (Metric changes blow are all increased allocations) Metric changes -------------- Metric Increase: ManyAlternatives ManyConstructors T13035 T14683 T1969 T9961
* Refactor package related codeSylvain Henry2020-01-3113-320/+336
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The package terminology is a bit of a mess. Cabal packages contain components. Instances of these components when built with some flags/options/dependencies are called units. Units are registered into package databases and their metadata are called PackageConfig. GHC only knows about package databases containing units. It is a sad mismatch not fixed by this patch (we would have to rename parameters such as `package-id <unit-id>` which would affect users). This patch however fixes the following internal names: - Renames PackageConfig into UnitInfo. - Rename systemPackageConfig into globalPackageDatabase[Path] - Rename PkgConfXX into PkgDbXX - Rename pkgIdMap into unitIdMap - Rename ModuleToPkgDbAll into ModuleNameProvidersMap - Rename lookupPackage into lookupUnit - Add comments on DynFlags package related fields It also introduces a new `PackageDatabase` datatype instead of explicitly passing the following tuple: `(FilePath,[PackageConfig])`. The `pkgDatabase` field in `DynFlags` now contains the unit info for each unit of each package database exactly as they have been read from disk. Previously the command-line flag `-distrust-all-packages` would modify these unit info. Now this flag only affects the "dynamic" consolidated package state found in `pkgState` field. It makes sense because `initPackages` could be called first with this `distrust-all-packages` flag set and then again (using ghc-api) without and it should work (package databases are not read again from disk when `initPackages` is called the second time). Bump haddock submodule
* Call `interpretPackageEnv` from `setSessionDynFlags`Sylvain Henry2020-01-312-145/+147
| | | | | | | interpretPackageEnv modifies the flags by reading the dreaded package environments. It is much less surprising to call it from `setSessionDynFlags` instead of reading package environments as a side-effect of `initPackages`.
* Disable two warnings for files that trigger themTom Ellis2020-01-274-0/+7
| | | | | | incomplete-uni-patterns and incomplete-record-updates will be in -Wall at a future date, so prepare for that by disabling those warnings on files that trigger them.