| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
|
|
|
|
|
|
|
|
|
|
| |
When Ryan merged in the atomics branch, he made atomic_inc and
atomic_dec EXTERN_INLINE functions, meaning their definitions
became part of object files in the non-threaded build, instead of being
inlined. As a result, this broke the linker for static GHCi, since it
couldn't properly resolve the now-externally defined functions.
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
| |
And remove some trailing whitespaces from that file.
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
| |
|
|\ |
|
| |
| |
| |
| | |
Signed-off-by: Austin Seipp <aseipp@pobox.com>
|
| |
| |
| |
| |
| |
| | |
symbol_extras is only part of ObjectCode on certain platforms.
Signed-off-by: Austin Seipp <aseipp@pobox.com>
|
| |
| |
| |
| | |
I'd still prefer if a native english speaker would check them.
|
| |
| |
| |
| |
| | |
The linker is usable even when GHCi is dynamically linked. These
tests make the linker_unload test fail.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The next major GC after an unloadObj() will do a traversal of the heap
to determine whether the object code can be removed from memory or
not. We'll keep doing these until it is safe to remove the object
code.
In my experiments with GHCi, the objects get unloaded immediately,
which is a good sign: we're not accidentally holding on to any
references anywhere in the GHC data structures.
Changes relative to the patch earlier posted on the ticket:
- fix two memory leaks discovered with Valgrind, after
testing with tests/rts/linker_unload.c
|
| | |
|
| | |
|
|/ |
|
| |
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
|
|
|
|
|
|
| |
We add the invariant to the MVar blocked threads queue that
threads blocked on an atomic read are always at the front of
the queue. This invariant is easy to maintain, since takers
are only ever added to the end of the queue.
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The commit replaces mkWeakForeignEnv# with addCFinalizerToWeak#.
This new primop mutates an existing Weak# object and adds a new
C finalizer to it.
This change removes an invariant in MarkWeak.c, namely that the relative
order of Weak# objects in the list needs to be preserved across GC. This
makes it easier to split the list into per-generation structures.
The patch also removes a race condition between two threads calling
finalizeWeak# on the same WEAK object at that same time.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This major patch implements the cardinality analysis described
in our paper "Higher order cardinality analysis". It is joint
work with Ilya Sergey and Dimitrios Vytiniotis.
The basic is augment the absence-analysis part of the demand
analyser so that it can tell when something is used
never
at most once
some other way
The "at most once" information is used
a) to enable transformations, and
in particular to identify one-shot lambdas
b) to allow updates on thunks to be omitted.
There are two new flags, mainly there so you can do performance
comparisons:
-fkill-absence stops GHC doing absence analysis at all
-fkill-one-shot stops GHC spotting one-shot lambdas
and single-entry thunks
The big changes are:
* The Demand type is substantially refactored. In particular
the UseDmd is factored as follows
data UseDmd
= UCall Count UseDmd
| UProd [MaybeUsed]
| UHead
| Used
data MaybeUsed = Abs | Use Count UseDmd
data Count = One | Many
Notice that UCall recurses straight to UseDmd, whereas
UProd goes via MaybeUsed.
The "Count" embodies the "at most once" or "many" idea.
* The demand analyser itself was refactored a lot
* The previously ad-hoc stuff in the occurrence analyser for foldr and
build goes away entirely. Before if we had build (\cn -> ...x... )
then the "\cn" was hackily made one-shot (by spotting 'build' as
special. That's essential to allow x to be inlined. Now the
occurrence analyser propagates info gotten from 'build's stricness
signature (so build isn't special); and that strictness sig is
in turn derived entirely automatically. Much nicer!
* The ticky stuff is improved to count single-entry thunks separately.
One shortcoming is that there is no DEBUG way to spot if an
allegedly-single-entry thunk is acually entered more than once. It
would not be hard to generate a bit of code to check for this, and it
would be reassuring. But it's fiddly and I have not done it.
Despite all this fuss, the performance numbers are rather under-whelming.
See the paper for more discussion.
nucleic2 -0.8% -10.9% 0.10 0.10 +0.0%
sphere -0.7% -1.5% 0.08 0.08 +0.0%
--------------------------------------------------------------------------------
Min -4.7% -10.9% -9.3% -9.3% -50.0%
Max -0.4% +0.5% +2.2% +2.3% +7.4%
Geometric Mean -0.8% -0.2% -1.3% -1.3% -1.8%
I don't quite know how much credence to place in the runtime changes,
but movement seems generally in the right direction.
|
| |
|
|
|
|
|
| |
It's no longer used by Data.Unique, so there's no need to have it
in rts any more.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* the new StgCmmArgRep module breaks a dependency cycle; I also
untabified it, but made no real changes
* updated the documentation in the wiki and change the user guide to
point there
* moved the allocation enters for ticky and CCS to after the heap check
* I left LDV where it was, which was before the heap check at least
once, since I have no idea what it is
* standardized all (active?) ticky alloc totals to bytes
* in order to avoid double counting StgCmmLayout.adjustHpBackwards
no longer bumps ALLOC_HEAP_ctr
* I resurrected the SLOW_CALL counters
* the new module StgCmmArgRep breaks cyclic dependency between
Layout and Ticky (which the SLOW_CALL counters cause)
* renamed them SLOW_CALL_fast_<pattern> and VERY_SLOW_CALL
* added ALLOC_RTS_ctr and _tot ticky counters
* eg allocation by Storage.c:allocate or a BUILD_PAP in stg_ap_*_info
* resurrected ticky counters for ALLOC_THK, ALLOC_PAP, and
ALLOC_PRIM
* added -ticky and -DTICKY_TICKY in ways.mk for debug ways
* added a ticky counter for total LNE entries
* new flags for ticky: -ticky-allocd -ticky-dyn-thunk -ticky-LNE
* all off by default
* -ticky-allocd: tracks allocation *of* closure in addition to
allocation *by* that closure
* -ticky-dyn-thunk tracks dynamic thunks as if they were functions
* -ticky-LNE tracks LNEs as if they were functions
* updated the ticky report format, including making the argument
categories (more?) accurate again
* the printed name for things in the report include the unique of
their ticky parent as well as if they are not top-level
|
|
|
|
|
| |
In particular, this means that GHCi will use DLLs, rather than loading
object files itself.
|
|
|
|
| |
To improve performance of StablePtr.
|
| |
|
|
|
|
|
| |
Vector values are now always passed on the stack. This isn't particularly
efficient, but it will have to do for now.
|
|
|
|
| |
Mac OS X)
|
|
|
|
| |
Submitted by: Karel Gardas <karel.gardas@centrum.cz>
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
This improves GC performance when there are a lot of TVars in the
heap. For instance, a TChan with a lot of elements causes a massive
GC drag without this patch.
There's more to do - several other STM closure types don't have write
barriers, so GC performance when there are a lot of threads blocked on
STM isn't great. But fixing the problem for TVar is a good start.
|
| |
|
|
|
|
|
|
|
|
|
| |
In time-based profiling visualisations (e.g. heap profiles and ThreadScope)
it would be useful to be able to mark particular points in the execution and
have those points in time marked in the visualisation.
The traceMarker# primop currently emits an event into the eventlog. In
principle it could be extended to do something in the heap profiling too.
|
|
|
|
|
|
|
| |
Unfortunately, dlsym finds the first symbol loaded, while when we reload
a compiled module in GHCi it's the last symbol that we want. Therefore
we remember the list of loaded DLLs ourselves and go through them in
order.
|
|
|
|
| |
We instead link objects into a temporary DLL and dlopen that
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The main change here is that the Cmm parser now allows high-level cmm
code with argument-passing and function calls. For example:
foo ( gcptr a, bits32 b )
{
if (b > 0) {
// we can make tail calls passing arguments:
jump stg_ap_0_fast(a);
}
return (x,y);
}
More details on the new cmm syntax are in Note [Syntax of .cmm files]
in CmmParse.y.
The old syntax is still more-or-less supported for those occasional
code fragments that really need to explicitly manipulate the stack.
However there are a couple of differences: it is now obligatory to
give a list of live GlobalRegs on every jump, e.g.
jump %ENTRY_CODE(Sp(0)) [R1];
Again, more details in Note [Syntax of .cmm files].
I have rewritten most of the .cmm files in the RTS into the new
syntax, except for AutoApply.cmm which is generated by the genapply
program: this file could be generated in the new syntax instead and
would probably be better off for it, but I ran out of enthusiasm.
Some other changes in this batch:
- The PrimOp calling convention is gone, primops now use the ordinary
NativeNodeCall convention. This means that primops and "foreign
import prim" code must be written in high-level cmm, but they can
now take more than 10 arguments.
- CmmSink now does constant-folding (should fix #7219)
- .cmm files now go through the cmmPipeline, and as a result we
generate better code in many cases. All the object files generated
for the RTS .cmm files are now smaller. Performance should be
better too, but I haven't measured it yet.
- RET_DYN frames are removed from the RTS, lots of code goes away
- we now have some more canned GC points to cover unboxed-tuples with
2-4 pointers, which will reduce code size a little.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
lnat was originally "long unsigned int" but we were using it when we
wanted a 64-bit type on a 64-bit machine. This broke on Windows x64,
where long == int == 32 bits. Using types of unspecified size is bad,
but what we really wanted was a type with N bits on an N-bit machine.
StgWord is exactly that.
lnat was mentioned in some APIs that clients might be using
(e.g. StackOverflowHook()), so we leave it defined but with a comment
to say that it's deprecated.
|
| |
|
|
|
|
| |
Submitted by: Markus Pfeiffer <markus.pfeiffer@morphism.de> on cvs-ghc
|
|
|
|
| |
This fixes unresolved symbols error when dynamically linking base.
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Slightly modified version of a patch from Ben Collins <bcollins@ubuntu.com>
who did the final debugging that showed the segfault was being caused the
memory protection mechanism.
Due to the requirement of "jump islands" to handle 24 bit relative jump
offsets, GHCi on PowerPC did not use mmap to load object files like the
other architectures. Instead, it allocated memory using malloc and fread
to load the object code. However there is a quirk in the GNU libc malloc
implementation. For memory regions over certain size (dynamic and
configurable), malloc will use mmap to obtain the required memory instead
of sbrk and malloc's call to mmap sets the memory readable and writable,
but not executable. That means when GHCi loads code into a memory region
that was mmapped instead of malloc-ed and tries to execute it we get a
segfault.
This solution drops the malloc/fread object loading in favour of using
mmap and then puts the jump island for each object code module at the
end of the mmaped region for that object.
This patch may also be a solution on other ELF based powerpc systems
but does not work on darwin-powerpc.
|
|/ |
|
| |
|