| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
| |
Update haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adopts a patch from NetBSD's packaging fixing the `GhcThreaded`
option of the make build system. In addition we introduce a `ghcThreaded`
option in hadrian's `Flavour` type.
Also fix Hadrian's treatment of the `Use Threaded` entry in `settings`.
Previously it would incorrectly claim `Use Threaded = True` if we were
building the `threaded` runtime way. However, this is inconsistent with
the `make` build system, which defines it to be whether the `ghc`
executable is linked against the threaded runtime.
Fixes #17692.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are two main payloads of this patch:
1. This introduces IsPass, which allows e.g. printing
code to ask what pass it is running in (Renamed vs
Typechecked) and thus print extension fields. See
Note [IsPass] in Hs.Extension
2. This moves the HsWrap constructor into an extension
field, where it rightly belongs. This is done for
HsExpr and HsCmd, but not for HsPat, which is left
as an exercise for the reader.
There is also some refactoring around SyntaxExprs, but this
is really just incidental.
This patch subsumes !1721 (sorry @chreekat).
Along the way, there is a bit of refactoring in GHC.Hs.Extension,
including the removal of NameOrRdrName in favor of NoGhcTc.
This meant that we had no real need for GHC.Hs.PlaceHolder, so
I got rid of it.
Updates haddock submodule.
-------------------------
Metric Decrease:
haddock.compiler
-------------------------
|
| |
|
| |
|
|
|
|
|
| |
Metric Decrease:
haddock.compiler
|
| |
|
|
|
|
| |
Haskeline now depends upon exceptions. See #16752.
|
|
|
|
|
| |
These were probably added with some GLOBAL_VARs, but those GLOBAL_VARs
are now gone.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
`:steplocal` enables only breakpoints in the current top-level binding.
When a normal breakpoint is hit, then the module name and the break id from the `BRK_FUN` byte code
allow us to access the corresponding entry in a ModBreak table. From this entry we then get the SrcSpan
(see compiler/main/InteractiveEval.hs:bindLocalsAtBreakpoint).
With this source-span we can then determine the current top-level binding, needed for the steplocal command.
However, if we break at an exception or at an error, we don't have an BRK_FUN byte-code, so we don't have any source information.
The function `bindLocalsAtBreakpoint` creates an `UnhelpfulSpan`, which doesn't allow us to determine the current top-level binding.
To avoid a `panic`, we have to check for `UnhelpfulSpan` in the function `ghc/GHCi/UI.hs:stepLocalCmd`.
Hence a :steplocal command after a break-on-exception or a break-on-error is not possible.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit allows command name resolution for GHCi commands
with option `!` as follows:
ghci> :k! Int
Int :: *
= Int
This commit changes implementation as follows:
Before:
* Prefix match with full string including the option `!` (e.g. `k!`)
After (this patch):
* Prefix match without option suffix `!` (e.g. `k`)
* in addition, suffix match with option `!`
See also #8305 and #8113
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
As described in the new Note [LLVM Configuration] in SysTools, we now
load llvm-targets and llvm-passes lazily to avoid the overhead of doing
so when -fllvm isn't used (also known as "the common case").
Noticed in #17003.
Metric Decrease:
T12234
T12150
|
|
|
|
|
|
| |
You can always just not use or even build `iserv`. I don't think the
maintenance cost of the CPP is worth...I can't even tell what the
benefit is.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The generated headers are now generated per stage, which means we can
skip hacks like `ghc_boot_platform.h` and just have that be the stage 0
header as proper. In general, stages are to be embraced: freely generate
everything in each stage but then just build what you depend on, and
everything is symmetrical and efficient. Trying to avoid stages because
bootstrapping is a mind bender just creates tons of bespoke
mini-mind-benders that add up to something far crazier.
Hadrian was pretty close to this "stage-major" approach already, and so
was fairly easy to fix. Make needed more work, however: it did know
about stages so at least there was a scaffold, but few packages except
for the compiler cared, and the compiler used its own counting system.
That said, make and Hadrian now work more similarly, which is good for
the transition to Hadrian. The merits of embracing stage aside, the
change may be worthy for easing that transition alone.
|
|
|
|
| |
This commit updates GHCi's help message for GHC 8.10.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit refactors interface file generation to allow information
from the later passed (NCG, STG) to be stored in interface files.
We achieve this by splitting interface file generation into two parts:
* Partial interfaces, built based on the result of the core pipeline
* A fully instantiated interface, which also contains the final
fingerprints and can optionally contain information produced by the backend.
This change is required by !1304 and !1530.
-dynamic-too handling is refactored too: previously when generating code
we'd branch on -dynamic-too *before* code generation, but now we do it
after.
(Original code written by @AndreasK in !1530)
Performance
~~~~~~~~~~~
Before this patch interface files where created and immediately flushed
to disk which made space leaks impossible.
With this change we instead use NFData to force all iface related data
structures to avoid space leaks.
In the process of refactoring it was discovered that the code in the
ToIface Module allocated a lot of thunks which were immediately forced
when writing/forcing the interface file. So we made this module more
strict to avoid creating many of those thunks.
Bottom line is that allocations go down by about ~0.1% compared to
master.
Residency is not meaningfully different after this patch.
Runtime was not benchmarked.
Co-Authored-By: Andreas Klebinger <klebinger.andreas@gmx.at>
Co-Authored-By: Ömer Sinan Ağacan <omer@well-typed.com>
|
|
|
|
|
|
|
| |
Add GHC.Hs module hierarchy replacing hsSyn.
Metric Increase:
haddock.compiler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Having an IORef in FastString to memoize the z-encoded version is
unecessary because there is this amazing thing Haskell can do natively,
it's called "lazyness" :)
We simply remove the UNPACK and strictness annotations from the constructor
field corresponding to the z-encoding, making it lazy, and store the
(pure) z-encoded string there.
The only complication here is 'hasZEncoding' which allows cheking if a
z-encoding was computed for a given string. Since this is only used for
compiler performance statistics though it's not actually necessary to have
the current per-string granularity.
Instead I add a global IORef counter to the FastStringTable and use
unsafePerformIO to increment the counter whenever a lazy z-encoding is
forced.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To avoid having to `panic` any time a TTG extension constructor is
consumed, this MR introduces an uninhabited 'NoExtCon' type and uses
that in every extension constructor's type family instance where it
is appropriate. This also introduces a 'noExtCon' function which
eliminates a 'NoExtCon', much like 'Data.Void.absurd' eliminates
a 'Void'.
I also renamed the existing `NoExt` type to `NoExtField` to better
distinguish it from `NoExtCon`. Unsurprisingly, there is a lot of
code churn resulting from this.
Bumps the Haddock submodule. Fixes #15247.
|
| |
|
|
|
|
|
|
|
|
|
| |
Previously we would hackily evaluate a textual code snippet to compute
actions to disable I/O buffering and flush the stdout/stderr handles.
This broke in a number of ways (#15336, #16563).
Instead we now ship a module (`GHC.GHCi.Helpers`) with `base` containing
the needed actions. We can then easily refer to these via `Orig` names.
|
|
|
|
|
|
|
| |
ghc-pkg needs to be aware of platforms so it can figure out which
subdire within the user package db to use. This is admittedly
roundabout, but maybe Cabal could use the same notion of a platform as
GHC to good affect too.
|
|
|
|
|
|
|
|
|
| |
After a :cd command and after setting some package flags,
GHCi unloads all loaded modules by resetting the list of targets.
This patch deletes eventually defined debugger breakpoints, before GHCi resets the target list.
The common code is factored out into the new function clearAllTargets.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As discussed in #16331, the GHCI macro, defined through 'ghci' flags
in ghc.cabal.in, ghc-bin.cabal.in and ghci.cabal.in, is supposed to indicate
whether GHC is built with support for an internal interpreter, that runs in
the same process. It is however overloaded in a few places to mean
"there is an interpreter available", regardless of whether it's an internal
or external interpreter.
For the sake of clarity and with the hope of more easily being able to
build stage 1 GHCs with external interpreter support, this patch splits
the previous GHCI macro into 3 different ones:
- HAVE_INTERNAL_INTERPRETER: GHC is built with an internal interpreter
- HAVE_EXTERNAL_INTERPRETER: GHC is built with support for external interpreters
- HAVE_INTERPRETER: HAVE_INTERNAL_INTERPRETER || HAVE_EXTERNAL_INTERPRETER
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds two new commands `:enable` and `:disable` to the GHCi debugger.
Opposite to `:set stop <n> :continue` a breakpoint disabled with `:disable` will
not loose its previously set stop command.
A new field breakEnabled is added to the BreakLocation data structure to
track the enable/disable state. When a breakpoint is disabled with a `:disable`
command, the following happens:
The corresponding BreakLocation data element is searched dictionary of the
`breaks` field of the GHCiStateMonad. If the break point is found and not
already in the disabled state, the breakpoint is removed from bytecode.
The BreakLocation data structure is kept in the breaks list and the new
breakEnabled field is set to false.
The `:enable` command works similar.
The breaks field in the GHCiStateMonad was changed from an association list
to int `IntMap`.
|
|
|
|
|
|
| |
`:info Coercible` now outputs the correct section number of the GHCi User's guide together with the secion title.
`:forward x` gives the correct syntax hint.
|
|
|
|
|
| |
This fixes a few vestigial references to `settings` left over from !655.
Fixes #16715.
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds the `:instances` command to ghci following proosal
number 41.
This makes it possible to query which instances are available to a given
type.
The output of this command is all the possible instances with type
variables and constraints instantiated.
|
|
|
|
|
|
|
|
|
|
| |
After the previous commit, `Settings` is just a thin wrapper around
other groups of settings. While `Settings` is used by GHC-the-executable
to initalize `DynFlags`, in principle another consumer of
GHC-the-library could initialize `DynFlags` a different way. It
therefore doesn't make sense for `DynFlags` itself (library code) to
separate the settings that typically come from `Settings` from the
settings that typically don't.
|
| |
|
| |
|
| |
|
|
|
|
| |
This allows it to eventually become stage-specific
|
|
|
|
| |
Fixes #16569
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add the ':set local-config { source | ignore }' setting to control
whether .ghci file in current directory will be sourced or not. The
directive can be set in global config or $HOME/.ghci, which are
processed before local .ghci files.
The default is "source", preserving current behaviour.
Related: https://gitlab.haskell.org/ghc/ghc/issues/6017
Related: https://gitlab.haskell.org/ghc/ghc/issues/14250
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Directives in .ghci files in the current directory ("local .ghci")
can be overridden by global files. Change the order in which the
configs are loaded: global and $HOME/.ghci first, then local.
Also introduce a new field to GHCiState to control whether local
.ghci gets sourced or ignored. This commit does not add a way to
set this value (a subsequent commit will add this), but the .ghci
sourcing routine respects its value.
Fixes: https://gitlab.haskell.org/ghc/ghc/issues/14689
Related: https://gitlab.haskell.org/ghc/ghc/issues/6017
Related: https://gitlab.haskell.org/ghc/ghc/issues/14250
|
|
|
|
|
|
|
| |
Using `ghc-prim <= 0.6.1` is somewhat dodgy from a PVP point of view,
as it makes it awkward to support new minor releases of `ghc-prim`.
Let's instead use `< 0.7`, which is the idiomatic way of expressing
PVP-compliant upper version bounds.
|
|
|
|
| |
Also removes a couple unnecessary MagicHash pragmas
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This moves all URL references to Trac Wiki to their corresponding
GitLab counterparts.
This substitution is classified as follows:
1. Automated substitution using sed with Ben's mapping rule [1]
Old: ghc.haskell.org/trac/ghc/wiki/XxxYyy...
New: gitlab.haskell.org/ghc/ghc/wikis/xxx-yyy...
2. Manual substitution for URLs containing `#` index
Old: ghc.haskell.org/trac/ghc/wiki/XxxYyy...#Zzz
New: gitlab.haskell.org/ghc/ghc/wikis/xxx-yyy...#zzz
3. Manual substitution for strings starting with `Commentary`
Old: Commentary/XxxYyy...
New: commentary/xxx-yyy...
See also !539
[1]: https://gitlab.haskell.org/bgamari/gitlab-migration/blob/master/wiki-mapping.json
|
|
|
|
|
|
| |
As per https://prime.haskell.org/wiki/Libraries/Proposals/MonadFail
Coauthored-by: Ben Gamari <ben@well-typed.com>
|
|
|
|
|
|
| |
See #13101 + #15454 for motivation. This change reduces the number of
modules that need to be compiled to object code when loading GHC into
GHCi.
|
|
|
|
|
| |
This moves all URL references to Trac tickets to their corresponding
GitLab counterparts.
|
|
|
|
|
|
|
|
|
| |
We revert CAFs when loading/adding modules in ghci (presumably to refresh
execution states and to allow for object code to be unloaded from the runtime).
However, with `-fexternal-interpreter` enabled, we are only doing it in the
ghci process instead of the external interpreter process where the cafs are
allocated and computed. This makes sure that revertCAFs is done in the
appropriate process no matter if that flag is present or not.
|
|
|
|
| |
This was the suggested change in !176 but missed the batch merge (!263).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The splitter is an evil Perl script that processes assembler code.
Its job can be done better by the linker's --gc-sections flag. GHC
passes this flag to the linker whenever -split-sections is passed on
the command line.
This is based on @DemiMarie's D2768.
Fixes Trac #11315
Fixes Trac #9832
Fixes Trac #8964
Fixes Trac #8685
Fixes Trac #8629
|