summaryrefslogtreecommitdiff
path: root/rts/Threads.h
Commit message (Collapse)AuthorAgeFilesLines
* Prefer #if defined to #ifdefBen Gamari2017-04-281-2/+2
| | | | Our new CPP linter enforces this.
* cpp: Use #pragma once instead of #ifndef guardsBen Gamari2017-04-231-4/+1
| | | | | | | | | | | | | | This both says what we mean and silences a bunch of spurious CPP linting warnings. This pragma is supported by all CPP implementations which we support. Reviewers: austin, erikd, simonmar, hvr Reviewed By: simonmar Subscribers: rwbarton, thomie Differential Revision: https://phabricator.haskell.org/D3482
* Use C99's boolBen Gamari2016-11-291-4/+4
| | | | | | | | | | | | Test Plan: Validate on lots of platforms Reviewers: erikd, simonmar, austin Reviewed By: erikd, simonmar Subscribers: michalt, thomie Differential Revision: https://phabricator.haskell.org/D2699
* Add hs_try_putmvar()Simon Marlow2016-09-121-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Summary: This is a fast, non-blocking, asynchronous, interface to tryPutMVar that can be called from C/C++. It's useful for callback-based C/C++ APIs: the idea is that the callback invokes hs_try_putmvar(), and the Haskell code waits for the callback to run by blocking in takeMVar. The callback doesn't block - this is often a requirement of callback-based APIs. The callback wakes up the Haskell thread with minimal overhead and no unnecessary context-switches. There are a couple of benchmarks in testsuite/tests/concurrent/should_run. Some example results comparing hs_try_putmvar() with using a standard foreign export: ./hs_try_putmvar003 1 64 16 100 +RTS -s -N4 0.49s ./hs_try_putmvar003 2 64 16 100 +RTS -s -N4 2.30s hs_try_putmvar() is 4x faster for this workload (see the source for hs_try_putmvar003.hs for details of the workload). An alternative solution is to use the IO Manager for this. We've tried it, but there are problems with that approach: * Need to create a new file descriptor for each callback * The IO Manger thread(s) become a bottleneck * More potential for things to go wrong, e.g. throwing an exception in an IO Manager callback kills the IO Manager thread. Test Plan: validate; new unit tests Reviewers: niteria, erikd, ezyang, bgamari, austin, hvr Subscribers: thomie Differential Revision: https://phabricator.haskell.org/D2501
* rts: mark 'wakeBlockingQueue' as staticSergei Trofimovich2016-02-071-1/+0
| | | | | | | | Noticed by uselex.rb: wakeBlockingQueue: [R]: exported from: ./rts/dist/build/Threads.o Signed-off-by: Sergei Trofimovich <siarheit@google.com>
* Revert "rts: add Emacs 'Local Variables' to every .c file"Simon Marlow2014-09-291-8/+0
| | | | This reverts commit 39b5c1cbd8950755de400933cecca7b8deb4ffcd.
* rts: add Emacs 'Local Variables' to every .c fileAustin Seipp2014-07-281-0/+8
| | | | | | | | This will hopefully help ensure some basic consistency in the forward by overriding buffer variables. In particular, it sets the wrap length, the offset to 4, and turns off tabs. Signed-off-by: Austin Seipp <austin@well-typed.com>
* Lots of nat -> StgWord changesSimon Marlow2012-09-071-1/+1
|
* Implement stack chunks and separate TSO/STACK objectsSimon Marlow2010-12-151-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch makes two changes to the way stacks are managed: 1. The stack is now stored in a separate object from the TSO. This means that it is easier to replace the stack object for a thread when the stack overflows or underflows; we don't have to leave behind the old TSO as an indirection any more. Consequently, we can remove ThreadRelocated and deRefTSO(), which were a pain. This is obviously the right thing, but the last time I tried to do it it made performance worse. This time I seem to have cracked it. 2. Stacks are now represented as a chain of chunks, rather than a single monolithic object. The big advantage here is that individual chunks are marked clean or dirty according to whether they contain pointers to the young generation, and the GC can avoid traversing clean stack chunks during a young-generation collection. This means that programs with deep stacks will see a big saving in GC overhead when using the default GC settings. A secondary advantage is that there is much less copying involved as the stack grows. Programs that quickly grow a deep stack will see big improvements. In some ways the implementation is simpler, as nothing special needs to be done to reclaim stack as the stack shrinks (the GC just recovers the dead stack chunks). On the other hand, we have to manage stack underflow between chunks, so there's a new stack frame (UNDERFLOW_FRAME), and we now have separate TSO and STACK objects. The total amount of code is probably about the same as before. There are new RTS flags: -ki<size> Sets the initial thread stack size (default 1k) Egs: -ki4k -ki2m -kc<size> Sets the stack chunk size (default 32k) -kb<size> Sets the stack chunk buffer size (default 1k) -ki was previously called just -k, and the old name is still accepted for backwards compatibility. These new options are documented.
* Fix the symbol visibility pragmasSimon Marlow2010-06-171-2/+2
|
* Fix for derefing ThreadRelocated TSOs in MVar operationsSimon Marlow2010-04-071-0/+3
|
* Change the representation of the MVar blocked queueSimon Marlow2010-04-011-2/+1
| | | | | | | | | | | | | | | | | | | | | The list of threads blocked on an MVar is now represented as a list of separately allocated objects rather than being linked through the TSOs themselves. This lets us remove a TSO from the list in O(1) time rather than O(n) time, by marking the list object. Removing this linear component fixes some pathalogical performance cases where many threads were blocked on an MVar and became unreachable simultaneously (nofib/smp/threads007), or when sending an asynchronous exception to a TSO in a long list of thread blocked on an MVar. MVar performance has actually improved by a few percent as a result of this change, slightly to my surprise. This is the final cleanup in the sequence, which let me remove the old way of waking up threads (unblockOne(), MSG_WAKEUP) in favour of the new way (tryWakeupThread and MSG_TRY_WAKEUP, which is idempotent). It is now the case that only the Capability that owns a TSO may modify its state (well, almost), and this simplifies various things. More of the RTS is based on message-passing between Capabilities now.
* New implementation of BLACKHOLEsSimon Marlow2010-03-291-3/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This replaces the global blackhole_queue with a clever scheme that enables us to queue up blocked threads on the closure that they are blocked on, while still avoiding atomic instructions in the common case. Advantages: - gets rid of a locked global data structure and some tricky GC code (replacing it with some per-thread data structures and different tricky GC code :) - wakeups are more prompt: parallel/concurrent performance should benefit. I haven't seen anything dramatic in the parallel benchmarks so far, but a couple of threading benchmarks do improve a bit. - waking up a thread blocked on a blackhole is now O(1) (e.g. if it is the target of throwTo). - less sharing and better separation of Capabilities: communication is done with messages, the data structures are strictly owned by a Capability and cannot be modified except by sending messages. - this change will utlimately enable us to do more intelligent scheduling when threads block on each other. This is what started off the whole thing, but it isn't done yet (#3838). I'll be documenting all this on the wiki in due course.
* Use message-passing to implement throwTo in the RTSSimon Marlow2010-03-111-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This replaces some complicated locking schemes with message-passing in the implementation of throwTo. The benefits are - previously it was impossible to guarantee that a throwTo from a thread running on one CPU to a thread running on another CPU would be noticed, and we had to rely on the GC to pick up these forgotten exceptions. This no longer happens. - the locking regime is simpler (though the code is about the same size) - threads can be unblocked from a blocked_exceptions queue without having to traverse the whole queue now. It's a rare case, but replaces an O(n) operation with an O(1). - generally we move in the direction of sharing less between Capabilities (aka HECs), which will become important with other changes we have planned. Also in this patch I replaced several STM-specific closure types with a generic MUT_PRIM closure type, which allowed a lot of code in the GC and other places to go away, hence the line-count reduction. The message-passing changes resulted in about a net zero line-count difference.
* Omit visibility pragmas on Windows (fixes warnings/validate failures)Simon Marlow2009-09-091-2/+2
|
* Declare RTS-private prototypes with __attribute__((visibility("hidden")))Simon Marlow2009-08-051-0/+4
| | | | | | | | | | This has no effect with static libraries, but when the RTS is in a shared library it does two things: - it prevents the function from being exposed by the shared library - internal calls to the function can use the faster non-PLT calls, because the function cannot be overriden at link time.
* RTS tidyup sweep, first phaseSimon Marlow2009-08-021-7/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The first phase of this tidyup is focussed on the header files, and in particular making sure we are exposinng publicly exactly what we need to, and no more. - Rts.h now includes everything that the RTS exposes publicly, rather than a random subset of it. - Most of the public header files have moved into subdirectories, and many of them have been renamed. But clients should not need to include any of the other headers directly, just #include the main public headers: Rts.h, HsFFI.h, RtsAPI.h. - All the headers needed for via-C compilation have moved into the stg subdirectory, which is self-contained. Most of the headers for the rest of the RTS APIs have moved into the rts subdirectory. - I left MachDeps.h where it is, because it is so widely used in Haskell code. - I left a deprecated stub for RtsFlags.h in place. The flag structures are now exposed by Rts.h. - Various internal APIs are no longer exposed by public header files. - Various bits of dead code and declarations have been removed - More gcc warnings are turned on, and the RTS code is more warning-clean. - More source files #include "PosixSource.h", and hence only use standard POSIX (1003.1c-1995) interfaces. There is a lot more tidying up still to do, this is just the first pass. I also intend to standardise the names for external RTS APIs (e.g use the rts_ prefix consistently), and declare the internal APIs as hidden for shared libraries.
* Remove old GUM/GranSim codeSimon Marlow2009-06-021-9/+0
|
* Add a write barrier to the TSO link field (#1589)Simon Marlow2008-04-161-3/+3
|
* Asynchronous exception support for SMPSimon Marlow2006-06-161-0/+46
This patch makes throwTo work with -threaded, and also refactors large parts of the concurrency support in the RTS to clean things up. We have some new files: RaiseAsync.{c,h} asynchronous exception support Threads.{c,h} general threading-related utils Some of the contents of these new files used to be in Schedule.c, which is smaller and cleaner as a result of the split. Asynchronous exception support in the presence of multiple running Haskell threads is rather tricky. In fact, to my annoyance there are still one or two bugs to track down, but the majority of the tests run now.