| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
- GCAux.c contains code not compiled with the gct register enabled,
it is callable from outside the GC
- marking functions are moved to their relevant subsystems, outside
the GC
- mark_root needs to save the gct register, as it is called from
outside the GC
|
| |
|
|
|
|
|
|
|
|
| |
Now allocate() is a synonym for allocateInGen().
I also made various cleanups: there is now less special-case code for
supporting -G1 (two-space collection), and -G1 now works with
-threaded.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously MVars were always on the mutable list of the old
generation, which meant every MVar was visited during every minor GC.
With lots of MVars hanging around, this gets expensive. We addressed
this problem for MUT_VARs (aka IORefs) a while ago, the solution is to
use a traditional GC write-barrier when the object is modified. This
patch does the same thing for MVars.
TVars are still done the old way, they could probably benefit from the
same treatment too.
|
|
|
|
| |
Patch from Audrey Tang.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements pointer tagging as per our ICFP'07 paper "Faster
laziness using dynamic pointer tagging". It improves performance by
10-15% for most workloads, including GHC itself.
The original patches were by Alexey Rodriguez Yakushev
<mrchebas@gmail.com>, with additions and improvements by me. I've
re-recorded the development as a single patch.
The basic idea is this: we use the low 2 bits of a pointer to a heap
object (3 bits on a 64-bit architecture) to encode some information
about the object pointed to. For a constructor, we encode the "tag"
of the constructor (e.g. True vs. False), for a function closure its
arity. This enables some decisions to be made without dereferencing
the pointer, which speeds up some common operations. In particular it
enables us to avoid costly indirect jumps in many cases.
More information in the commentary:
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/PointerTagging
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When the con_desc field of an info table was made into a relative
reference, this had the side effect of making the profiling fields
(closure_desc and closure_type) also relative, but only when compiling
via C, and the heap profiler was still treating them as absolute,
leading to crashes when profiling with -hd or -hy.
This patch fixes up the story to be consistent: these fields really
should be relative (otherwise we couldn't make shared versions of the
profiling libraries), so I've made them relative and fixed up the RTS
to know about this.
|
|
|
|
|
| |
We recently discovered that they aren't a win any more, and just cost
code size.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for parallel GC, split up the monolithic GC.c file into
smaller parts. Also in this patch (and difficult to separate,
unfortunatley):
- Don't include Stable.h in Rts.h, instead just include it where
necessary.
- consistently use STATIC_INLINE in source files, and INLINE_HEADER
in header files. STATIC_INLINE is now turned off when DEBUG is on,
to make debugging easier.
- The GC no longer takes the get_roots function as an argument.
We weren't making use of this generalisation.
|
| |
|
|
|
|
|
|
|
|
| |
These closure types aren't used/needed, as far as I can tell. The
commoning up of Chars/Ints happens by comparing info pointers, and
the info table for a dynamic C#/I# is CONSTR_0_1. The RTS seemed
a little confused about whether CONSTR_CHARLIKE/CONSTR_INTLIKE were
supposed to be static or dynamic closures, too.
|
|
Most of the other users of the fptools build system have migrated to
Cabal, and with the move to darcs we can now flatten the source tree
without losing history, so here goes.
The main change is that the ghc/ subdir is gone, and most of what it
contained is now at the top level. The build system now makes no
pretense at being multi-project, it is just the GHC build system.
No doubt this will break many things, and there will be a period of
instability while we fix the dependencies. A straightforward build
should work, but I haven't yet fixed binary/source distributions.
Changes to the Building Guide will follow, too.
|