| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
is used outside of the rts so we do this rather than just fish it out of
the repo in ad-hoc way, in order to make packages in this repo more
self-contained.
|
|
|
|
|
|
|
|
|
|
| |
Previously the `current_value`, `first_watch_queue_entry`, and
`num_updates` fields of `StgTVar` were marked as `volatile` in an
attempt to provide strong ordering. Of course, this isn't sufficient.
We now use proper atomic operations. In most of these cases I strengthen
the ordering all the way to SEQ_CST although it's possible that some
could be weakened with some thought.
|
|
|
|
|
|
|
|
| |
This fixes a potentially harmful race where we failed to synchronize
before looking at a TVar's current_value.
Also did a bit of refactoring to avoid abstract over management of
max_commits.
|
|
|
|
|
|
| |
When updating a TRec for a TVar already part of a transaction we
previously neglected to add the old value to the update remembered set.
I suspect this was the cause of #18587.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This extends the non-moving collector to allow concurrent collection.
The full design of the collector implemented here is described in detail
in a technical note
B. Gamari. "A Concurrent Garbage Collector For the Glasgow Haskell
Compiler" (2018)
This extension involves the introduction of a capability-local
remembered set, known as the /update remembered set/, which tracks
objects which may no longer be visible to the collector due to mutation.
To maintain this remembered set we introduce a write barrier on
mutations which is enabled while a concurrent mark is underway.
The update remembered set representation is similar to that of the
nonmoving mark queue, being a chunked array of `MarkEntry`s. Each
`Capability` maintains a single accumulator chunk, which it flushed
when it (a) is filled, or (b) when the nonmoving collector enters its
post-mark synchronization phase.
While the write barrier touches a significant amount of code it is
conceptually straightforward: the mutator must ensure that the referee
of any pointer it overwrites is added to the update remembered set.
However, there are a few details:
* In the case of objects with a dirty flag (e.g. `MVar`s) we can
exploit the fact that only the *first* mutation requires a write
barrier.
* Weak references, as usual, complicate things. In particular, we must
ensure that the referee of a weak object is marked if dereferenced by
the mutator. For this we (unfortunately) must introduce a read
barrier, as described in Note [Concurrent read barrier on deRefWeak#]
(in `NonMovingMark.c`).
* Stable names are also a bit tricky as described in Note [Sweeping
stable names in the concurrent collector] (`NonMovingSweep.c`).
We take quite some pains to ensure that the high thread count often seen
in parallel Haskell applications doesn't affect pause times. To this end
we allow thread stacks to be marked either by the thread itself (when it
is executed or stack-underflows) or the concurrent mark thread (if the
thread owning the stack is never scheduled). There is a non-trivial
handshake to ensure that this happens without racing which is described
in Note [StgStack dirtiness flags and concurrent marking].
Co-Authored-by: Ömer Sinan Ağacan <omer@well-typed.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: (see the comments)
Reviewers: simonmar, bgamari, erikd
Reviewed By: simonmar
Subscribers: rwbarton, carter
Differential Revision: https://phabricator.haskell.org/D5144
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Avoids repeated wakeup messages being sent when a TVar is written to
multiple times. See comments for details.
Test Plan:
* Test from #15136 (will be added to stm shortly)
* existing stm tests
Reviewers: bgamari, osa1, erikd
Reviewed By: bgamari
Subscribers: rwbarton, thomie, carter
GHC Trac Issues: #15136
Differential Revision: https://phabricator.haskell.org/D4961
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There was a lock-order reversal between lockTSO() and the TVar lock,
see #15136 for the details.
It turns out we can fix this pretty easily by just deleting all the
locking code(!). The principle for unblocking a `BlockedOnSTM` thread
then becomes the same as for other kinds of blocking: if the TSO
belongs to this capability then we do it directly, otherwise we send a
message to the capability that owns the TSO. That is, a thread blocked
on STM is owned by its capability, as it should be.
The possible downside of this is that we might send multiple messages
to wake up a thread when the thread is on another capability. This is
safe, it's just not very efficient. I'll try to do some experiments
to see if this is a problem.
Test Plan: Test case from #15136 doesn't deadlock any more.
Reviewers: bgamari, osa1, erikd
Reviewed By: osa1
Subscribers: rwbarton, thomie, carter
GHC Trac Issues: #15136
Differential Revision: https://phabricator.haskell.org/D4956
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This feature has some very serious correctness issues (#14310),
introduces a great deal of complexity, and hasn't seen wide usage.
Consequently we are removing it, as proposed in Proposal #77 [1]. This
is heavily based on a patch from fryguybob.
Updates stm submodule.
[1] https://github.com/ghc-proposals/ghc-proposals/pull/77
Test Plan: Validate
Reviewers: erikd, simonmar, hvr
Reviewed By: simonmar
Subscribers: rwbarton, thomie, carter
GHC Trac Issues: #14310
Differential Revision: https://phabricator.haskell.org/D4760
|
|
|
|
| |
Our new CPP linter enforces this.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: Validate on lots of platforms
Reviewers: erikd, simonmar, austin
Reviewed By: erikd, simonmar
Subscribers: michalt, thomie
Differential Revision: https://phabricator.haskell.org/D2699
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
The aim here is to reduce the number of remote memory accesses on
systems with a NUMA memory architecture, typically multi-socket servers.
Linux provides a NUMA API for doing two things:
* Allocating memory local to a particular node
* Binding a thread to a particular node
When given the +RTS --numa flag, the runtime will
* Determine the number of NUMA nodes (N) by querying the OS
* Assign capabilities to nodes, so cap C is on node C%N
* Bind worker threads on a capability to the correct node
* Keep a separate free lists in the block layer for each node
* Allocate the nursery for a capability from node-local memory
* Allocate blocks in the GC from node-local memory
For example, using nofib/parallel/queens on a 24-core 2-socket machine:
```
$ ./Main 15 +RTS -N24 -s -A64m
Total time 173.960s ( 7.467s elapsed)
$ ./Main 15 +RTS -N24 -s -A64m --numa
Total time 150.836s ( 6.423s elapsed)
```
The biggest win here is expected to be allocating from node-local
memory, so that means programs using a large -A value (as here).
According to perf, on this program the number of remote memory accesses
were reduced by more than 50% by using `--numa`.
Test Plan:
* validate
* There's a new flag --debug-numa=<n> that pretends to do NUMA without
actually making the OS calls, which is useful for testing the code
on non-NUMA systems.
* TODO: I need to add some unit tests
Reviewers: erikd, austin, rwbarton, ezyang, bgamari, hvr, niteria
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2199
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In addition to more const-correctness fixes this patch fixes an
infelicity of the previous const-correctness patch (995cf0f356) which
left `UNTAG_CLOSURE` taking a `const StgClosure` pointer parameter
but returning a non-const pointer. Here we restore the original type
signature of `UNTAG_CLOSURE` and add a new function
`UNTAG_CONST_CLOSURE` which takes and returns a const `StgClosure`
pointer and uses that wherever possible.
Test Plan: Validate on Linux, OS X and Windows
Reviewers: Phyx, hsyl20, bgamari, austin, simonmar, trofi
Reviewed By: simonmar, trofi
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D2231
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Test Plan: Validate
Reviewers: austin, erikd
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1569
|
|
|
|
|
|
|
| |
This reverts commit 35672072b4091d6f0031417bc160c568f22d0469.
Conflicts:
compiler/main/DriverPipeline.hs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
In preparation for indirecting all references to closures,
we rename _closure to _static_closure to ensure any old code
will get an undefined symbol error. In order to reference
a closure foobar_closure (which is now undefined), you should instead
use STATIC_CLOSURE(foobar). For convenience, a number of these
old identifiers are macro'd.
Across C-- and C (Windows and otherwise), there were differing
conventions on whether or not foobar_closure or &foobar_closure
was the address of the closure. Now, all foobar_closure references
are addresses, and no & is necessary.
CHARLIKE/INTLIKE were not changed, simply alpha-renamed.
Part of remove HEAP_ALLOCED patch set (#8199)
Depends on D265
Signed-off-by: Edward Z. Yang <ezyang@mit.edu>
Test Plan: validate
Reviewers: simonmar, austin
Subscribers: simonmar, ezyang, carter, thomie
Differential Revision: https://phabricator.haskell.org/D267
GHC Trac Issues: #8199
|
|
|
|
| |
This reverts commit 39b5c1cbd8950755de400933cecca7b8deb4ffcd.
|
|
|
|
| |
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
| |
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
|
| |
This will hopefully help ensure some basic consistency in the forward by
overriding buffer variables. In particular, it sets the wrap length, the
offset to 4, and turns off tabs.
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a fun one.
In the RTS, `cas` expects a pointer to StgWord which will translate to
unsigned long (8 bytes under LP64.) But we had previously declared
token_locked as *StgBool* - which evaluates to 'int' (4 bytes under
LP64.) That means we fail to provide enough storage for the cas
primitive, causing it to corrupt memory on a 64bit platform.
Hilariously, this somehow did not affect little-endian platforms (ARM,
x86, etc) before. That's because to clear our lock token, we would say:
token_locked = 0;
But because token_locked is 32bits technically, this only writes to
half of the 64bit quantity. On a Big-Endian machine, this won't do
anything. That is, token_locked starts as 0:
/ token_locked
|
v
0x00000000
and the first cas modifies the memory to:
/ valid / corrupted
| |
v v
0x00000000 0x00000001
We then clear token_locked, but this doesn't change the corrupted 4
bytes of memory. And then we try to lock the token again, spinning until
it is released - clearly a deadlock.
Related: Windows (amd64) doesn't follow LP64, but LLP64, where both
int and long are 4 bytes, so this shouldn't change anything on these
platforms.
Thanks to Reid Barton for helping the diagnosis. Also, thanks to Jens
Peterson who confirmed this also fixes building GHC on Fedora/ppc64 and
Fedora/s390x.
Authored-by: Gustavo Luiz Duarte <gustavold@linux.vnet.ibm.com>
Signed-off-by: Austin Seipp <austin@well-typed.com>
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, threads blocked on an STM retry would be sent a wakeup
message each time an unpark was requested. This could result in the
accumulation of a large number of wake-up messages, which would slow
wake-up once the sleeping thread is finally scheduled.
Here, we introduce a new closure type, STM_AWOKEN, which marks a TSO
which has been sent a wake-up message, allowing us to send only one
wakeup.
|
| |
|
|
|
|
|
|
| |
This reverts commit f184d9caffa09750ef6a374a7987b9213d6db28e.
The next commit will fix it in a better way.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Exposed by the following snippet, courtesy of Bas van Dijk and Patrick
Palka on libraries@haskell.org:
import Control.Concurrent.STM
main = do
x <- atomically $ do
t <- newTVar 1
writeTVar t 2
((readTVar t >> retry) `orElse` return ()) `orElse` return ()
readTVar t
print x
|
|
|
|
|
|
|
|
|
|
| |
This improves GC performance when there are a lot of TVars in the
heap. For instance, a TChan with a lot of elements causes a massive
GC drag without this patch.
There's more to do - several other STM closure types don't have write
barriers, so GC performance when there are a lot of threads blocked on
STM isn't great. But fixing the problem for TVar is a good start.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
Based on a patch from David Terei.
Some parts are a little ugly (e.g. defining things that only ASSERTs
use only when DEBUG is defined), so we might want to tweak things a
little.
I've also turned off -Werror for didn't-inline warnings, as we now
get a few such warnings.
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a port of some of the changes from my private local-GC branch
(which is still in darcs, I haven't converted it to git yet). There
are a couple of small functional differences in the GC stats: first,
per-thread GC timings should now be more accurate, and secondly we now
report average and maximum pause times. e.g. from minimax +RTS -N8 -s:
Tot time (elapsed) Avg pause Max pause
Gen 0 2755 colls, 2754 par 13.16s 0.93s 0.0003s 0.0150s
Gen 1 769 colls, 769 par 3.71s 0.26s 0.0003s 0.0059s
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This replaces the global blackhole_queue with a clever scheme that
enables us to queue up blocked threads on the closure that they are
blocked on, while still avoiding atomic instructions in the common
case.
Advantages:
- gets rid of a locked global data structure and some tricky GC code
(replacing it with some per-thread data structures and different
tricky GC code :)
- wakeups are more prompt: parallel/concurrent performance should
benefit. I haven't seen anything dramatic in the parallel
benchmarks so far, but a couple of threading benchmarks do improve
a bit.
- waking up a thread blocked on a blackhole is now O(1) (e.g. if
it is the target of throwTo).
- less sharing and better separation of Capabilities: communication
is done with messages, the data structures are strictly owned by a
Capability and cannot be modified except by sending messages.
- this change will utlimately enable us to do more intelligent
scheduling when threads block on each other. This is what started
off the whole thing, but it isn't done yet (#3838).
I'll be documenting all this on the wiki in due course.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This replaces some complicated locking schemes with message-passing
in the implementation of throwTo. The benefits are
- previously it was impossible to guarantee that a throwTo from
a thread running on one CPU to a thread running on another CPU
would be noticed, and we had to rely on the GC to pick up these
forgotten exceptions. This no longer happens.
- the locking regime is simpler (though the code is about the same
size)
- threads can be unblocked from a blocked_exceptions queue without
having to traverse the whole queue now. It's a rare case, but
replaces an O(n) operation with an O(1).
- generally we move in the direction of sharing less between
Capabilities (aka HECs), which will become important with other
changes we have planned.
Also in this patch I replaced several STM-specific closure types with
a generic MUT_PRIM closure type, which allowed a lot of code in the GC
and other places to go away, hence the line-count reduction. The
message-passing changes resulted in about a net zero line-count
difference.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a batch of refactoring to remove some of the GC's global
state, as we move towards CPU-local GC.
- allocateLocal() now allocates large objects into the local
nursery, rather than taking a global lock and allocating
then in gen 0 step 0.
- allocatePinned() was still allocating from global storage and
taking a lock each time, now it uses local storage.
(mallocForeignPtrBytes should be faster with -threaded).
- We had a gen 0 step 0, distinct from the nurseries, which are
stored in a separate nurseries[] array. This is slightly strange.
I removed the g0s0 global that pointed to gen 0 step 0, and
removed all uses of it. I think now we don't use gen 0 step 0 at
all, except possibly when there is only one generation. Possibly
more tidying up is needed here.
- I removed the global allocate() function, and renamed
allocateLocal() to allocate().
- the alloc_blocks global is gone. MAYBE_GC() and
doYouWantToGC() now check the local nursery only.
|
|
|
|
|
| |
While fixing #3578 I noticed that this function was just a field
access to StgTRecHeader, so I inlined it manually.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The first phase of this tidyup is focussed on the header files, and in
particular making sure we are exposinng publicly exactly what we need
to, and no more.
- Rts.h now includes everything that the RTS exposes publicly,
rather than a random subset of it.
- Most of the public header files have moved into subdirectories, and
many of them have been renamed. But clients should not need to
include any of the other headers directly, just #include the main
public headers: Rts.h, HsFFI.h, RtsAPI.h.
- All the headers needed for via-C compilation have moved into the
stg subdirectory, which is self-contained. Most of the headers for
the rest of the RTS APIs have moved into the rts subdirectory.
- I left MachDeps.h where it is, because it is so widely used in
Haskell code.
- I left a deprecated stub for RtsFlags.h in place. The flag
structures are now exposed by Rts.h.
- Various internal APIs are no longer exposed by public header files.
- Various bits of dead code and declarations have been removed
- More gcc warnings are turned on, and the RTS code is more
warning-clean.
- More source files #include "PosixSource.h", and hence only use
standard POSIX (1003.1c-1995) interfaces.
There is a lot more tidying up still to do, this is just the first
pass. I also intend to standardise the names for external RTS APIs
(e.g use the rts_ prefix consistently), and declare the internal APIs
as hidden for shared libraries.
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
StgTVarWatchQueue contains the threads blocked on a TVar in order
youngest first. The list has to be traversed backwards to unpark the threads
oldest first.
This improves the fairness when using STM in some situations.
|
| |
|
|
|
|
| |
Patch from Audrey Tang.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In preparation for parallel GC, split up the monolithic GC.c file into
smaller parts. Also in this patch (and difficult to separate,
unfortunatley):
- Don't include Stable.h in Rts.h, instead just include it where
necessary.
- consistently use STATIC_INLINE in source files, and INLINE_HEADER
in header files. STATIC_INLINE is now turned off when DEBUG is on,
to make debugging easier.
- The GC no longer takes the get_roots function as an argument.
We weren't making use of this generalisation.
|
| |
|
| |
|