| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
After a few attempts at shoring up the previous implementation, I ended
up turning to the literature and now use the proven implementation,
> N.M. Lê, A. Pop, A.Cohen, and F.Z. Nardelli. "Correct and Efficient
> Work-Stealing for Weak Memory Models". PPoPP'13, February 2013,
> ACM 978-1-4503-1922/13/02.
Note only is this approach formally proven correct under C11 semantics
but it is also proved to be a bit faster in practice.
|
| |
|
|
|
|
|
| |
There is a real data race but can be made safe by using proper atomic
(but relaxed) accesses.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a part of GHC Proposal #25: "Offer more array resizing primitives".
Resources related to the proposal:
- Discussion: https://github.com/ghc-proposals/ghc-proposals/pull/121
- Proposal: https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0025-resize-boxed.rst
Only shrinkSmallMutableArray# is implemented as a primop since a
library-space implementation of resizeSmallMutableArray# (in GHC.Exts)
is no less efficient than a primop would be. This may be replaced by
a primop in the future if someone devises a strategy for growing
arrays in-place. The library-space implementation always copies the
array when growing it.
This commit also tweaks the documentation of the deprecated
sizeofMutableByteArray#, removing the mention of concurrency. That
primop is unsound even in single-threaded applications. Additionally,
the non-negativity assertion on the existing shrinkMutableByteArray#
primop has been removed since this predicate is trivially always true.
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This introduces a concurrent mark & sweep garbage collector to manage the old
generation. The concurrent nature of this collector typically results in
significantly reduced maximum and mean pause times in applications with large
working sets.
Due to the large and intricate nature of the change I have opted to
preserve the fully-buildable history, including merge commits, which is
described in the "Branch overview" section below.
Collector design
================
The full design of the collector implemented here is described in detail
in a technical note
> B. Gamari. "A Concurrent Garbage Collector For the Glasgow Haskell
> Compiler" (2018)
This document can be requested from @bgamari.
The basic heap structure used in this design is heavily inspired by
> K. Ueno & A. Ohori. "A fully concurrent garbage collector for
> functional programs on multicore processors." /ACM SIGPLAN Notices/
> Vol. 51. No. 9 (presented at ICFP 2016)
This design is intended to allow both marking and sweeping
concurrent to execution of a multi-core mutator. Unlike the Ueno design,
which requires no global synchronization pauses, the collector
introduced here requires a stop-the-world pause at the beginning and end
of the mark phase.
To avoid heap fragmentation, the allocator consists of a number of
fixed-size /sub-allocators/. Each of these sub-allocators allocators into
its own set of /segments/, themselves allocated from the block
allocator. Each segment is broken into a set of fixed-size allocation
blocks (which back allocations) in addition to a bitmap (used to track
the liveness of blocks) and some additional metadata (used also used
to track liveness).
This heap structure enables collection via mark-and-sweep, which can be
performed concurrently via a snapshot-at-the-beginning scheme (although
concurrent collection is not implemented in this patch).
Implementation structure
========================
The majority of the collector is implemented in a handful of files:
* `rts/Nonmoving.c` is the heart of the beast. It implements the entry-point
to the nonmoving collector (`nonmoving_collect`), as well as the allocator
(`nonmoving_allocate`) and a number of utilities for manipulating the heap.
* `rts/NonmovingMark.c` implements the mark queue functionality, update
remembered set, and mark loop.
* `rts/NonmovingSweep.c` implements the sweep loop.
* `rts/NonmovingScav.c` implements the logic necessary to scavenge the
nonmoving heap.
Branch overview
===============
```
* wip/gc/opt-pause:
| A variety of small optimisations to further reduce pause times.
|
* wip/gc/compact-nfdata:
| Introduce support for compact regions into the non-moving
|\ collector
| \
| \
| | * wip/gc/segment-header-to-bdescr:
| | | Another optimization that we are considering, pushing
| | | some segment metadata into the segment descriptor for
| | | the sake of locality during mark
| | |
| * | wip/gc/shortcutting:
| | | Support for indirection shortcutting and the selector optimization
| | | in the non-moving heap.
| | |
* | | wip/gc/docs:
| |/ Work on implementation documentation.
| /
|/
* wip/gc/everything:
| A roll-up of everything below.
|\
| \
| |\
| | \
| | * wip/gc/optimize:
| | | A variety of optimizations, primarily to the mark loop.
| | | Some of these are microoptimizations but a few are quite
| | | significant. In particular, the prefetch patches have
| | | produced a nontrivial improvement in mark performance.
| | |
| | * wip/gc/aging:
| | | Enable support for aging in major collections.
| | |
| * | wip/gc/test:
| | | Fix up the testsuite to more or less pass.
| | |
* | | wip/gc/instrumentation:
| | | A variety of runtime instrumentation including statistics
| | / support, the nonmoving census, and eventlog support.
| |/
| /
|/
* wip/gc/nonmoving-concurrent:
| The concurrent write barriers.
|
* wip/gc/nonmoving-nonconcurrent:
| The nonmoving collector without the write barriers necessary
| for concurrent collection.
|
* wip/gc/preparation:
| A merge of the various preparatory patches that aren't directly
| implementing the GC.
|
|
* GHC HEAD
.
.
.
```
|
| |
| |
| |
| |
| |
| | |
This required some fiddling around with the location of forward
declarations since the C sources generated by GHC's C backend only
includes Stg.h.
|
| | |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This extends the non-moving collector to allow concurrent collection.
The full design of the collector implemented here is described in detail
in a technical note
B. Gamari. "A Concurrent Garbage Collector For the Glasgow Haskell
Compiler" (2018)
This extension involves the introduction of a capability-local
remembered set, known as the /update remembered set/, which tracks
objects which may no longer be visible to the collector due to mutation.
To maintain this remembered set we introduce a write barrier on
mutations which is enabled while a concurrent mark is underway.
The update remembered set representation is similar to that of the
nonmoving mark queue, being a chunked array of `MarkEntry`s. Each
`Capability` maintains a single accumulator chunk, which it flushed
when it (a) is filled, or (b) when the nonmoving collector enters its
post-mark synchronization phase.
While the write barrier touches a significant amount of code it is
conceptually straightforward: the mutator must ensure that the referee
of any pointer it overwrites is added to the update remembered set.
However, there are a few details:
* In the case of objects with a dirty flag (e.g. `MVar`s) we can
exploit the fact that only the *first* mutation requires a write
barrier.
* Weak references, as usual, complicate things. In particular, we must
ensure that the referee of a weak object is marked if dereferenced by
the mutator. For this we (unfortunately) must introduce a read
barrier, as described in Note [Concurrent read barrier on deRefWeak#]
(in `NonMovingMark.c`).
* Stable names are also a bit tricky as described in Note [Sweeping
stable names in the concurrent collector] (`NonMovingSweep.c`).
We take quite some pains to ensure that the high thread count often seen
in parallel Haskell applications doesn't affect pause times. To this end
we allow thread stacks to be marked either by the thread itself (when it
is executed or stack-underflows) or the concurrent mark thread (if the
thread owning the stack is never scheduled). There is a non-trivial
handshake to ensure that this happens without racing which is described
in Note [StgStack dirtiness flags and concurrent marking].
Co-Authored-by: Ömer Sinan Ağacan <omer@well-typed.com>
|
| |
| |
| |
| |
| |
| | |
This patch adds support for the s390x architecture for the LLVM code
generator. The patch includes a register mapping of STG registers onto
s390x machine registers which enables a registerised build.
|
|/ |
|
|
|
|
|
|
|
| |
Until 0472f0f6a92395d478e9644c0dbd12948518099f there was a meaningful
host vs target distinction (though it wasn't used right, in genapply).
After that, they did not differ in meaningful ways, so it's best to just
only keep one.
|
|
|
|
|
|
| |
Add StgToCmm module hierarchy. Platform modules that are used in several
other places (NCG, LLVM codegen, Cmm transformations) are put into
GHC.Platform.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These prevent multi-target builds. They were gotten rid of in 3 ways:
1. In the compiler itself, replacing `#if` with runtime `if`. In these
cases, we care about the target platform still, but the target platform
is dynamic so we must delay the elimination to run time.
2. In the compiler itself, replacing `TARGET` with `HOST`. There was
just one bit of this, in some code splitting strings representing lists
of paths. These paths are used by GHC itself, and not by the compiled
binary. (They are compiler lookup paths, rather than RPATHS or something
that does matter to the compiled binary, and thus would legitamentally
be target-sensative.) As such, the path-splitting method only depends on
where GHC runs and not where code it produces runs. This should have
been `HOST` all along.
3. Changing the RTS. The RTS doesn't care about the target platform,
full stop.
4. `includes/stg/HaskellMachRegs.h` This file is also included in the
genapply executable. This is tricky because the RTS's host platform
really is that utility's target platform. so that utility really really
isn't multi-target either. But at least it isn't an installed part of
GHC, but just a one-off tool when building the RTS. Lying with the
`HOST` to a one-off program (genapply) that isn't installed doesn't seem so bad.
It's certainly better than the other way around of lying to the RTS
though not to genapply. The RTS is more important, and it is installed,
*and* this header is installed as part of the RTS.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Here the following changes are introduced:
- A read barrier machine op is added to Cmm.
- The order in which a closure's fields are read and written is changed.
- Memory barriers are added to RTS code to ensure correctness on
out-or-order machines with weak memory ordering.
Cmm has a new CallishMachOp called MO_ReadBarrier. On weak memory machines, this
is lowered to an instruction that ensures memory reads that occur after said
instruction in program order are not performed before reads coming before said
instruction in program order. On machines with strong memory ordering properties
(e.g. X86, SPARC in TSO mode) no such instruction is necessary, so
MO_ReadBarrier is simply erased. However, such an instruction is necessary on
weakly ordered machines, e.g. ARM and PowerPC.
Weam memory ordering has consequences for how closures are observed and mutated.
For example, consider a closure that needs to be updated to an indirection. In
order for the indirection to be safe for concurrent observers to enter, said
observers must read the indirection's info table before they read the
indirectee. Furthermore, the entering observer makes assumptions about the
closure based on its info table contents, e.g. an INFO_TYPE of IND imples the
closure has an indirectee pointer that is safe to follow.
When a closure is updated with an indirection, both its info table and its
indirectee must be written. With weak memory ordering, these two writes can be
arbitrarily reordered, and perhaps even interleaved with other threads' reads
and writes (in the absence of memory barrier instructions). Consider this
example of a bad reordering:
- An updater writes to a closure's info table (INFO_TYPE is now IND).
- A concurrent observer branches upon reading the closure's INFO_TYPE as IND.
- A concurrent observer reads the closure's indirectee and enters it. (!!!)
- An updater writes the closure's indirectee.
Here the update to the indirectee comes too late and the concurrent observer has
jumped off into the abyss. Speculative execution can also cause us issues,
consider:
- An observer is about to case on a value in closure's info table.
- The observer speculatively reads one or more of closure's fields.
- An updater writes to closure's info table.
- The observer takes a branch based on the new info table value, but with the
old closure fields!
- The updater writes to the closure's other fields, but its too late.
Because of these effects, reads and writes to a closure's info table must be
ordered carefully with respect to reads and writes to the closure's other
fields, and memory barriers must be placed to ensure that reads and writes occur
in program order. Specifically, updates to a closure must follow the following
pattern:
- Update the closure's (non-info table) fields.
- Write barrier.
- Update the closure's info table.
Observing a closure's fields must follow the following pattern:
- Read the closure's info pointer.
- Read barrier.
- Read the closure's (non-info table) fields.
This patch updates RTS code to obey this pattern. This should fix long-standing
SMP bugs on ARM (specifically newer aarch64 microarchitectures supporting
out-of-order execution) and PowerPC. This fixes issue #15449.
Co-Authored-By: Ben Gamari <ben@well-typed.com>
|
|
|
|
|
|
| |
This commit includes the necessary changes in code and
documentation to support a primop that reverses a word's
bits. It also includes a test.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This moves all URL references to Trac Wiki to their corresponding
GitLab counterparts.
This substitution is classified as follows:
1. Automated substitution using sed with Ben's mapping rule [1]
Old: ghc.haskell.org/trac/ghc/wiki/XxxYyy...
New: gitlab.haskell.org/ghc/ghc/wikis/xxx-yyy...
2. Manual substitution for URLs containing `#` index
Old: ghc.haskell.org/trac/ghc/wiki/XxxYyy...#Zzz
New: gitlab.haskell.org/ghc/ghc/wikis/xxx-yyy...#zzz
3. Manual substitution for strings starting with `Commentary`
Old: Commentary/XxxYyy...
New: commentary/xxx-yyy...
See also !539
[1]: https://gitlab.haskell.org/bgamari/gitlab-migration/blob/master/wiki-mapping.json
|
| |
|
|
|
|
|
|
| |
This function allows the user to compute the (non-transitive) size of a
heap object in words. The "closure" in the name is admittedly confusing
but we are stuck with this nomenclature at this point.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We make liveness information for global registers
available on `JMP` and `BCTR`, which were the last instructions
missing. With complete liveness information we do not need to
reserve global registers in `freeReg` anymore. Moreover we
assign R9 and R10 to callee saves registers.
Cleanup by removing `Reg_Su`, which was unused, from `freeReg`
and removing unused register definitions.
The calculation of the number of floating point registers is too
conservative. Just follow X86 and specify the constants directly.
Overall on PowerPC this results in 0.3 % smaller code size in nofib
while runtime is slightly better in some tests.
|
|
|
|
|
|
|
|
|
| |
- Remove REGISTER_CC and REGISTER_CCS macros, add functions registerCC
and registerCCS to Profiling.c.
- Reduce scope of symbols: CC_LIST, CCS_LIST, CC_ID, CCS_ID
- Document CC_LIST and CCS_LIST
|
|
|
|
|
|
|
| |
Support for Mac OS X on PowerPC has been dropped by Apple years ago. We
follow suit and remove PowerPC support for Darwin.
Fixes #16106.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Long ago, the stable name table and stable pointer tables were one.
Now, they are separate, and have significantly different
implementations. I believe the time has come to finish the split
that began in #7674.
* Divide `rts/Stable` into `rts/StableName` and `rts/StablePtr`.
* Give each table its own mutex.
* Add FFI functions `hs_lock_stable_ptr_table` and
`hs_unlock_stable_ptr_table` and document them.
These are intended to replace the previously undocumented
`hs_lock_stable_tables` and `hs_lock_stable_tables`,
which are now documented as deprecated synonyms.
* Make `eqStableName#` use pointer equality instead of unnecessarily
comparing stable name table indices.
Reviewers: simonmar, bgamari, erikd
Reviewed By: bgamari
Subscribers: rwbarton, carter
GHC Trac Issues: #15555
Differential Revision: https://phabricator.haskell.org/D5084
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a new primop called traceBinaryEvent# that takes the length
of binary data and a pointer to the data, then emits it to the eventlog.
There is some example code that uses this primop and the new event:
* [traceBinaryEventIO][1] that calls `traceBinaryEvent#`
* [A patch to ghc-events][2] that parses the new `EVENT_USER_BINARY_MSG`
There's no corresponding issue on Trac but it was discussed at
ghc-devs [3].
[1] https://github.com/maoe/ghc-trace-events/blob
/fb226011ef1f85a97b4da7cc9d5f98f9fe6316ae/src/Debug/Trace/Binary.hs#L29)
[2] https://github.com/maoe/ghc-events/commit
/239ca77c24d18cdd10d6d85a0aef98e4a7c56ae6)
[3] https://mail.haskell.org/pipermail/ghc-devs/2018-May/015791.html
Reviewers: bgamari, erikd, simonmar
Reviewed By: bgamari
Subscribers: rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D5007
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reviewers: simonmar, hvr, bgamari, erikd, fryguybob, rrnewton
Reviewed By: simonmar
Subscribers: fryguybob, rwbarton, thomie, carter
GHC Trac Issues: #15364
Differential Revision: https://phabricator.haskell.org/D4884
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SMALL_MUT_ARR_PTRS_FROZEN0 -> SMALL_MUT_ARR_PTRS_FROZEN_DIRTY
SMALL_MUT_ARR_PTRS_FROZEN -> SMALL_MUT_ARR_PTRS_FROZEN_CLEAN
MUT_ARR_PTRS_FROZEN0 -> MUT_ARR_PTRS_FROZEN_DIRTY
MUT_ARR_PTRS_FROZEN -> MUT_ARR_PTRS_FROZEN_CLEAN
Naming is now consistent with other CLEAR/DIRTY objects (MVAR, MUT_VAR,
MUT_ARR_PTRS).
(alternatively we could rename MVAR_DIRTY/MVAR_CLEAN etc. to MVAR0/MVAR)
Removed a few comments in Scav.c about FROZEN0 being on the mut_list
because it's now clear from the closure type.
Reviewers: bgamari, simonmar, erikd
Reviewed By: simonmar
Subscribers: rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4784
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This feature has some very serious correctness issues (#14310),
introduces a great deal of complexity, and hasn't seen wide usage.
Consequently we are removing it, as proposed in Proposal #77 [1]. This
is heavily based on a patch from fryguybob.
Updates stm submodule.
[1] https://github.com/ghc-proposals/ghc-proposals/pull/77
Test Plan: Validate
Reviewers: erikd, simonmar, hvr
Reviewed By: simonmar
Subscribers: rwbarton, thomie, carter
GHC Trac Issues: #14310
Differential Revision: https://phabricator.haskell.org/D4760
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
- Previously we would hvae a single big table of pointers per module,
with a set of bitmaps to reference entries within it. The new
representation is identical to a static constructor, which is much
simpler for the GC to traverse, and we get to remove the complicated
bitmap-traversal code from the GC.
- Rewrite all the code to generate SRTs in CmmBuildInfoTables, and
document it much better (see Note [SRTs]). This has been something
I've wanted to do since we moved to the new code generator, I
finally had the opportunity to finish it while on a transatlantic
flight recently :)
There are a series of 4 diffs:
1. D4632 (this one), which does the bulk of the changes
2. D4633 which adds support for smaller `CmmLabelDiffOff` constants
3. D4634 which takes advantage of D4632 and D4633 to save a word in
info tables that have an SRT on x86_64. This is where most of the
binary size improvement comes from.
4. D4637 which makes a further optimisation to merge some SRTs with
static FUN closures. This adds some complexity and the benefits
are fairly modest, so it's not clear yet whether we should do this.
Results (after (3), on x86_64)
- GHC itself (staticaly linked) is 5.2% smaller
- -1.7% binary sizes in nofib, -2.9% module sizes. Full nofib results: P176
- I measured the overhead of traversing all the static objects in a
major GC in GHC itself by doing `replicateM_ 1000 performGC` as the
first thing in `Main.main`. The new version was 5-10% faster, but
the results did vary quite a bit.
- I'm not sure if there's a compile-time difference, the results are
too unreliable.
Test Plan: validate
Reviewers: bgamari, michalt, niteria, simonpj, erikd, osa1
Subscribers: thomie, carter
Differential Revision: https://phabricator.haskell.org/D4632
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
get/setAllocationCounter didn't take into account allocations in the
current block. This was known at the time, but it turns out to be
important to have more accuracy when using these in a fine-grained
way.
Test Plan:
New unit test to test incrementally larger allocaitons. Before I got
results like this:
```
+0
+0
+0
+0
+0
+4096
+0
+0
+0
+0
+0
+4064
+0
+0
+4088
+4056
+0
+0
+0
+4088
+4096
+4056
+4096
```
Notice how the results aren't always monotonically increasing. After
this patch:
```
+344
+416
+488
+560
+632
+704
+776
+848
+920
+992
+1064
+1136
+1208
+1280
+1352
+1424
+1496
+1568
+1640
+1712
+1784
+1856
+1928
+2000
+2072
+2144
```
Reviewers: hvr, erikd, simonmar, jrtc27, trommler
Reviewed By: simonmar
Subscribers: trommler, jrtc27, rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4363
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Unreg build failed as:
$ ./configure --enable-unregisterised
$ make
HC [stage 1] libraries/ghc-prim/dist-install/build/GHC/PrimopWrappers.o
ghc_1.hc: In function 'ghczmprim_GHCziPrimopWrappers_pdep8zh_entry':
ghc_1.hc:1810:9: error:
error: implicit declaration of function 'hs_pdep8'; did you mean 'hs_ctz8'?
[-Werror=implicit-function-declaration]
_c3jz = hs_pdep8(*Sp, Sp[1]);
^~~~~~~~
hs_ctz8
|
1810 | _c3jz = hs_pdep8(*Sp, Sp[1]);
| ^
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
|
|
|
|
| |
This reverts commit a1a689dda48113f3735834350fb562bb1927a633.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
get/setAllocationCounter didn't take into account allocations in the
current block. This was known at the time, but it turns out to be
important to have more accuracy when using these in a fine-grained
way.
Test Plan:
New unit test to test incrementally larger allocaitons. Before I got
results like this:
```
+0
+0
+0
+0
+0
+4096
+0
+0
+0
+0
+0
+4064
+0
+0
+4088
+4056
+0
+0
+0
+4088
+4096
+4056
+4096
```
Notice how the results aren't always monotonically increasing. After
this patch:
```
+344
+416
+488
+560
+632
+704
+776
+848
+920
+992
+1064
+1136
+1208
+1280
+1352
+1424
+1496
+1568
+1640
+1712
+1784
+1856
+1928
+2000
+2072
+2144
```
Reviewers: niteria, bgamari, hvr, erikd
Subscribers: rwbarton, thomie, carter
Differential Revision: https://phabricator.haskell.org/D4288
|
|
|
|
|
|
|
| |
These removes left-overs from e3ba26f8b49700b41ff4672f3f7f6a4e453acdcc
where I implemented `compareByteArray#` as an out-of-line primop, which
got optimised into an inline primop shortly afterwards
(as per 7673561555ae354fd9eed8de1e57c681906e2d49).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is another step for fixing #13825 and is based on D38 by Simon
Marlow.
The change allows storing multiple constructor fields within the same
word. This currently applies only to `Float`s, e.g.,
```
data Foo = Foo {-# UNPACK #-} !Float {-# UNPACK #-} !Float
```
on 64-bit arch, will now store both fields within the same constructor
word. For `WordX/IntX` we'll need to introduce new primop types.
Main changes:
- We now use sizes in bytes when we compute the offsets for
constructor fields in `StgCmmLayout` and introduce padding if
necessary (word-sized fields are still word-aligned)
- `ByteCodeGen` had to be updated to correctly construct the data
types. This required some new bytecode instructions to allow pushing
things that are not full words onto the stack (and updating
`Interpreter.c`). Note that we only use the packed stuff when
constructing data types (i.e., for `PACK`), in all other cases the
behavior should not change.
- `RtClosureInspect` was changed to handle the new layout when
extracting subterms. This seems to be used by things like `:print`.
I've also added a test for this.
- I deviated slightly from Simon's approach and use `PrimRep` instead
of `ArgRep` for computing the size of fields. This seemed more
natural and in the future we'll probably want to introduce new
primitive types (e.g., `Int8#`) and `PrimRep` seems like a better
place to do that (where we already have `Int64Rep` for example).
`ArgRep` on the other hand seems to be more focused on calling
functions.
Signed-off-by: Michal Terepeta <michal.terepeta@gmail.com>
Test Plan: ./validate
Reviewers: bgamari, simonmar, austin, hvr, goldfire, erikd
Reviewed By: bgamari
Subscribers: maoe, rwbarton, thomie
GHC Trac Issues: #13825
Differential Revision: https://phabricator.haskell.org/D3809
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new primop
compareByteArrays# :: ByteArray# -> Int# {- offset -}
-> ByteArray# -> Int# {- offset -}
-> Int# {- length -}
-> Int#
allows to compare the subrange of the first `ByteArray#` to
the (same-length) subrange of the second `ByteArray#` and returns a
value less than, equal to, or greater than zero if the range is found,
respectively, to be byte-wise lexicographically less than, to match,
or be greater than the second range.
Under the hood, the new primop is implemented in terms of the standard
ISO C `memcmp(3)` function. It is currently an out-of-line primop but
work is underway to optimise this into an inline primop for a future
follow-up Differential (see D4091).
This primop has applications in packages like `text`, `text-short`,
`bytestring`, `text-containers`, `primitive`, etc. which currently
have to incur the overhead of an ordinary FFI call to directly or
indirectly invoke `memcmp(3)` as well has having to deal with some
`unsafePerformIO`-variant.
While at it, this also improves the documentation for the existing
`copyByteArray#` primitive which has a non-trivial type-signature
that significantly benefits from a more explicit description of its
arguments.
Reviewed By: bgamari
Differential Revision: https://phabricator.haskell.org/D4090
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The problem occurred when
* Threads A & B evaluate the same thunk
* Thread A context-switches, so the thunk gets blackholed
* Thread C enters the blackhole, creates a BLOCKING_QUEUE attached to
the blackhole and thread A's `tso->bq` queue
* Thread B updates the blackhole with a value, overwriting the BLOCKING_QUEUE
* We GC, replacing A's update frame with stg_enter_checkbh
* Throw an exception in A, which ignores the stg_enter_checkbh frame
Now we have C blocked on A's tso->bq queue, but we forgot to check the
queue because the stg_enter_checkbh frame has been thrown away by the
exception.
The solution and alternative designs are discussed in Note [upd-black-hole].
This also exposed a bug in the interpreter, whereby we were sometimes
context-switching without calling `threadPaused()`. I've fixed this
and added some Notes.
Test Plan:
* `cd testsuite/tests/concurrent && make slow`
* validate
Reviewers: niteria, bgamari, austin, erikd
Reviewed By: erikd
Subscribers: rwbarton, thomie
GHC Trac Issues: #13751
Differential Revision: https://phabricator.haskell.org/D3630
|
|
|
|
| |
Our new CPP linter enforces this.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The C code in the RTS now gets built with `-Wundef` and the Haskell code
(stages 1 and 2 only) with `-Wcpp-undef`. We now get warnings whereever
`#if` is used on undefined identifiers.
Test Plan: Validate on Linux and Windows
Reviewers: austin, angerman, simonmar, bgamari, Phyx
Reviewed By: bgamari
Subscribers: thomie, snowleopard
Differential Revision: https://phabricator.haskell.org/D3278
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Consider one-line module
module B (v) where v = "hello"
in -fvia-C mode it generates code like
static char gibberish_str[] = "hello";
It resides in data section (precious resource on ia64!).
The patch switches genrator to emit:
static const char gibberish_str[] = "hello";
Other types if symbols that gained 'const' qualifier are:
- info tables (from haskell and CMM)
- static reference tables (from haskell and CMM)
Cleanups along the way:
- fixed info tables defined in .cmm to reside in .rodata
- split out closure declaration into 'IC_' / 'EC_'
- added label declaration (based on label type) right before
each label definition (based on section type) so that C
compiler could check if declaration and definition matches
at definition site.
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Test Plan: ran testsuite on unregisterised x86_64 compiler
Reviewers: simonmar, ezyang, austin, bgamari, erikd
Reviewed By: bgamari, erikd
Subscribers: rwbarton, thomie
GHC Trac Issues: #8996
Differential Revision: https://phabricator.haskell.org/D3481
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This both says what we mean and silences a bunch of spurious CPP linting
warnings. This pragma is supported by all CPP implementations which we
support.
Reviewers: austin, erikd, simonmar, hvr
Reviewed By: simonmar
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3482
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before ghc-7.2 hs_add_root() had to be used to initialize haskell
modules when haskell was called from FFI.
commit a52ff7619e8b7d74a9d933d922eeea49f580bca8
("Change the way module initialisation is done (#3252, #4417)")
removed needs for hs_add_root() and made function a no-op.
For backward compatibility '__stginit_<module>' symbol was
not removed.
This change removes no-op hs_add_root() function and unused
'__stginit_<module>' symbol from each haskell module.
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Test Plan: ./validate
Reviewers: simonmar, austin, bgamari, erikd
Reviewed By: simonmar
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D3460
|
|
|
|
|
|
|
|
| |
This is causing too much platform dependent breakage at the moment. We
will need a more rigorous testing strategy before this can be
merged again.
This reverts commit 7e340c2bbf4a56959bd1e95cdd1cfdb2b7e537c2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The C code in the RTS now gets built with `-Wundef` and the Haskell code
(stages 1 and 2 only) with `-Wcpp-undef`. We now get warnings whereever
`#if` is used on undefined identifiers.
Test Plan: Validate on Linux and Windows
Reviewers: austin, angerman, simonmar, bgamari, Phyx
Reviewed By: bgamari
Subscribers: thomie, snowleopard
Differential Revision: https://phabricator.haskell.org/D3278
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[skip ci]
There ware some old file names (.lhs, ...) at comments.
* includes/rts/Bytecodes.h
- ghc/compiler/ghci/ByteCodeGen.lhs -> ByteCodeAsm.hs
* includes/rts/Constants.h
- libraries/base/GHC/Conc.lhs -> libraries/base/GHC/Conc/Sync.hs
* includes/rts/storage/FunTypes.h
- utils/genapply/GenApply.hs -> utils/genappl/Main.hs
- compiler/codeGen/CgCallConv.lhs -> compiler/codeGen/StgCmmLayout.hs
* includes/stg/MiscClosures.h
- compiler/codeGen/CgStackery.lhs -> compiler/codeGen/StgCmmArgRep.hs
- HeapStackCheck.hc -> HeapStackCheck.cmm
Reviewers: bgamari, austin, simonmar, erikd
Reviewed By: erikd
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D3074
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* In stg_ap_0_fast, if we're evaluating a thunk, the thunk might
evaluate to a function in which case we may have to adjust its CCS.
* The interpreter has its own implementation of stg_ap_0_fast, so we
have to do the same shenanigans with creating empty PAPs and copying
PAPs there.
* GHCi creates Cost Centres as children of CCS_MAIN, which enterFunCCS()
wrongly assumed to imply that they were CAFs. Now we use the is_caf
flag for this, which we have to correctly initialise when we create a
Cost Centre in GHCi.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 394231b301efb6b56654b0a480ab794fe3b7e4db aded
CCS_OVERHEAD annotation to 'rts/Apply.cmm'.
Before the change CCS_OVERHEAD was used only in C code.
The change exports CCS_OVERHEAD to STG.
Fixes UNREG build failure:
rts_dist_HC rts/dist/build/Apply.p_o
/tmp/ghc29563_0/ghc_4.hc: In function 'cm_entry':
/tmp/ghc29563_0/ghc_4.hc:73:13: error:
error: 'CCS_OVERHEAD' undeclared (first use in this function)
*((P_)((W_)&CCS_OVERHEAD+72)) = ...
^~~~~~~~~~~~
Signed-off-by: Sergei Trofimovich <siarheit@google.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This commit makes various improvements and addresses some issues with
Compact Regions (aka Compact Normal Forms).
This was the most important thing I wanted to fix. Compaction
previously prevented GC from running until it was complete, which
would be a problem in a multicore setting. Now, we compact using a
hand-written Cmm routine that can be interrupted at any point. When a
GC is triggered during a sharing-enabled compaction, the GC has to
traverse and update the hash table, so this hash table is now stored
in the StgCompactNFData object.
Previously, compaction consisted of a deepseq using the NFData class,
followed by a traversal in C code to copy the data. This is now done
in a single pass with hand-written Cmm (see rts/Compact.cmm). We no
longer use the NFData instances, instead the Cmm routine evaluates
components directly as it compacts.
The new compaction is about 50% faster than the old one with no
sharing, and a little faster on average with sharing (the cost of the
hash table dominates when we're doing sharing).
Static objects that don't (transitively) refer to any CAFs don't need
to be copied into the compact region. In particular this means we
often avoid copying Char values and small Int values, because these
are static closures in the runtime.
Each Compact# object can support a single compactAdd# operation at any
given time, so the Data.Compact library now enforces mutual exclusion
using an MVar stored in the Compact object.
We now get exceptions rather than killing everything with a barf()
when we encounter an object that cannot be compacted (a function, or a
mutable object). We now also detect pinned objects, which can't be
compacted either.
The Data.Compact API has been refactored and cleaned up. A new
compactSize operation returns the size (in bytes) of the compact
object.
Most of the documentation is in the Haddock docs for the compact
library, which I've expanded and improved here.
Various comments in the code have been improved, especially the main
Note [Compact Normal Forms] in rts/sm/CNF.c.
I've added a few tests, and expanded a few of the tests that were
there. We now also run the tests with GHCi, and in a new test way
that enables sanity checking (+RTS -DS).
There's a benchmark in libraries/compact/tests/compact_bench.hs for
measuring compaction speed and comparing sharing vs. no sharing.
The field totalDataW in StgCompactNFData was unnecessary.
Test Plan:
* new unit tests
* validate
* tested manually that we can compact Data.Aeson data
Reviewers: gcampax, bgamari, ezyang, austin, niteria, hvr, erikd
Subscribers: thomie, simonpj
Differential Revision: https://phabricator.haskell.org/D2751
GHC Trac Issues: #12455
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
We stumbled upon a case where an external library (OpenCL) does not work
if a specific address (0x200000000) is taken.
It so happens that `osReserveHeapMemory` starts trying to mmap at 0x200000000:
```
void *hint = (void*)((W_)8 * (1 << 30) + attempt * BLOCK_SIZE);
at = osTryReserveHeapMemory(*len, hint);
```
This makes it impossible to use Haskell programs compiled with GHC 8
with C functions that use OpenCL.
See this example https://github.com/chpatrick/oclwtf for a repro.
This patch allows the user to work around this kind of behavior outside
our control by letting the user override the starting address through an
RTS command line flag.
Reviewers: bgamari, Phyx, simonmar, erikd, austin
Reviewed By: Phyx, simonmar
Subscribers: rwbarton, thomie
Differential Revision: https://phabricator.haskell.org/D2513
|