| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
| |
not longer reachable.
Patch originally by Ivan Tomac <tomac@pacific.net.au>, amended by
Simon Marlow:
- mkWeakFinalizer# commoned up with mkWeakFinalizerEnv#
- GC parameters to ALLOC_PRIM fixed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Eager blackholing can improve parallel performance by reducing the
chances that two threads perform the same computation. However, it
has a cost: one extra memory write per thunk entry.
To get the best results, any code which may be executed in parallel
should be compiled with eager blackholing turned on. But since
there's a cost for sequential code, we make it optional and turn it on
for the parallel package only. It might be a good idea to compile
applications (or modules) with parallel code in with
-feager-blackholing.
ToDo: document -feager-blackholing.
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
eg. use +RTS -g2 -RTS for 2 threads. Only major GCs are parallelised,
minor GCs are still sequential. Don't use more threads than you
have CPUs.
It works most of the time, although you won't see much speedup yet.
Tuning and more work on stability still required.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This has several advantages:
- -fvia-C is consistent with -fasm with respect to FFI declarations:
both bind to the ABI, not the API.
- foreign calls can now be inlined freely across module boundaries, since
a header file is not required when compiling the call.
- bootstrapping via C will be more reliable, because this difference
in behavour between the two backends has been removed.
There is one disadvantage:
- we get no checking by the C compiler that the FFI declaration
is correct.
So now, the c-includes field in a .cabal file is always ignored by
GHC, as are header files specified in an FFI declaration. This was
previously the case only for -fasm compilations, now it is also the
case for -fvia-C too.
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously MVars were always on the mutable list of the old
generation, which meant every MVar was visited during every minor GC.
With lots of MVars hanging around, this gets expensive. We addressed
this problem for MUT_VARs (aka IORefs) a while ago, the solution is to
use a traditional GC write-barrier when the object is modified. This
patch does the same thing for MVars.
TVars are still done the old way, they could probably benefit from the
same treatment too.
|
| |
|
| |
|
|
|
|
| |
This applies to EnterCriticalSection and LeaveCriticalSection in the RTS
|
|
|
|
|
|
| |
The C-- parser was missing the "stdcall" calling convention for
foreign calls, but once added we can call {Enter,Leave}CricialSection
directly.
|
|
|
|
|
|
|
|
|
| |
* The correct definition of C-- requires that a procedure not
'fall off the end'. The 'never returns' annotation tells us
if a (foreign) call is not going to return.
Validated!
|
|
|
|
| |
sets __PIC__ automatically
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements pointer tagging as per our ICFP'07 paper "Faster
laziness using dynamic pointer tagging". It improves performance by
10-15% for most workloads, including GHC itself.
The original patches were by Alexey Rodriguez Yakushev
<mrchebas@gmail.com>, with additions and improvements by me. I've
re-recorded the development as a single patch.
The basic idea is this: we use the low 2 bits of a pointer to a heap
object (3 bits on a 64-bit architecture) to encode some information
about the object pointed to. For a constructor, we encode the "tag"
of the constructor (e.g. True vs. False), for a function closure its
arity. This enables some decisions to be made without dereferencing
the pointer, which speeds up some common operations. In particular it
enables us to avoid costly indirect jumps in many cases.
More information in the commentary:
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/HaskellExecution/PointerTagging
|
| |
|
|
|
|
|
| |
We recently discovered that they aren't a win any more, and just cost
code size.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following changes restore ticky-ticky profiling to functionality
from its formerly bit-rotted state. Sort of. (It got bit-rotted as part
of the switch to the C-- back-end.)
The way that ticky-ticky is supposed to work is documented in Section 5.7
of the GHC manual (though the manual doesn't mention that it hasn't worked
since sometime around 6.0, alas). Changes from this are as follows (which
I'll document on the wiki):
* In the past, you had to build all of the libraries with way=t in order to
use ticky-ticky, because it entailed a different closure layout. No longer.
You still need to do make way=t in rts/ in order to build the ticky RTS,
but you should now be able to mix ticky and non-ticky modules.
* Some of the counters that worked in the past aren't implemented yet.
I was originally just trying to get entry counts to work, so those should
be correct. The list of counters was never documented in the first place,
so I hope it's not too much of a disaster that some don't appear anymore.
Someday, someone (perhaps me) should document all the counters and what
they do. For now, all of the counters are either accurate (or at least as
accurate as they always were), zero, or missing from the ticky profiling
report altogether.
This hasn't been particularly well-tested, but these changes shouldn't
affect anything except when compiling with -fticky-ticky (famous last
words...)
Implementation details:
I got rid of StgTicky.h, which in the past had the macros and declarations
for all of the ticky counters. Now, those macros are defined in Cmm.h.
StgTicky.h was still there for inclusion in C code. Now, any remaining C
code simply cannot call the ticky macros -- or rather, they do call those
macros, but from the perspective of C code, they're defined as no-ops.
(This shouldn't be too big a problem.)
I added a new file TickyCounter.h that has all the declarations for ticky
counters, as well as dummy macros for use in C code. Someday, these
declarations should really be automatically generated, since they need
to be kept consistent with the macros defined in Cmm.h.
Other changes include getting rid of the header that was getting added to
closures before, and getting rid of various code having to do with eager
blackholing and permanent indirections (the changes under compiler/
and rts/Updates.*).
|
| |
|
| |
|
|
Most of the other users of the fptools build system have migrated to
Cabal, and with the move to darcs we can now flatten the source tree
without losing history, so here goes.
The main change is that the ghc/ subdir is gone, and most of what it
contained is now at the top level. The build system now makes no
pretense at being multi-project, it is just the GHC build system.
No doubt this will break many things, and there will be a period of
instability while we fix the dependencies. A straightforward build
should work, but I haven't yet fixed binary/source distributions.
Changes to the Building Guide will follow, too.
|