summaryrefslogtreecommitdiff
path: root/rts/Messages.c
Commit message (Collapse)AuthorAgeFilesLines
* Revert "rts: add Emacs 'Local Variables' to every .c file"Simon Marlow2014-09-291-8/+0
| | | | This reverts commit 39b5c1cbd8950755de400933cecca7b8deb4ffcd.
* rts: add Emacs 'Local Variables' to every .c fileAustin Seipp2014-07-281-0/+8
| | | | | | | | This will hopefully help ensure some basic consistency in the forward by overriding buffer variables. In particular, it sets the wrap length, the offset to 4, and turns off tabs. Signed-off-by: Austin Seipp <austin@well-typed.com>
* rts: delint Messages.cAustin Seipp2014-07-281-4/+6
| | | | Signed-off-by: Austin Seipp <austin@well-typed.com>
* rts: detab/dewhitespace Messages.cAustin Seipp2014-07-281-21/+19
| | | | Signed-off-by: Austin Seipp <austin@well-typed.com>
* Better abstraction over run queues.Edward Z. Yang2013-01-161-4/+2
| | | | | | | | | This adds some new functions: peekRunQueue, promoteInRunQueue, singletonRunQueue and truncateRunQueue which help abstract away manual linked list manipulation, making it easier to swap in a new queue implementation. Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
* Deprecate lnat, and use StgWord insteadSimon Marlow2012-09-071-5/+5
| | | | | | | | | | | | lnat was originally "long unsigned int" but we were using it when we wanted a 64-bit type on a 64-bit machine. This broke on Windows x64, where long == int == 32 bits. Using types of unspecified size is bad, but what we really wanted was a type with N bits on an N-bit machine. StgWord is exactly that. lnat was mentioned in some APIs that clients might be using (e.g. StackOverflowHook()), so we leave it defined but with a comment to say that it's deprecated.
* Fix a scheduling bug in the threaded RTSSimon Marlow2011-12-011-2/+2
| | | | | | | | | | | | | | | The parallel GC was using setContextSwitches() to stop all the other threads, which sets the context_switch flag on every Capability. That had the side effect of causing every Capability to also switch threads, and since GCs can be much more frequent than context switches, this increased the context switch frequency. When context switches are expensive (because the switch is between two bound threads or a bound and unbound thread), the difference is quite noticeable. The fix is to have a separate flag to indicate that a Capability should stop and return to the scheduler, but not switch threads. I've called this the "interrupt" flag.
* Annotate thread stop events with the owner of the black holeSimon Marlow2011-01-271-0/+43
| | | | | | | | | So we can now get these in ThreadScope: 19487000: cap 1: stopping thread 6 (blocked on black hole owned by thread 4) Note: needs an update to ghc-events. Older ThreadScopes will just ignore the new information.
* Implement stack chunks and separate TSO/STACK objectsSimon Marlow2010-12-151-5/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch makes two changes to the way stacks are managed: 1. The stack is now stored in a separate object from the TSO. This means that it is easier to replace the stack object for a thread when the stack overflows or underflows; we don't have to leave behind the old TSO as an indirection any more. Consequently, we can remove ThreadRelocated and deRefTSO(), which were a pain. This is obviously the right thing, but the last time I tried to do it it made performance worse. This time I seem to have cracked it. 2. Stacks are now represented as a chain of chunks, rather than a single monolithic object. The big advantage here is that individual chunks are marked clean or dirty according to whether they contain pointers to the young generation, and the GC can avoid traversing clean stack chunks during a young-generation collection. This means that programs with deep stacks will see a big saving in GC overhead when using the default GC settings. A secondary advantage is that there is much less copying involved as the stack grows. Programs that quickly grow a deep stack will see big improvements. In some ways the implementation is simpler, as nothing special needs to be done to reclaim stack as the stack shrinks (the GC just recovers the dead stack chunks). On the other hand, we have to manage stack underflow between chunks, so there's a new stack frame (UNDERFLOW_FRAME), and we now have separate TSO and STACK objects. The total amount of code is probably about the same as before. There are new RTS flags: -ki<size> Sets the initial thread stack size (default 1k) Egs: -ki4k -ki2m -kc<size> Sets the stack chunk size (default 32k) -kb<size> Sets the stack chunk buffer size (default 1k) -ki was previously called just -k, and the old name is still accepted for backwards compatibility. These new options are documented.
* Add a couple of missing tests for EAGER_BLACKHOLESimon Marlow2010-08-231-0/+1
| | | | | | | | This was leading to looping and excessive allocation, when the computation should have just blocked on the black hole. Reported by Christian Höner zu Siederdissen <choener@tbi.univie.ac.at> on glasgow-haskell-users.
* Fix #4131 missing UNTAG_CLOSURE in messageBlackHole()benl@ouroborus.net2010-06-111-1/+1
|
* messageBlackHole: fix deadlock bug caused by a missing 'volatile'Simon Marlow2010-06-101-1/+3
|
* Add a missing UNTAG_CLOSURE, causing bus errors on SparcSimon Marlow2010-05-241-2/+3
| | | | | | | | We just about got away with this on x86 which isn't alignment-sensitive. The result of the memory load is compared against a few different values, but there is a fallback case that happened to be the right thing when the pointer was tagged. A good bug to find, nonetheless.
* Change the representation of the MVar blocked queueSimon Marlow2010-04-011-17/+2
| | | | | | | | | | | | | | | | | | | | | The list of threads blocked on an MVar is now represented as a list of separately allocated objects rather than being linked through the TSOs themselves. This lets us remove a TSO from the list in O(1) time rather than O(n) time, by marking the list object. Removing this linear component fixes some pathalogical performance cases where many threads were blocked on an MVar and became unreachable simultaneously (nofib/smp/threads007), or when sending an asynchronous exception to a TSO in a long list of thread blocked on an MVar. MVar performance has actually improved by a few percent as a result of this change, slightly to my surprise. This is the final cleanup in the sequence, which let me remove the old way of waking up threads (unblockOne(), MSG_WAKEUP) in favour of the new way (tryWakeupThread and MSG_TRY_WAKEUP, which is idempotent). It is now the case that only the Capability that owns a TSO may modify its state (well, almost), and this simplifies various things. More of the RTS is based on message-passing between Capabilities now.
* Move a thread to the front of the run queue when another thread blocks on itSimon Marlow2010-03-291-2/+22
| | | | | | | This fixes #3838, and was made possible by the new BLACKHOLE infrastructure. To allow reording of the run queue I had to make it doubly-linked, which entails some extra trickiness with regard to GC write barriers and suchlike.
* change throwTo to use tryWakeupThread rather than unblockOneSimon Marlow2010-03-291-5/+3
|
* New implementation of BLACKHOLEsSimon Marlow2010-03-291-0/+296
This replaces the global blackhole_queue with a clever scheme that enables us to queue up blocked threads on the closure that they are blocked on, while still avoiding atomic instructions in the common case. Advantages: - gets rid of a locked global data structure and some tricky GC code (replacing it with some per-thread data structures and different tricky GC code :) - wakeups are more prompt: parallel/concurrent performance should benefit. I haven't seen anything dramatic in the parallel benchmarks so far, but a couple of threading benchmarks do improve a bit. - waking up a thread blocked on a blackhole is now O(1) (e.g. if it is the target of throwTo). - less sharing and better separation of Capabilities: communication is done with messages, the data structures are strictly owned by a Capability and cannot be modified except by sending messages. - this change will utlimately enable us to do more intelligent scheduling when threads block on each other. This is what started off the whole thing, but it isn't done yet (#3838). I'll be documenting all this on the wiki in due course.