| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- `ConPat{In,Out}` -> `ConPat`
- `CoPat` -> `XPat (CoPat ..)`
Note that `GHC.HS.*` still uses `HsWrap`, but only when `p ~ GhcTc`.
After this change, moving the type family instances out of `GHC.HS.*` is
sufficient to break the cycle.
Add XCollectPat class to decide how binders are collected from XXPat based on the pass.
Previously we did this with IsPass, but that doesn't work for Haddock's
DocNameI, and the constraint doesn't express what actual distinction is being
made. Perhaps a class for collecting binders more generally is in order, but we
haven't attempted this yet.
Pure refactor of code around ConPat
- InPat/OutPat synonyms removed
- rename several identifiers
- redundant constraints removed
- move extension field in ConPat to be first
- make ConPat use record syntax more consistently
Fix T6145 (ConPatIn became ConPat)
Add comments from SPJ.
Add comment about haddock's use of CollectPass.
Updates haddock submodule.
|
|
|
|
|
|
|
| |
See `Note [Associated data family instances and di_scoped_tvs]` in
`GHC.Tc.TyCl.Instance`, which explains all of the moving parts.
Fixes #18055.
|
|
|
|
|
| |
The code for the comment was moved in dc8c03b2a5c but the comment was
forgotten.
|
|
|
|
|
|
|
|
|
| |
There was some out-of-date commentary in `GHC.Tc.Deriv.Infer` that
has been modernized. Along the way, I removed the `bad` constraints
in `simplifyDeriv`, which did not serve any useful purpose (besides
being printed in debugging output).
Fixes #18073.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Issue #18076 drew my attention to the undocumented `-fast-llvm` flag for
the LLVM code generator introduced in
22733532171330136d87533d523f565f2a4f102f. Speaking to Moritz about this,
the motivation for this flag was to avoid potential incompatibilities
between LLVM and the assembler/linker toolchain by making LLVM
responsible for machine-code generation.
Unfortunately, this cannot possibly work: the LLVM backend's mangler
performs a number of transforms on the assembler generated by LLVM that
are necessary for correctness. These are currently:
* mangling Haskell functions' symbol types to be `object` instead of
`function` on ELF platforms (necessary for tables-next-to-code)
* mangling AVX instructions to ensure that we don't assume alignment
(which LLVM otherwise does)
* mangling Darwin's subsections-via-symbols directives
Given that these are all necessary I don't believe that we can support
`-fast-llvm`. Let's rather remove it.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements eager instantiation, a small but critical change
to the type inference engine, #17173. The main change is this:
When inferring types, always return an instantiated type
(for now, deeply instantiated; in future shallowly instantiated)
There is more discussion in
https://www.tweag.io/posts/2020-04-02-lazy-eager-instantiation.html
There is quite a bit of refactoring in this patch:
* The ir_inst field of GHC.Tc.Utils.TcType.InferResultk
has entirely gone. So tcInferInst and tcInferNoInst have collapsed
into tcInfer.
* Type inference of applications, via tcInferApp and
tcInferAppHead, are substantially refactored, preparing
the way for Quick Look impredicativity.
* New pure function GHC.Tc.Gen.Expr.collectHsArgs and applyHsArgs
are beatifully dual. We can see the zipper!
* GHC.Tc.Gen.Expr.tcArgs is now much nicer; no longer needs to return
a wrapper
* In HsExpr, HsTypeApp now contains the the actual type argument,
and is used in desugaring, rather than putting it in a mysterious
wrapper.
* I struggled a bit with good error reporting in
Unify.matchActualFunTysPart. It's a little bit simpler than before,
but still not great.
Some smaller things
* Rename tcPolyExpr --> tcCheckExpr
tcMonoExpr --> tcLExpr
* tcPatSig moves from GHC.Tc.Gen.HsType to GHC.Tc.Gen.Pat
Metric Decrease:
T9961
Reduction of 1.6% in comiler allocation on T9961, I think.
|
|
|
|
| |
Fixes #11261
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that DataCon wrappers don’t inline until phase 0 (see commit
b78cc64e923716ac0512c299f42d4d0012306c05), it’s important that
case-of-known-constructor and RULE matching be able to see saturated
applications of DataCon wrappers in unfoldings. Making them conlike is a
natural way to do it, since they are, in fact, precisely the sort of
thing the CONLIKE pragma exists to solve.
Fixes #18012.
This also bumps the version of the parsec submodule to incorporate a
patch that avoids a metric increase on the haddock perf tests. The
increase was not really a flaw in this patch, as parsec was implicitly
relying on inlining heuristics. The patch to parsec just adds some
INLINABLE pragmas, and we get a nice performance bump out of it (well
beyond the performance we lost from this patch).
Metric Decrease:
T12234
WWRec
haddock.Cabal
haddock.base
haddock.compiler
|
|
|
|
| |
Inline `MatchResult` alias accordingly.
|
| |
|
|
|
|
| |
It is just `fmap`
|
|
|
|
|
| |
Rework dsHandleMonadicFailure to be correct by construction instead of
using an unreachable panic.
|
|
|
|
| |
This way, it does a better job of proving whether or not the fail operator is used.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Remove `DynFlags` parameter from `isDynLinkName`: `isDynLinkName` used
to test the global `ExternalDynamicRefs` flag. Now we test it outside of
`isDynLinkName`
* Add new fields into `NCGConfig`: current unit id, sse/bmi versions,
externalDynamicRefs, etc.
* Replace many uses of `DynFlags` by `NCGConfig`
* Moved `BMI/SSE` datatypes into `GHC.Platform`
|
|
|
|
|
|
| |
* add a `DynFlags` parameter to `pprCLbl`
* put `maybe_underscore` and `pprAsmCLbl` in a `where` clause to avoid
`DynFlags` parameters
|
|
|
|
|
| |
Remove one use of `sdocWithDynFlags` from `GHC.CmmToLlvm.llvmCodeGen'`
and from `GHC.Driver.CodeOutput.profilingInitCode`
|
|
|
|
|
|
|
|
|
|
| |
* replace `DynFlags` parameters with `SDocContext` parameters for a few
Ppr related functions: `bufLeftRenderSDoc`, `printSDoc`,
`printSDocLn`, `showSDocOneLine`.
* remove the use of `pprCols :: DynFlags -> Int` in Outputable. We
already have the information via `sdocLineLength :: SDocContext ->
Int`
|
|
|
|
|
| |
* add `getPlatform :: TcM Platform` helper
* remove unused `DynFlags` parameter from `emptyPLS`
|
|
|
|
|
|
| |
Instead of passing `DynFlags` to functions such as `isStmt` and
`hasImport` in `GHC.Runtime.Eval` we pass `ParserFlags`. It's a much
simpler structure that can be created purely with `mkParserFlags'`.
|
|
|
|
|
|
|
|
| |
Ticket #18036 pointed out that we were reporting a redundant
constraint when it really really wasn't.
Turned out to be a buglet in the SkolemInfo for the
relevant implication constraint. Easily fixed!
|
|
|
|
|
|
|
|
| |
This fixes #18044, where a shadowed variable was incorrectly substituted
by the binder swap on the RHS of a floated-in letrec. This can only
happen when the uniques line up *just* right, so writing a regression
test would be very difficult, but at least the fix is small and
straightforward.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* SysTools
* Parser
* GHC.Builtin
* GHC.Iface.Recomp
* Settings
Update Haddock submodule
Metric Decrease:
Naperian
parsing001
|
|
|
|
|
|
|
|
|
|
|
| |
* GHC.Core.Op => GHC.Core.Opt
* GHC.Core.Opt.Simplify.Driver => GHC.Core.Opt.Driver
* GHC.Core.Opt.Tidy => GHC.Core.Tidy
* GHC.Core.Opt.WorkWrap.Lib => GHC.Core.Opt.WorkWrap.Utils
As discussed in:
* https://mail.haskell.org/pipermail/ghc-devs/2020-April/018758.html
* https://gitlab.haskell.org/ghc/ghc/issues/13009#note_264650
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I omitted a vital zonk when refactoring tcHsPartialType in
commit 48fb3482f8cbc8a4b37161021e846105f980eed4
Author: Simon Peyton Jones <simonpj@microsoft.com>
Date: Wed Jun 5 08:55:17 2019 +0100
Fix typechecking of partial type signatures
This patch fixes it and adds commentary to explain why.
Fixes #18008
|
|
|
|
| |
XBindStmtTc) to help clarify the meaning of XBindStmt in the renamer and typechecker
|
|
|
|
| |
Also add more documentation.
|
|
|
|
|
| |
Don't use noSyntaxExpr for it. There is no good way to defensively case
on that, nor is it clear one ought to do so.
|
|
|
|
|
|
|
|
|
|
| |
There was a small thinko in Core Lint's treatment of `InstCo`
coercions that ultimately led to #18065. The fix: add an apostrophe.
That's it!
Fixes #18065.
Co-authored-by: Simon Peyton Jones <simonpj@microsoft.com>
|
|
|
|
|
| |
This fixes several small oversights in the choice of pretty-printing
function to use. Fixes #18052.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This requires bumping the `exceptions` and `text` submodules to bring
in commits that bump their respective upper version bounds on
`template-haskell`.
Fixes #17645. Fixes #17696.
Note that the new `text` commit includes a fair number of additions
to the Haddocks in that library. As a result, Haddock has to do more
work during the `haddock.Cabal` test case, increasing the number of
allocations it requires. Therefore,
-------------------------
Metric Increase:
haddock.Cabal
-------------------------
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch:
1. Writes up a specification for how the types of top-level field
selectors should be determined in a new section of the GHC User's
Guide, and
2. Makes GHC actually implement that specification by using
`conLikeUserTyVarBinders` in `mkOneRecordSelector` to preserve the
order and specificity of type variables written by the user.
Fixes #18023.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This refactoring of Lint was triggered by #17923, which is
fixed by this patch.
The main change is this. Instead of
lintType :: Type -> LintM LintedKind
we now have
lintType :: Type -> LintM LintedType
Previously, all of typeKind was effectively duplicate in lintType.
Moreover, since we have an ambient substitution, we still had to
apply the substition here and there, sometimes more than once. It
was all very tricky, in the end, and made my head hurt.
Now, lintType returns a fully linted type, with all substitutions
performed on it. This is much simpler.
The same thing is needed for Coercions. Instead of
lintCoercion :: OutCoercion
-> LintM (LintedKind, LintedKind,
LintedType, LintedType, Role)
we now have
lintCoercion :: Coercion -> LintM LintedCoercion
Much simpler! The code is shorter and less bug-prone.
There are a lot of knock on effects. But life is now better.
Metric Decrease:
T1969
|
|
|
|
|
|
|
|
|
|
| |
In GHC.Types.Id.Make we were giving a strictness signature to every data
constructor wrapper Id that we weren't looking at in demand analysis
anyway. We used to use its CPR info, but that has its own CPR signature
now.
`Note [Data-con worker strictness]` then felt very out of place, so I
moved it to GHC.Core.DataCon.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the `tyConUnique` record selector would unfold into a huge
case expression that would be inlined in all call sites, such as the
`INLINE`-annotated `coreView`, see #18026. `constraintKindTyConKey` only
occurs as the `Unique` of an `AlgTyCon` anyway, so we can make the code
a lot more compact, but have to move it to GHC.Core.TyCon.
Metric Decrease:
T12150
T12234
|
|
|
|
|
|
|
|
| |
Instead of using `nlHsTyVar`, which hardcodes `NotPromoted`, have
`typeToLHsType` pick between `Promoted` and `NotPromoted` by checking
if a type constructor is promoted using `isPromotedDataCon`.
Fixes #18020.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This changes every unused TTG extension constructor to be strict in
its field so that the pattern-match coverage checker is smart enough
any such constructors are unreachable in pattern matches. This lets
us remove nearly every use of `noExtCon` in the GHC API. The only
ones we cannot remove are ones underneath uses of `ghcPass`, but that
is only because GHC 8.8's and 8.10's coverage checkers weren't smart
enough to perform this kind of reasoning. GHC HEAD's coverage
checker, on the other hand, _is_ smart enough, so we guard these uses
of `noExtCon` with CPP for now.
Bumps the `haddock` submodule.
Fixes #17992.
|
|
|
|
| |
Update Haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We used to have another factor, ufKeenessFactor, which would scale the
discounts before they were subtracted from the size. This was justified
with the following comment:
-- We multiple the raw discounts (args_discount and result_discount)
-- ty opt_UnfoldingKeenessFactor because the former have to do with
-- *size* whereas the discounts imply that there's some extra
-- *efficiency* to be gained (e.g. beta reductions, case reductions)
-- by inlining.
However, this is highly suspect since it means that we subtract a
*scaled* size from an absolute size, resulting in crazy (e.g. negative)
scores in some cases (#15304). We consequently killed off
ufKeenessFactor and bumped up the ufUseThreshold to compensate.
Adjustment of unfolding use threshold
=====================================
Since this removes a discount from our inlining heuristic, I revisited our
default choice of -funfolding-use-threshold to minimize the change in
overall inlining behavior. Specifically, I measured runtime allocations
and executable size of nofib and the testsuite performance tests built
using compilers (and core libraries) built with several values of
-funfolding-use-threshold.
This comes as a result of a quantitative comparison of testsuite
performance and code size as a function of ufUseThreshold, comparing
GHC trees using values of 50, 60, 70, 80, 90, and 100. The test set
consisted of nofib and the testsuite performance tests.
A full summary of these measurements are found in the description of
!2608
Comparing executable sizes (relative to the base commit) across all
nofib tests, we see that sizes are similar to the baseline:
gmean min max median
thresh
50 -6.36% -7.04% -4.82% -6.46%
60 -5.04% -5.97% -3.83% -5.11%
70 -2.90% -3.84% -2.31% -2.92%
80 -0.75% -2.16% -0.42% -0.73%
90 +0.24% -0.41% +0.55% +0.26%
100 +1.36% +0.80% +1.64% +1.37%
baseline +0.00% +0.00% +0.00% +0.00%
Likewise, looking at runtime allocations we see that 80 gives slightly
better optimisation than the baseline:
gmean min max median
thresh
50 +0.16% -0.16% +4.43% +0.00%
60 +0.09% -0.00% +3.10% +0.00%
70 +0.04% -0.09% +2.29% +0.00%
80 +0.02% -1.17% +2.29% +0.00%
90 -0.02% -2.59% +1.86% +0.00%
100 +0.00% -2.59% +7.51% -0.00%
baseline +0.00% +0.00% +0.00% +0.00%
Finally, I had to add a NOINLINE in T4306 to ensure that `upd` is
worker-wrappered as the test expects. This makes me wonder whether the
inlining heuristic is now too liberal as `upd` is quite a large
function. The same measure was taken in T12600.
Wall clock time compiling Cabal with -O0
thresh 50 60 70 80 90 100 baseline
build-Cabal 93.88 89.58 92.59 90.09 100.26 94.81 89.13
Also, this change happens to avoid the spurious test output in
`plugin-recomp-change` and `plugin-recomp-change-prof` (see #17308).
Metric Decrease:
hie002
T12234
T13035
T13719
T14683
T4801
T5631
T5642
T9020
T9872d
T9961
Metric Increase:
T12150
T12425
T13701
T14697
T15426
T1969
T3064
T5837
T6048
T9203
T9872a
T9872b
T9872c
T9872d
haddock.Cabal
haddock.base
haddock.compiler
|
|
|
|
|
| |
This refactors DictBinds into a data type rather than a pair.
No change in behaviour, just better code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Issue #17151 was a very tricky example of a bug in which the
specialiser accidentally constructs a recurive dictionary,
so that everything turns into bottom.
I have fixed variants of this bug at least twice before:
see Note [Avoiding loops]. It was a bit of a struggle
to isolate the problem, greatly aided by the work that
Alexey Kuleshevich did in distilling a test case.
Once I'd understood the problem, it was not difficult to fix,
though it did lead me a bit of refactoring in specImports.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fixes #17947
When we have a ticky label for a proc, IdLabels for the ticky counter
and proc entry share the same Name. This caused overriding proc CafInfos
with the ticky CafInfos (i.e. NoCafRefs) during SRT analysis.
We now ignore the ticky labels when building SRTMaps. This makes sense
because:
- When building the current module they don't need to be in SRTMaps as
they're initialized as non-CAFFY (see mkRednCountsLabel), so they
don't take part in the dependency analysis and they're never added to
SRTs.
(Reminder: a "dependency" in the SRT analysis is a CAFFY dependency,
non-CAFFY uses are not considered as dependencies for the algorithm)
- They don't appear in the interfaces as they're not exported, so it
doesn't matter for cross-module concerns whether they're in the SRTMap
or not.
See also the new Note [Ticky labels in SRT analysis].
|
|
|
|
|
|
|
|
| |
This is necessary for certain record selectors with higher-rank
types, such as the examples in #18005. See
`Note [Impredicative record selectors]` in `TcTyDecls`.
Fixes #18005.
|
|
|
|
| |
[ci skip]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch is joint work of Alexis King and Simon PJ. It does some
significant refactoring of the type-class specialiser. Main highlights:
* We can specialise functions with types like
f :: Eq a => a -> Ord b => b => blah
where the classes aren't all at the front (#16473). Here we can
correctly specialise 'f' based on a call like
f @Int @Bool dEqInt x dOrdBool
This change really happened in an earlier patch
commit 2d0cf6252957b8980d89481ecd0b79891da4b14b
Author: Sandy Maguire <sandy@sandymaguire.me>
Date: Thu May 16 12:12:10 2019 -0400
work that this new patch builds directly on that work, and refactors
it a bit.
* We can specialise functions with implicit parameters (#17930)
g :: (?foo :: Bool, Show a) => a -> String
Previously we could not, but now they behave just like a non-class
argument as in 'f' above.
* We can specialise under-saturated calls, where some (but not all of
the dictionary arguments are provided (#17966). For example, we can
specialise the above 'f' based on a call
map (f @Int dEqInt) xs
even though we don't (and can't) give Ord dictionary.
This may sound exotic, but #17966 is a program from the wild, and
showed significant perf loss for functions like f, if you need
saturation of all dictionaries.
* We fix a buglet in which a floated dictionary had a bogus demand
(#17810), by using zapIdDemandInfo in the NonRec case of specBind.
* A tiny side benefit: we can drop dead arguments to specialised
functions; see Note [Drop dead args from specialisations]
* Fixed a bug in deciding what dictionaries are "interesting"; see
Note [Keep the old dictionaries interesting]
This is all achieved by by building on Sandy Macguire's work in
defining SpecArg, which mkCallUDs uses to describe the arguments of
the call. Main changes:
* Main work is in specHeader, which marched down the [InBndr] from the
function definition and the [SpecArg] from the call site, together.
* specCalls no longer has an arity check; the entire mechanism now
handles unders-saturated calls fine.
* mkCallUDs decides on an argument-by-argument basis whether to
specialise a particular dictionary argument; this is new.
See mk_spec_arg in mkCallUDs.
It looks as if there are many more lines of code, but I think that
all the extra lines are comments!
|
|
|
|
|
|
|
|
|
|
| |
In !2959 we noticed that there was some redundant code (in GHC.Cmm.Utils
and GHC.Cmm.StgToCmm.Utils) used to deal with `CmmStatics` datatype
(before SRT generation) and `RawCmmStatics` datatype (after SRT
generation).
This patch removes this redundant code by using a single GADT for
(Raw)CmmStatics.
|
|
|
|
|
|
|
| |
Move handling of big literal strings from CmmToAsm to StgToCmm. It
avoids the use of `sdocWithDynFlags` (cf #10143). We might need to move
this handling even higher in the pipeline in the future (cf #17960):
this patch will make it easier.
|