| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a batch of refactoring to remove some of the GC's global
state, as we move towards CPU-local GC.
- allocateLocal() now allocates large objects into the local
nursery, rather than taking a global lock and allocating
then in gen 0 step 0.
- allocatePinned() was still allocating from global storage and
taking a lock each time, now it uses local storage.
(mallocForeignPtrBytes should be faster with -threaded).
- We had a gen 0 step 0, distinct from the nurseries, which are
stored in a separate nurseries[] array. This is slightly strange.
I removed the g0s0 global that pointed to gen 0 step 0, and
removed all uses of it. I think now we don't use gen 0 step 0 at
all, except possibly when there is only one generation. Possibly
more tidying up is needed here.
- I removed the global allocate() function, and renamed
allocateLocal() to allocate().
- the alloc_blocks global is gone. MAYBE_GC() and
doYouWantToGC() now check the local nursery only.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- tracing facilities are now enabled with -DTRACING, and -DDEBUG
additionally enables debug-tracing. -DEVENTLOG has been
removed.
- -debug now implies -eventlog
- events can be printed to stderr instead of being sent to the
binary .eventlog file by adding +RTS -v (which is implied by the
+RTS -Dx options).
- -Dx debug messages can be sent to the binary .eventlog file
by adding +RTS -l. This should help debugging by reducing
the impact of debug tracing on execution time.
- Various debug messages that duplicated the information in events
have been removed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There were two bugs, and had it not been for the first one we would
not have noticed the second one, so this is quite fortunate.
The first bug is in stg_unblockAsyncExceptionszh_ret, when we found a
pending exception to raise, but don't end up raising it, there was a
missing adjustment to the stack pointer.
The second bug was that this case was actually happening at all: it
ought to be incredibly rare, because the pending exception thread
would have to be killed between us finding it and attempting to raise
the exception. This made me suspicious. It turned out that there was
a race condition on the tso->flags field; multiple threads were
updating this bitmask field non-atomically (one of the bits is the
dirty-bit for the generational GC). The fix is to move the dirty bit
into its own field of the TSO, making the TSO one word larger (sadly).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The first phase of this tidyup is focussed on the header files, and in
particular making sure we are exposinng publicly exactly what we need
to, and no more.
- Rts.h now includes everything that the RTS exposes publicly,
rather than a random subset of it.
- Most of the public header files have moved into subdirectories, and
many of them have been renamed. But clients should not need to
include any of the other headers directly, just #include the main
public headers: Rts.h, HsFFI.h, RtsAPI.h.
- All the headers needed for via-C compilation have moved into the
stg subdirectory, which is self-contained. Most of the headers for
the rest of the RTS APIs have moved into the rts subdirectory.
- I left MachDeps.h where it is, because it is so widely used in
Haskell code.
- I left a deprecated stub for RtsFlags.h in place. The flag
structures are now exposed by Rts.h.
- Various internal APIs are no longer exposed by public header files.
- Various bits of dead code and declarations have been removed
- More gcc warnings are turned on, and the RTS code is more
warning-clean.
- More source files #include "PosixSource.h", and hence only use
standard POSIX (1003.1c-1995) interfaces.
There is a lot more tidying up still to do, this is just the first
pass. I also intend to standardise the names for external RTS APIs
(e.g use the rts_ prefix consistently), and declare the internal APIs
as hidden for shared libraries.
|
| |
|
| |
|
|
|
|
| |
This is not a bug fix, it just makes better use of memory
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Generate binary log files from the RTS containing a log of runtime
events with timestamps. The log file can be visualised in various
ways, for investigating runtime behaviour and debugging performance
problems. See for example the forthcoming ThreadScope viewer.
New GHC option:
-eventlog (link-time option) Enables event logging.
+RTS -l (runtime option) Generates <prog>.eventlog with
the binary event information.
This replaces some of the tracing machinery we already had in the RTS:
e.g. +RTS -vg for GC tracing (we should do this using the new event
logging instead).
Event logging has almost no runtime cost when it isn't enabled, though
in the future we might add more fine-grained events and this might
change; hence having a link-time option and compiling a separate
version of the RTS for event logging. There's a small runtime cost
for enabling event-logging, for most programs it shouldn't make much
difference.
(Todo: docs)
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reduces the latency between a context-switch being triggered and
the thread returning to the scheduler, which in turn should reduce the
cost of the GC barrier when there are many cores.
We still retain the old context_switch flag which is checked at the
end of each block of allocation. The idea is that setting HpLim may
fail if the the target thread is modifying HpLim at the same time; the
context_switch flag is a fallback. It also allows us to "context
switch soon" without forcing an immediate switch, which can be costly.
|
| |
|
|
|
|
|
| |
Fixes a long-standing bug that could in some cases cause sub-optimal
scheduling behaviour.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
wakeupThreadOnCapbility() is used to signal another capability that
there is a thread waiting to be added to its run queue. It adds the
thread to the (locked) wakeup queue on the remote capability. In
order to do this, it has to modify the TSO's link field, which has a
write barrier. The write barrier might put the TSO on the mutable
list, and the bug was that it was using the mutable list of the
*target* capability, which we do not have exclusive access to. We
should be using the current Capabilty's mutable list in this case.
|
|
|
|
|
|
| |
Instead of keeping a single list of all threads, keep one per step
and only look at the threads belonging to steps that we are
collecting.
|
| |
|
| |
|
| |
|
| |
|
|
This patch makes throwTo work with -threaded, and also refactors large
parts of the concurrency support in the RTS to clean things up. We
have some new files:
RaiseAsync.{c,h} asynchronous exception support
Threads.{c,h} general threading-related utils
Some of the contents of these new files used to be in Schedule.c,
which is smaller and cleaner as a result of the split.
Asynchronous exception support in the presence of multiple running
Haskell threads is rather tricky. In fact, to my annoyance there are
still one or two bugs to track down, but the majority of the tests run
now.
|