| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This builds off of D4475.
Bumps binary submodule.
Reviewers: carter, AndreasK, hvr, goldfire, bgamari, simonmar
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D5006
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first step of implementing:
https://github.com/ghc-proposals/ghc-proposals/pull/74
The main highlights/changes:
primops.txt.pp gets two new sections for two new primitive types for
signed and unsigned 8-bit integers (Int8# and Word8 respectively) along
with basic arithmetic and comparison operations. PrimRep/RuntimeRep get
two new constructors for them. All of the primops translate into the
existing MachOPs.
For CmmCalls the codegen will now zero-extend the values at call
site (so that they can be moved to the right register) and then truncate
them back their original width.
x86 native codegen needed some updates, since it wasn't able to deal
with the new widths, but all the changes are quite localized. LLVM
backend seems to just work.
This is the second attempt at merging this, after the first attempt in
D4475 had to be backed out due to regressions on i386.
Bumps binary submodule.
Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>
Test Plan: ./validate (on both x86-{32,64})
Reviewers: bgamari, hvr, goldfire, simonmar
Subscribers: rwbarton, carter
Differential Revision: https://phabricator.haskell.org/D5258
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Trac #9279 reminded us that the worker wrapper transformation copes
really badly with absent unlifted boxed bindings.
As `Note [Absent errors]` in WwLib.hs points out, we can't just use
`absentError` for unlifted bindings because there is no bottom to hide
the error in.
So instead, we synthesise a new `RubbishLit` of type
`forall (a :: TYPE 'UnliftedRep). a`, which code-gen may subsitute for
any boxed value. We choose `()`, so that there is a good chance that
the program crashes instead instead of leading to corrupt data, should
absence analysis have been too optimistic (#11126).
Reviewers: simonpj, hvr, goldfire, bgamari, simonmar
Reviewed By: simonpj
Subscribers: osa1, rwbarton, carter
GHC Trac Issues: #15627, #9279, #4306, #11126
Differential Revision: https://phabricator.haskell.org/D5153
|
|
|
|
|
|
|
|
|
| |
This unfortunately broke i386 support since it introduced references to
byte-sized registers that don't exist on that architecture.
Reverts binary submodule
This reverts commit 5d5307f943d7581d7013ffe20af22233273fba06.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the first step of implementing:
https://github.com/ghc-proposals/ghc-proposals/pull/74
The main highlights/changes:
- `primops.txt.pp` gets two new sections for two new primitive types
for signed and unsigned 8-bit integers (`Int8#` and `Word8`
respectively) along with basic arithmetic and comparison
operations. `PrimRep`/`RuntimeRep` get two new constructors for
them. All of the primops translate into the existing `MachOP`s.
- For `CmmCall`s the codegen will now zero-extend the values at call
site (so that they can be moved to the right register) and then
truncate them back their original width.
- x86 native codegen needed some updates, since it wasn't able to deal
with the new widths, but all the changes are quite localized. LLVM
backend seems to just work.
Bumps binary submodule.
Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>
Test Plan: ./validate with new tests
Reviewers: hvr, goldfire, bgamari, simonmar
Subscribers: Abhiroop, dfeuer, rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4475
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
* Extended `genprimcode` to generate Haddock-compatible deprecations,
as well as displaying information about which functions are LLVM-only
and which functions can fail with an unchecked exception.
* Ported existing deprecations to the new format, and also added a
deprecation on `par#` (see Trac #15227).
* Emit an error on fixity/deprecation of builtins, unless we are
processing the module in which that name is defined (see Trac #15233).
That means the following is no longer accepted (outside of `GHC.Types`):
```
infixr 7 :
{-# DEPRECATED (:) "cons is deprecated" #-}
```
* Generate `data (->) a b` with docs and fixity in `GHC.Prim`. This
means: GHC can now parse `data (->) a b` and `infixr 0 ->` (only in
`GHC.Prim`) and `genprimcode` can digest `primtype (->) a b` (See Trac
#4861)
as well as some misc fixes along the way.
Reviewers: bgamari, RyanGlScott
Reviewed By: RyanGlScott
Subscribers: RyanGlScott, rwbarton, mpickering, carter
GHC Trac Issues: #15227, #15233, #4861
Differential Revision: https://phabricator.haskell.org/D5167
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This means that 'GHC.Classes.(%,%)' is no longer mentioned in
error messages for things like
class (a,b,c) -- outside of 'GHC.Classes'
class (a,Bool)
Test Plan: make TEST=T14907a && make TEST=T14907b
Reviewers: RyanGlScott, bgamari
Reviewed By: RyanGlScott
Subscribers: rwbarton, carter
GHC Trac Issues: #14907
Differential Revision: https://phabricator.haskell.org/D5172
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch corresponds to #15497.
According to https://ghc.haskell.org/trac/ghc/wiki/DependentHaskell/Phase2,
we would like to have coercion quantifications back. This will
allow us to migrate (~#) to be homogeneous, instead of its current
heterogeneous definition. This patch is (lots of) plumbing only. There
should be no user-visible effects.
An overview of changes:
- Both `ForAllTy` and `ForAllCo` can quantify over coercion variables,
but only in *Core*. All relevant functions are updated accordingly.
- Small changes that should be irrelevant to the main task:
1. removed dead code `mkTransAppCo` in Coercion
2. removed out-dated Note Computing a coercion kind and
roles in Coercion
3. Added `Eq4` in Note Respecting definitional equality in
TyCoRep, and updated `mkCastTy` accordingly.
4. Various updates and corrections of notes and typos.
- Haddock submodule needs to be changed too.
Acknowledgments:
This work was completed mostly during Ningning Xie's Google Summer
of Code, sponsored by Google. It was advised by Richard Eisenberg,
supported by NSF grant 1704041.
Test Plan: ./validate
Reviewers: goldfire, simonpj, bgamari, hvr, erikd, simonmar
Subscribers: RyanGlScott, monoidal, rwbarton, carter
GHC Trac Issues: #15497
Differential Revision: https://phabricator.haskell.org/D5054
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The constraint (~) used to be (effectively):
class a ~~ b => (a :: k) ~ (b :: k)
but, with this patch, it is now defined uniformly with
(~~) and Coercible like this:
class a ~# b => (a :: k) ~ (b :: k)
Result:
* One less superclass selection when goinng from (~) to (~#)
Better for compile time and better for debugging with -ddump-simpl
* The code for (~), (~~), and Coercible looks uniform, and appears
together, e.g. in TysWiredIn and ClsInst.matchGlobalInst.
Previously the code for (~) was different, and unique.
Not only is this simpler, but it also makes the compiler a bit faster;
T12227: 9% less allocation
T12545: 7% less allocation
This patch fixes Trac #15421
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch responds to Trac #15334 by making it an error to
write an instance declaration for a tuple constraint like
(Eq [a], Show [a]).
I then discovered that instance validity checking was
scattered betweeen TcInstDcls and TcValidity, so I took
the time to bring it all together, into
TcValidity.checkValidInstHead
In doing so I discovered that there are lot of special
cases. I have not changed them, but at least they are
all laid out clearly now.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support for built-in Natural literals in Core.
- Replace MachInt,MachWord, LitInteger, etc. with a single LitNumber
constructor with a LitNumType field
- Support built-in Natural literals
- Add desugar warning for negative literals
- Move Maybe(..) from GHC.Base to GHC.Maybe for module dependency
reasons
This patch introduces only a few rules for Natural literals (compared
to Integer's rules). Factorization of the built-in rules for numeric
literals will be done in another patch as this one is already big to
review.
Test Plan:
validate
test build with integer-simple
Reviewers: hvr, bgamari, goldfire, Bodigrim, simonmar
Reviewed By: bgamari
Subscribers: phadej, simonpj, RyanGlScott, carter, hsyl20, rwbarton,
thomie
GHC Trac Issues: #14170, #14465
Differential Revision: https://phabricator.haskell.org/D4212
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Implement the "Embrace Type :: Type" GHC proposal,
.../ghc-proposals/blob/master/proposals/0020-no-type-in-type.rst
GHC 8.0 included a major change to GHC's type system: the Type :: Type
axiom. Though casual users were protected from this by hiding its
features behind the -XTypeInType extension, all programs written in GHC
8+ have the axiom behind the scenes. In order to preserve backward
compatibility, various legacy features were left unchanged. For example,
with -XDataKinds but not -XTypeInType, GADTs could not be used in types.
Now these restrictions are lifted and -XTypeInType becomes a redundant
flag that will be eventually deprecated.
* Incorporate the features currently in -XTypeInType into the
-XPolyKinds and -XDataKinds extensions.
* Introduce a new extension -XStarIsType to control how to parse * in
code and whether to print it in error messages.
Test Plan: Validate
Reviewers: goldfire, hvr, bgamari, alanz, simonpj
Reviewed By: goldfire, simonpj
Subscribers: rwbarton, thomie, mpickering, carter
GHC Trac Issues: #15195
Differential Revision: https://phabricator.haskell.org/D4748
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes an obscure error (which mistakenly mentions
Template Haskell) to one that makes more sense.
Test Plan: make test TEST=T15214
Reviewers: bgamari, mpickering
Reviewed By: bgamari, mpickering
Subscribers: mpickering, rwbarton, thomie, carter
GHC Trac Issues: #15214
Differential Revision: https://phabricator.haskell.org/D4768
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Poor DPH and its vectoriser have long been languishing; sadly it seems there is
little chance that the effort will be rekindled. Every few years we discuss
what to do with this mass of code and at least once we have agreed that it
should be archived on a branch and removed from `master`. Here we do just that,
eliminating heaps of dead code in the process.
Here we drop the ParallelArrays extension, the vectoriser, and the `vector` and
`primitive` submodules.
Test Plan: Validate
Reviewers: simonpj, simonmar, hvr, goldfire, alanz
Reviewed By: simonmar
Subscribers: goldfire, rwbarton, thomie, mpickering, carter
Differential Revision: https://phabricator.haskell.org/D4761
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this change, for each constructor that we want
to allocate a tag for we would traverse a list of all
the constructors in a datatype to determine which tag
a constructor should get.
This is obviously quadratic and for datatypes with 10k
constructors it actually makes a big difference.
This change implements the plan outlined by @simonpj in
https://mail.haskell.org/pipermail/ghc-devs/2017-October/014974.html
which is basically about using a map and constructing it outside the
loop.
One place where things got a bit awkward was TysWiredIn.hs,
it would have been possible to just assign the tags by hand, but
that seemed error-prone to me, so I decided to go through a map
there as well.
Test Plan:
./validate
On a file with 10k constructors
Before:
8,130,522,344 bytes allocated in the heap
Total time 3.682s ( 3.920s elapsed)
After:
4,133,478,744 bytes allocated in the heap
Total time 2.509s ( 2.750s elapsed)
Reviewers: simonpj, bgamari
Reviewed By: simonpj
Subscribers: goldfire, rwbarton, thomie, simonmar, carter, simonpj
GHC Trac Issues: #14657
Differential Revision: https://phabricator.haskell.org/D4289
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a follow-up after faf60e85 - Make tagForCon non-linear.
On the mailing list @simonpj suggested to solve the
linear behavior by caching the sizes.
Test Plan: ./validate
Reviewers: simonpj, simonmar, bgamari, austin
Reviewed By: simonpj
Subscribers: carter, goldfire, rwbarton, thomie, simonpj
Differential Revision: https://phabricator.haskell.org/D4131
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These functions are record selectors.
To the unfamiliar, when inspecting core, they looked like data
constructors as they started with an upper case letter. We rename them
so that it is more clear that firstly they are functions and secondly
that they are selectors.
Reviewers: bgamari, simonpj
Reviewed By: simonpj
Subscribers: simonpj, rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4280
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
After typechecking a data constructor's type signature, its type
variables are partitioned into two distinct groups: the universally
quantified type variables and the existentially quantified type
variables. Then, when prompted for the type of the data constructor,
GHC gives this:
```lang=haskell
MkT :: forall <univs> <exis>. (...)
```
For H98-style datatypes, this is a fine thing to do. But for GADTs,
this can sometimes produce undesired results with respect to
`TypeApplications`. For instance, consider this datatype:
```lang=haskell
data T a where
MkT :: forall b a. b -> T a
```
Here, the user clearly intended to have `b` be available for visible
type application before `a`. That is, the user would expect
`MkT @Int @Char` to be of type `Int -> T Char`, //not//
`Char -> T Int`. But alas, up until now that was not how GHC
operated—regardless of the order in which the user actually wrote
the tyvars, GHC would give `MkT` the type:
```lang=haskell
MkT :: forall a b. b -> T a
```
Since `a` is universal and `b` is existential. This makes predicting
what order to use for `TypeApplications` quite annoying, as
demonstrated in #11721 and #13848.
This patch cures the problem by tracking more carefully the order in
which a user writes type variables in data constructor type
signatures, either explicitly (with a `forall`) or implicitly
(without a `forall`, in which case the order is inferred). This is
accomplished by adding a new field `dcUserTyVars` to `DataCon`, which
is a subset of `dcUnivTyVars` and `dcExTyVars` that is permuted to
the order in which the user wrote them. For more details, refer to
`Note [DataCon user type variables]` in `DataCon.hs`.
An interesting consequence of this design is that more data
constructors require wrappers. This is because the workers always
expect the first arguments to be the universal tyvars followed by the
existential tyvars, so when the user writes the tyvars in a different
order, a wrapper type is needed to swizzle the tyvars around to match
the order that the worker expects. For more details, refer to
`Note [Data con wrappers and GADT syntax]` in `MkId.hs`.
Test Plan: ./validate
Reviewers: austin, goldfire, bgamari, simonpj
Reviewed By: goldfire, simonpj
Subscribers: ezyang, goldfire, rwbarton, thomie
GHC Trac Issues: #11721, #13848
Differential Revision: https://phabricator.haskell.org/D3687
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For reasons explained in TcHsType
Note [Extra-constraint holes in partial type signatures],
if we had
f :: (_) => blahs
and the '_' was filled in by more than a 62-tuple of contraints,
GHC crashed.
The same Note explains the hacky solution I have adopted to
evade this. Maybe there is some better way, but I couldn't
see one that didn't involve a great deal of work. And the problem
is a very narrow one! If the hack bites us we'll need to think
again.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switches the compiler/ component to get compiled with
-XNoImplicitPrelude and a `import GhcPrelude` is inserted in all
modules.
This is motivated by the upcoming "Prelude" re-export of
`Semigroup((<>))` which would cause lots of name clashes in every
modulewhich imports also `Outputable`
Reviewers: austin, goldfire, bgamari, alanz, simonmar
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie, mpickering, bgamari
Differential Revision: https://phabricator.haskell.org/D3989
|
|
|
|
|
|
|
|
|
| |
Instead of using a string argument, use HasDebugCallStack.
(Oddly, some functions were using both!)
Plus, use getRuntimeRep rather than getRuntimeRep_maybe when
if the caller panics on Nothing. Less code, and a better debug
stack.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
GHC 8.2.1 is out, so now GHC's support window only extends back to GHC
8.0. This means we can delete gobs of code that was only used for GHC
7.10 support. Hooray!
Test Plan: ./validate
Reviewers: hvr, bgamari, austin, goldfire, simonmar
Reviewed By: bgamari
Subscribers: Phyx, rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3781
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change enables the addition of an arbitrary string to the output of
GHCi's ':info'. It was made for Coercible in particular but could be
extended if desired.
Updates haddock submodule.
Test Plan: Modified test 'ghci059' to match new output.
Reviewers: austin, bgamari
Reviewed By: bgamari
Subscribers: goldfire, rwbarton, thomie
GHC Trac Issues: #12390
Differential Revision: https://phabricator.haskell.org/D3634
|
| |
|
|
|
|
|
| |
These things are simply too expensive to generate at the moment. More
work is needed here; see #13276 and #13261.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This at long last realizes the ideas for type-indexed Typeable discussed in A
Reflection on Types (#11011). The general sketch of the project is described on
the Wiki (Typeable/BenGamari). The general idea is that we are adding a type
index to `TypeRep`,
data TypeRep (a :: k)
This index allows the typechecker to reason about the type represented by the `TypeRep`.
This index representation mechanism is exposed as `Type.Reflection`, which also provides
a number of patterns for inspecting `TypeRep`s,
```lang=haskell
pattern TRFun :: forall k (fun :: k). ()
=> forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
(arg :: TYPE r1) (res :: TYPE r2).
(k ~ Type, fun ~~ (arg -> res))
=> TypeRep arg
-> TypeRep res
-> TypeRep fun
pattern TRApp :: forall k2 (t :: k2). ()
=> forall k1 (a :: k1 -> k2) (b :: k1). (t ~ a b)
=> TypeRep a -> TypeRep b -> TypeRep t
-- | Pattern match on a type constructor.
pattern TRCon :: forall k (a :: k). TyCon -> TypeRep a
-- | Pattern match on a type constructor including its instantiated kind
-- variables.
pattern TRCon' :: forall k (a :: k). TyCon -> [SomeTypeRep] -> TypeRep a
```
In addition, we give the user access to the kind of a `TypeRep` (#10343),
typeRepKind :: TypeRep (a :: k) -> TypeRep k
Moreover, all of this plays nicely with 8.2's levity polymorphism, including the
newly levity polymorphic (->) type constructor.
Library changes
---------------
The primary change here is the introduction of a Type.Reflection module to base.
This module provides access to the new type-indexed TypeRep introduced in this
patch. We also continue to provide the unindexed Data.Typeable interface, which
is simply a type synonym for the existentially quantified SomeTypeRep,
data SomeTypeRep where SomeTypeRep :: TypeRep a -> SomeTypeRep
Naturally, this change also touched Data.Dynamic, which can now export the
Dynamic data constructor. Moreover, I removed a blanket reexport of
Data.Typeable from Data.Dynamic (which itself doesn't even import Data.Typeable
now).
We also add a kind heterogeneous type equality type, (:~~:), to
Data.Type.Equality.
Implementation
--------------
The implementation strategy is described in Note [Grand plan for Typeable] in
TcTypeable. None of it was difficult, but it did exercise a number of parts of
the new levity polymorphism story which had not yet been exercised, which took
some sorting out.
The rough idea is that we augment the TyCon produced for each type constructor
with information about the constructor's kind (which we call a KindRep). This
allows us to reconstruct the monomorphic result kind of an particular
instantiation of a type constructor given its kind arguments.
Unfortunately all of this takes a fair amount of work to generate and send
through the compilation pipeline. In particular, the KindReps can unfortunately
get quite large. Moreover, the simplifier will float out various pieces of them,
resulting in numerous top-level bindings. Consequently we mark the KindRep
bindings as noinline, ensuring that the float-outs don't make it into the
interface file. This is important since there is generally little benefit to
inlining KindReps and they would otherwise strongly affect compiler performance.
Performance
-----------
Initially I was hoping to also clear up the remaining holes in Typeable's
coverage by adding support for both unboxed tuples (#12409) and unboxed sums
(#13276). While the former was fairly straightforward, the latter ended up being
quite difficult: while the implementation can support them easily, enabling this
support causes thousands of Typeable bindings to be emitted to the GHC.Types as
each arity-N sum tycon brings with it N promoted datacons, each of which has a
KindRep whose size which itself scales with N. Doing this was simply too
expensive to be practical; consequently I've disabled support for the time
being.
Even after disabling sums this change regresses compiler performance far more
than I would like. In particular there are several testcases in the testsuite
which consist mostly of types which regress by over 30% in compiler allocations.
These include (considering the "bytes allocated" metric),
* T1969: +10%
* T10858: +23%
* T3294: +19%
* T5631: +41%
* T6048: +23%
* T9675: +20%
* T9872a: +5.2%
* T9872d: +12%
* T9233: +10%
* T10370: +34%
* T12425: +30%
* T12234: +16%
* 13035: +17%
* T4029: +6.1%
I've spent quite some time chasing down the source of this regression and while
I was able to make som improvements, I think this approach of generating
Typeable bindings at time of type definition is doomed to give us unnecessarily
large compile-time overhead.
In the future I think we should consider moving some of all of the Typeable
binding generation logic back to the solver (where it was prior to
91c6b1f54aea658b0056caec45655475897f1972). I've opened #13261 documenting this
proposal.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: Validate
Reviewers: RyanGlScott, austin, hvr
Reviewed By: RyanGlScott
Subscribers: goldfire, RyanGlScott, thomie
Differential Revision: https://phabricator.haskell.org/D3059
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit implements the proposal in
https://github.com/ghc-proposals/ghc-proposals/pull/29 and
https://github.com/ghc-proposals/ghc-proposals/pull/35.
Here are some of the pieces of that proposal:
* Some of RuntimeRep's constructors have been shortened.
* TupleRep and SumRep are now parameterized over a list of RuntimeReps.
* This
means that two types with the same kind surely have the same
representation.
Previously, all unboxed tuples had the same kind, and thus the fact
above was
false.
* RepType.typePrimRep and friends now return a *list* of PrimReps. These
functions can now work successfully on unboxed tuples. This change is
necessary because we allow abstraction over unboxed tuple types and so
cannot
always handle unboxed tuples specially as we did before.
* We sometimes have to create an Id from a PrimRep. I thus split PtrRep
* into
LiftedRep and UnliftedRep, so that the created Ids have the right
strictness.
* The RepType.RepType type was removed, as it didn't seem to help with
* much.
* The RepType.repType function is also removed, in favor of typePrimRep.
* I have waffled a good deal on whether or not to keep VoidRep in
TyCon.PrimRep. In the end, I decided to keep it there. PrimRep is *not*
represented in RuntimeRep, and typePrimRep will never return a list
including
VoidRep. But it's handy to have in, e.g., ByteCodeGen and friends. I can
imagine another design choice where we have a PrimRepV type that is
PrimRep
with an extra constructor. That seemed to be a heavier design, though,
and I'm
not sure what the benefit would be.
* The last, unused vestiges of # (unliftedTypeKind) have been removed.
* There were several pretty-printing bugs that this change exposed;
* these are fixed.
* We previously checked for levity polymorphism in the types of binders.
* But we
also must exclude levity polymorphism in function arguments. This is
hard to check
for, requiring a good deal of care in the desugarer. See Note [Levity
polymorphism
checking] in DsMonad.
* In order to efficiently check for levity polymorphism in functions, it
* was necessary
to add a new bit of IdInfo. See Note [Levity info] in IdInfo.
* It is now safe for unlifted types to be unsaturated in Core. Core Lint
* is updated
accordingly.
* We can only know strictness after zonking, so several checks around
* strictness
in the type-checker (checkStrictBinds, the check for unlifted variables
under a ~
pattern) have been moved to the desugarer.
* Along the way, I improved the treatment of unlifted vs. banged
* bindings. See
Note [Strict binds checks] in DsBinds and #13075.
* Now that we print type-checked source, we must be careful to print
* ConLikes correctly.
This is facilitated by a new HsConLikeOut constructor to HsExpr.
Particularly troublesome
are unlifted pattern synonyms that get an extra void# argument.
* Includes a submodule update for haddock, getting rid of #.
* New testcases:
typecheck/should_fail/StrictBinds
typecheck/should_fail/T12973
typecheck/should_run/StrictPats
typecheck/should_run/T12809
typecheck/should_fail/T13105
patsyn/should_fail/UnliftedPSBind
typecheck/should_fail/LevPolyBounded
typecheck/should_compile/T12987
typecheck/should_compile/T11736
* Fixed tickets:
#12809
#12973
#11736
#13075
#12987
* This also adds a test case for #13105. This test case is
* "compile_fail" and
succeeds, because I want the testsuite to monitor the error message.
When #13105 is fixed, the test case will compile cleanly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes GHC's floating more robust, by allowing it
to float unboxed expressions of at least some common types.
See Note [Floating MFEs of unlifted type] in SetLevels.
This was all provoked by Trac #12603
In working this through I also made a number of other corner-case
changes in SetLevels:
* Previously we inconsistently use exprIsBottom (which checks for
bottom) instead of exprBotStrictness_maybe (which checks for
bottoming functions). As well as being inconsistent it was
simply less good.
See Note [Bottoming floats]
* I fixed a case where were were unprofitably floating an
expression because we thought it escaped a value lambda
(see Note [Escaping a value lambda]). The relevant code is
float_me = (dest_lvl `ltMajLvl` (le_ctxt_lvl env)
&& not float_is_lam) -- NEW
* I made lvlFloatRhs work properly in the case where abs_vars
is non-empty. It wasn't wrong before, but it did some stupid
extra floating.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In D2448 (which introduced Template Haskell support for unboxed
sums), I neglected to add `unboxedSumDataName` and `unboxedSumTypeName`
functions, since there wasn't any way you could write unboxed sum data or type
constructors in prefix form to begin with (see #12514). But even if you can't
write these `Name`s directly in source code, it would still be nice to be able
to use these `Name`s in Template Haskell (for instance, to be able to treat
unboxed sum type constructors like any other type constructors).
Along the way, this uncovered a minor bug in `isBuiltInOcc_maybe` in
`TysWiredIn`, which was calculating the arity of unboxed sum data constructors
incorrectly.
Test Plan: make test TEST=T12478_5
Reviewers: osa1, goldfire, austin, bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2854
GHC Trac Issues: #12478, #12514
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, these functions were hardcoded so as to always `error`
whenever given an argument of 0 or 1. This restriction can be lifted
pretty easily, however.
This requires a slight tweak to `isBuiltInOcc_maybe` in `TysWiredIn` to
allow it to recognize `Unit#` (which is the hard-wired `OccName` for
unboxed 1-tuples).
Fixes #12977.
Test Plan: make test TEST=12977
Reviewers: austin, goldfire, bgamari
Reviewed By: bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2847
GHC Trac Issues: #12977
|
|
|
|
| |
This reverts commit bc3d37dada357b04fc5a35f740b4fe7e05292b06.
|
|
|
|
|
|
|
|
|
| |
This patch makes GHC's floating more robust, by allowing it
to float unboxed expressions of at least some common types.
See Note [Floating MFEs of unlifted type] in SetLevels.
This was all provoked by Trac #12603
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Add prettyprinter tests, which take a file, parse it, pretty print it,
re-parse the pretty printed version and then compare the original and
new ASTs (ignoring locations)
Updates haddock submodule to match the AST changes.
There are three issues outstanding
1. Extra parens around a context are not reproduced. This will require an
AST change and will be done in a separate patch.
2. Currently if an `HsTickPragma` is found, this is not pretty-printed,
to prevent noise in the output.
I am not sure what the desired behaviour in this case is, so have left
it as before. Test Ppr047 is marked as expected fail for this.
3. Apart from in a context, the ParsedSource AST keeps all the parens from
the original source. Something is happening in the renamer to remove the
parens around visible type application, causing T12530 to fail, as the
dumped splice decl is after the renamer.
This needs to be fixed by keeping the parens, but I do not know where they
are being removed. I have amended the test to pass, by removing the parens
in the expected output.
Test Plan: ./validate
Reviewers: goldfire, mpickering, simonpj, bgamari, austin
Reviewed By: simonpj, bgamari
Subscribers: simonpj, goldfire, thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D2752
GHC Trac Issues: #3384
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here we consolidate the pretty-printing logic for types in IfaceType. We
need IfaceType regardless and the printer for Type can be implemented in
terms of that for IfaceType. See #11660.
Note that this is very much a work-in-progress. Namely I still have yet
to ponder how to ease the hs-boot file situation, still need to rip out
more dead code, need to move some of the special cases for, e.g., `*` to
the IfaceType printer, and need to get it to validate. That being said,
it comes close to validating as-is.
Test Plan: Validate
Reviewers: goldfire, austin
Subscribers: goldfire, thomie, simonpj
Differential Revision: https://phabricator.haskell.org/D2528
GHC Trac Issues: #11660
|
|
|
|
|
|
| |
This fixes Trac #12803. Yikes!
See Note [Care with type functions].
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does two related things
* Combines the occurrence-check logic in the on-the-fly unifier with
that in the constraint solver. They are both doing the same job,
after all. The resulting code is now in TcUnify:
metaTyVarUpdateOK
occCheckExpand
occCheckForErrors (called in TcErrors)
* In doing this I disovered checking for family-free-ness and foralls
can be unnecessarily inefficient, because it expands type synonyms.
It's easy just to cache this info in the type syononym TyCon, which
I am now doing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously BinIface had some dedicated logic for handling tuple names in
the symbol table. As it turns out, this logic was essentially dead code
as it was superceded by the special handling of known-key things. Here
we cull the tuple code-path and use the known-key codepath for all
tuple-ish things.
This had a surprising number of knock-on effects,
* constraint tuple datacons had to be made known-key (previously they
were not)
* IfaceTopBndr was changed from being a synonym of OccName to a
synonym of Name (since we now need to be able to deserialize Names
directly from interface files)
* the change to IfaceTopBndr complicated fingerprinting, since we need
to ensure that we don't go looking for the fingerprint of the thing
we are currently fingerprinting in the fingerprint environment (see
notes in MkIface). Handling this required distinguishing between
binding and non-binding Name occurrences in the Binary serializers.
* the original name cache logic which previously lived in IfaceEnv has
been moved to a new NameCache module
* I ripped tuples and sums out of knownKeyNames since they introduce a
very large number of entries. During interface file deserialization
we use static functions (defined in the new KnownUniques module) to
map from a Unique to a known-key Name (the Unique better correspond
to a known-key name!) When we need to do an original name cache
lookup we rely on the parser implemented in isBuiltInOcc_maybe.
* HscMain.allKnownKeyNames was folded into PrelInfo.knownKeyNames.
* Lots of comments were sprinkled about describing the new scheme.
Updates haddock submodule.
Test Plan: Validate
Reviewers: niteria, simonpj, austin, hvr
Reviewed By: simonpj
Subscribers: simonmar, niteria, thomie
Differential Revision: https://phabricator.haskell.org/D2467
GHC Trac Issues: #12532, #12415
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: Validate
Reviewers: austin
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2465
|
|
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: validate
Reviewers: bgamari, austin
Reviewed By: bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2420
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This patch implements primitive unboxed sum types, as described in
https://ghc.haskell.org/trac/ghc/wiki/UnpackedSumTypes.
Main changes are:
- Add new syntax for unboxed sums types, terms and patterns. Hidden
behind `-XUnboxedSums`.
- Add unlifted unboxed sum type constructors and data constructors,
extend type and pattern checkers and desugarer.
- Add new RuntimeRep for unboxed sums.
- Extend unarise pass to translate unboxed sums to unboxed tuples right
before code generation.
- Add `StgRubbishArg` to `StgArg`, and a new type `CmmArg` for better
code generation when sum values are involved.
- Add user manual section for unboxed sums.
Some other changes:
- Generalize `UbxTupleRep` to `MultiRep` and `UbxTupAlt` to
`MultiValAlt` to be able to use those with both sums and tuples.
- Don't use `tyConPrimRep` in `isVoidTy`: `tyConPrimRep` is really
wrong, given an `Any` `TyCon`, there's no way to tell what its kind
is, but `kindPrimRep` and in turn `tyConPrimRep` returns `PtrRep`.
- Fix some bugs on the way: #12375.
Not included in this patch:
- Update Haddock for new the new unboxed sum syntax.
- `TemplateHaskell` support is left as future work.
For reviewers:
- Front-end code is mostly trivial and adapted from unboxed tuple code
for type checking, pattern checking, renaming, desugaring etc.
- Main translation routines are in `RepType` and `UnariseStg`.
Documentation in `UnariseStg` should be enough for understanding
what's going on.
Credits:
- Johan Tibell wrote the initial front-end and interface file
extensions.
- Simon Peyton Jones reviewed this patch many times, wrote some code,
and helped with debugging.
Reviewers: bgamari, alanz, goldfire, RyanGlScott, simonpj, austin,
simonmar, hvr, erikd
Reviewed By: simonpj
Subscribers: Iceland_jack, ggreif, ezyang, RyanGlScott, goldfire,
thomie, mpickering
Differential Revision: https://phabricator.haskell.org/D2259
|
|
|
|
|
|
| |
This reverts commit 9513fe6bdeafd35ca1a04e17b5f94732516766aa.
Sadly this broke with -DDEBUG.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This cleans up various aspects of the handling of built-in syntax in the
original name cache (hopefully resulting in a nice reduction in compiler
allocations),
* Remove tuple types from original name cache: There is really no
reason for these to be in the name cache since we already handle
them specially in interface files to ensure that we can resolve them
directly to Names, avoiding extraneous name cache lookups.
* Sadly it's not possible to remove all traces of tuples from the
name cache, however. Namely we need to keep the tuple type
representations in since otherwise they would need to be wired-in
* Remove the special cases for (:), [], and (##) in isBuiltInOcc_maybe
and rename it to isTupleOcc_maybe
* Split lookupOrigNameCache into two variants,
* lookupOrigNameCache': Merely looks up an OccName in the original
name cache, making no attempt to resolve tuples
* lookupOrigNameCache: Like the above but handles tuples as well.
This is given the un-primed name since it does the "obvious"
thing from the perspective of an API user, who knows nothing of
our special treatment of tuples.
Arriving at this design took a significant amount of iteration. The
trail of debris leading here can be found in #11357.
Thanks to ezyang and Simon for all of their help in coming to this
solution.
Test Plan: Validate
Reviewers: goldfire, simonpj, austin
Reviewed By: simonpj
Subscribers: thomie, ezyang
Differential Revision: https://phabricator.haskell.org/D2414
GHC Trac Issues: #11357
|
|
|
|
|
|
|
|
|
|
|
|
| |
This check is not entirely cheap and will not succeed unless we are
looking for something in the module where built-in syntax lives,
GHC.Types.
Reviewers: simonpj, austin
Subscribers: simonpj, thomie, osa1
Differential Revision: https://phabricator.haskell.org/D2400
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously we would unpack the OccName into a String, then pattern match
against this string. Due to the implementation of `unpackFS`, this
actually unpacks the entire contents, even though we often only need to
look at the first few characters.
Here we take another approach: build a UniqFM with the known built-in
OccNames, allowing us to use `FastString`'s hash-based comparison
instead.
Reviewers: simonpj, austin, simonmar
Reviewed By: simonmar
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2385
GHC Trac Issues: #12357
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This commit removes the information about whether or not
a TyCon is "recursive", as well as the code responsible
for calculating this information.
The original trigger for this change was complexity regarding
how we computed the RecFlag for hs-boot files. The problem
is that in order to determine if a TyCon is recursive or
not, we need to determine if it was defined in an hs-boot
file (if so, we conservatively assume that it is recursive.)
It turns that doing this is quite tricky. The "obvious"
strategy is to typecheck the hi-boot file (since we are
eventually going to need the typechecked types to check
if we properly implemented the hi-boot file) and just extract
the names of all defined TyCons from the ModDetails, but
this actually does not work well if Names from the hi-boot
file are being knot-tied via if_rec_types: the "extraction"
process will force thunks, which will force the typechecking
process earlier than we have actually defined the types
locally.
Rather than work around all this trickiness (it certainly
can be worked around, either by making interface loading
MORE lazy, or just reading of the set of defined TyCons
directly from the ModIface), we instead opted to excise
the source of the problem, the RecFlag.
For one, it is not clear if the RecFlag even makes sense,
in the presence of higher-orderness:
data T f a = MkT (f a)
T doesn't look recursive, but if we instantiate f with T,
then it very well is! It was all very shaky.
So we just don't bother anymore. This has two user-visible
implications:
1. is_too_recursive now assumes that all TyCons are
recursive and will bail out in a way that is still mysterious
to me if there are too many TyCons.
2. checkRecTc, which is used when stripping newtypes to
get to representation, also assumes all TyCons are
recursive, and will stop running if we hit the limit.
The biggest risk for this patch is that we specialize less
than we used to; however, the codeGen tests still seem to
be passing.
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Reviewers: simonpj, austin, bgamari
Subscribers: goldfire, thomie
Differential Revision: https://phabricator.haskell.org/D2360
|