| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
Metric Increase:
T11276
|
|
|
|
|
|
|
|
|
| |
This drops allocateExec for darwin, and replaces it with
a alloc, write, mark executable strategy instead. This prevents
us from trying to allocate an executable range and then write to
it, which X^W will prohibit on darwin.
This will *only* work if we can use mmap.
|
|
|
|
|
|
| |
tuples and sums.
fixes #1257
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Related to #19381 #19359 #14702
After a spike in memory usage we have been conservative about returning
allocated blocks to the OS in case we are still allocating a lot and would
end up just reallocating them. The result of this was that up to 4 * live_bytes
of blocks would be retained once they were allocated even if memory usage ended up
a lot lower.
For a heap of size ~1.5G, this would result in OS memory reporting 6G which is
both misleading and worrying for users.
In long-lived server applications this results in consistent high memory
usage when the live data size is much more reasonable (for example ghcide)
Therefore we have a new (2021) strategy which starts by retaining up to 4 * live_bytes
of blocks before gradually returning uneeded memory back to the OS on subsequent
major GCs which are NOT caused by a heap overflow.
Each major GC which is NOT caused by heap overflow increases the consec_idle_gcs
counter and the amount of memory which is retained is inversely proportional to this number.
By default the excess memory retained is
oldGenFactor (controlled by -F) / 2 ^ (consec_idle_gcs * returnDecayFactor)
On a major GC caused by a heap overflow, the `consec_idle_gcs` variable is reset to 0
(as we could continue to allocate more, so retaining all the memory might make sense).
Therefore setting bigger values for `-Fd` makes the rate at which memory is returned slower.
Smaller values make it get returned faster. Setting `-Fd0` disables the
memory return completely, which is the behaviour of older GHC versions.
The default is `-Fd4` which results in the following scaling:
> mapM print [(x, 1/ (2**(x / 4))) | x <- [1 :: Double ..20]]
(1.0,0.8408964152537146)
(2.0,0.7071067811865475)
(3.0,0.5946035575013605)
(4.0,0.5)
(5.0,0.4204482076268573)
(6.0,0.35355339059327373)
(7.0,0.29730177875068026)
(8.0,0.25)
(9.0,0.21022410381342865)
(10.0,0.17677669529663687)
(11.0,0.14865088937534013)
(12.0,0.125)
(13.0,0.10511205190671433)
(14.0,8.838834764831843e-2)
(15.0,7.432544468767006e-2)
(16.0,6.25e-2)
(17.0,5.255602595335716e-2)
(18.0,4.4194173824159216e-2)
(19.0,3.716272234383503e-2)
(20.0,3.125e-2)
So after 13 consecutive GCs only 0.1 of the maximum memory used will be retained.
Further to this decay factor, the amount of memory we attempt to retain is
also influenced by the GC strategy for the oldest generation. If we are using
a copying strategy then we will need at least 2 * live_bytes for copying to take
place, so we always keep that much. If using compacting or nonmoving then we need a lower number,
so we just retain at least `1.2 * live_bytes` for some protection.
In future we might want to make this behaviour more aggressive, some
relevant literature is
> Ulan Degenbaev, Jochen Eisinger, Manfred Ernst, Ross McIlroy, and Hannes Payer. 2016. Idle time garbage collection scheduling. SIGPLAN Not. 51, 6 (June 2016), 570–583. DOI:https://doi.org/10.1145/2980983.2908106
which describes the "memory reducer" in the V8 javascript engine which
on an idle collection immediately returns as much memory as possible.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The BLOCKS_SIZE event reports the size of the currently allocated blocks
in bytes.
It is like the HEAP_SIZE event, but reports about the blocks rather than
megablocks.
You can work out the current heap fragmentation by looking at the
difference between HEAP_SIZE and BLOCKS_SIZE.
Fixes #19357
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
See #19357
The event reports the
* Current number of megablocks allocated
* The number that the RTS thinks it needs
* The number is managed to return to the OS
When current > need then the difference is returned to the OS, the
successful number of returned mblocks is reported by 'returned'.
In a fragmented heap current > need but returned < current - need.
|
|
|
|
| |
This enables a registerised build for the riscv64 architecture.
|
|
|
|
|
|
|
|
|
|
| |
The `whereFrom` function provides a Haskell interface for using the
information created by `-finfo-table-map`. Given a Haskell value, the
info table address will be passed to the `lookupIPE` function in order
to attempt to find the source location information for that particular closure.
At the moment it's not possible to distinguish the absense of the map
and a failed lookup.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This new flag embeds a lookup table from the address of an info table
to information about that info table.
The main interface for consulting the map is the `lookupIPE` C function
> InfoProvEnt * lookupIPE(StgInfoTable *info)
The `InfoProvEnt` has the following structure:
> typedef struct InfoProv_{
> char * table_name;
> char * closure_desc;
> char * ty_desc;
> char * label;
> char * module;
> char * srcloc;
> } InfoProv;
>
> typedef struct InfoProvEnt_ {
> StgInfoTable * info;
> InfoProv prov;
> struct InfoProvEnt_ *link;
> } InfoProvEnt;
The source positions are approximated in a similar way to the source
positions for DWARF debugging information. They are only approximate but
in our experience provide a good enough hint about where the problem
might be. It is therefore recommended to use this flag in conjunction
with `-g<n>` for more accurate locations.
The lookup table is also emitted into the eventlog when it is available
as it is intended to be used with the `-hi` profiling mode.
Using this flag will significantly increase the size of the resulting
object file but only by a factor of 2-3x in our experience.
|
|
|
|
|
|
|
|
| |
This profiling mode creates bands by the address of the info table for
each closure. This provides a much more fine-grained profiling output
than any of the other profiling modes.
The `-hi` profiling mode does not require a profiling build.
|
|
|
|
|
|
|
|
|
|
| |
This patch exposes three new functions in `GHC.Profiling` which allow
heap profiling to be enabled and disabled dynamically.
1. startHeapProfTimer - Starts heap profiling with the given RTS options
2. stopHeapProfTimer - Stops heap profiling
3. requestHeapCensus - Perform a heap census on the next context
switch, regardless of whether the timer is enabled or not.
|
|
|
|
| |
Fixes #17953
|
| |
|
|
|
|
|
|
|
| |
It should be left to tooling to perform the filtering to remove these
specific closure types from the profile if desired.
Fixes #16795
|
|
|
|
|
|
|
| |
This introduces a flag, --eventlog-flush-interval, which can be used to
set an upper bound on the amount of time for which an eventlog event
will remain enqueued. This can be useful in real-time monitoring
settings.
|
|
|
|
|
|
|
|
|
|
|
|
| |
When using -fdicts-strict we generate references to absentError while
compiling ghc-prim. However we always load ghc-prim before base so this
caused linker errors.
We simply solve this by moving absentError into ghc-prim. This does mean
it's now a panic instead of an exception which can no longer be caught.
But given that it should only be thrown if there is a compiler error
that seems acceptable, and in fact we already do this for
absentSumFieldError which has similar constraints.
|
|
|
|
|
|
|
|
|
| |
This function is exposed in the RtsAPI.h so that external users have a
blessed way to traverse all the different `bdescr`s which are known by
the RTS.
The main motivation is to use this function in ghc-debug but avoid
having to expose the internal structure of a Capability in the API.
|
|
|
|
|
| |
Having a union in the closure profiling header really just complicates
things so get back to basics, we just have a single StgWord there for now.
|
| |
|
|
|
|
|
|
|
|
| |
Move them from the external IOInterface.h to the internal IOManager.h.
The functions are all in fact internal. They are not used from the base
library at all.
Remove ioManagerWakeup as an exported symbol. It is not used elsewhere.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Naming is hard. Where we want to get to is to have a clear internal and
external API for the IO manager within the RTS. What we have right now
is just the external API (used in base for the Haskell side of the
threaded IO manager impls) living in includes/rts/IOManager.h.
We want to add a clear RTS internal API, which really ought to live in
rts/IOManager.h. Several people think it's too confusing to have both:
* includes/rts/IOManager.h for the external API
* rts/IOManager.h for the internal API
So the plan is to add rts/IOManager.{h,c} as the internal parts, and
rename the external part to be includes/rts/IOInterface.h.
It is admittidly not great to have .h files in includes/rts/ called
"interface" since by definition, every .h fle under includes/ is an
interface!
Alternative naming scheme suggestions welcome!
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Previously we would leave the card table of new arrays uninitialized.
This wasn't a soundness issue: at worst we would end up doing
unnecessary scavenging during GC, after which the card table would be
reset. That being said, it seems worth initializing this properly to
avoid both unnecessary work and non-determinism.
Fixes #19143.
|
|
|
|
|
|
| |
used timed wait on condition variable in waitForGcThreads
fix dodgy timespec calculation
|
| |
|
|
|
|
|
|
|
|
| |
I've never observed this counter taking a non-zero value, however I do
think it's existence is justified by the comment in grab_local_todo_block.
I've not added it to RTSStats in GHC.Stats, as it doesn't seem worth the
api churn.
|
|
|
|
| |
We are no longer busyish waiting, so this is no longer meaningful
|
| |
|
|
|
|
|
|
| |
But only when profiling or DEBUG are enabled.
Fixes #17572.
|
|
|
|
|
|
|
|
| |
The algorithm described in the referenced paper uses this slightly
weaker atomic op.
This is the first "exotic" cas we're using. I've added a macro in the
<ORDERING>_OP style to match existing ones.
|
|
|
|
|
|
|
|
| |
When threadPaused blackholes a thunk it calls `OVERWRITING_CLOSURE` to
zero the slop for the benefit of the sanity checker. Previously this was
done *before* pushing the thunk's free variables to the update
remembered set. Consequently we would pull zero'd pointers to the update
remembered set.
|
|
|
|
|
| |
Most compilers probably already infer that
`barf` diverges but it nevertheless doesn't
hurt to be explicit.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
On windows using gcc-10 gcc failed to inline copy_tag into evacuate.
To fix this we now set the always_inline attribute for the various
copy* functions in Evac.c. The main motivation here is not the
overhead of the function call, but rather that this allows the code
to "specialize" for the size of the closure we copy which is often
known at compile time.
An earlier commit also tried to avoid evacuate_large inlining. But
didn't quite succeed. So I also marked evacuate_large as noinline.
Fixes #12416
|
|
|
|
|
|
|
|
|
|
|
|
| |
As noted in #18043, flushTrace failed flush anything beyond the writer.
This means that a significant amount of data sitting in capability-local
event buffers may never get flushed, despite the users' pleads for us to
flush.
Fix this by making flushEventLog flush all of the event buffers before
flushing the writer.
Fixes #18043.
|
|
|
|
|
|
|
|
| |
We currently only post the entry counters, not the other global
counters as in my experience the former are more useful. We use the heap
profiler's census period to decide when to dump.
Also spruces up the documentation surrounding ticky-ticky a bit.
|
|
|
|
|
|
|
|
| |
This addes the necessary logic to support aarch64 on elf, as well
as aarch64 on mach-o, which Apple calls arm64.
We change architecture name to AArch64, which is the official arm
naming scheme.
|
|
|
|
|
|
|
|
| |
These are used to find the current roots of the garbage collector.
Co-authored-by: Sven Tennie's avatarSven Tennie <sven.tennie@gmail.com>
Co-authored-by: Matthew Pickering's avatarMatthew Pickering <matthewtpickering@gmail.com>
Co-authored-by: default avatarBen Gamari <bgamari.foss@gmail.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(This change is originally written by niteria)
This adds two functions:
* `loadNativeObj`
* `unloadNativeObj`
and implements them for Linux.
They are useful if you want to load a shared object with Haskell code
using the system linker and have GHC call dlclose() after the
code is no longer referenced from the heap.
Using the system linker allows you to load the shared object
above outside the low-mem region. It also loads the DWARF sections
in a way that `perf` understands.
`dl_iterate_phdr` is what makes this implementation Linux specific.
|
| |
|
|
|
|
|
|
| |
Co-authored-by: Sven Tennie <sven.tennie@gmail.com>
Co-authored-by: Matthew Pickering <matthewtpickering@gmail.com>
Co-authored-by: Ben Gamari <bgamari.foss@gmail.com>
|
|\ |
|
| |\ |
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Previously the `current_value`, `first_watch_queue_entry`, and
`num_updates` fields of `StgTVar` were marked as `volatile` in an
attempt to provide strong ordering. Of course, this isn't sufficient.
We now use proper atomic operations. In most of these cases I strengthen
the ordering all the way to SEQ_CST although it's possible that some
could be weakened with some thought.
|
| |\ \ |
|
| | |/
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
After a few attempts at shoring up the previous implementation, I ended
up turning to the literature and now use the proven implementation,
> N.M. Lê, A. Pop, A.Cohen, and F.Z. Nardelli. "Correct and Efficient
> Work-Stealing for Weak Memory Models". PPoPP'13, February 2013,
> ACM 978-1-4503-1922/13/02.
Note only is this approach formally proven correct under C11 semantics
but it is also proved to be a bit faster in practice.
|
| |\ \ |
|
| | | | |
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Not only is this in general a good idea, but it turns out that GCC
unrolls the retry loop, resulting is massive code bloat in critical
parts of the RTS (e.g. `evacuate`).
|
| | | |
| | | |
| | | |
| | | |
| | | | |
Previously we would take all capabilities but fail to join on the thread
itself, potentially resulting in a leaked thread.
|