summaryrefslogtreecommitdiff
path: root/rts/sm/NonMovingScav.c
Commit message (Collapse)AuthorAgeFilesLines
* nonmoving: Fix handling of dirty objectsBen Gamari2020-05-061-2/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously we (incorrectly) relied on failed_to_evac to be "precise". That is, we expected it to only be true if *all* of an object's fields lived outside of the non-moving heap. However, does not match the behavior of failed_to_evac, which is true if *any* of the object's fields weren't promoted (meaning that some others *may* live in the non-moving heap). This is problematic as we skip the non-moving write barrier for dirty objects (which we can only safely do if *all* fields point outside of the non-moving heap). Clearly this arises due to a fundamental difference in the behavior expected of failed_to_evac in the moving and non-moving collector. e.g., in the moving collector it is always safe to conservatively say failed_to_evac=true whereas in the non-moving collector the safe value is false. This issue went unnoticed as I never wrote down the dirtiness invariant enforced by the non-moving collector. We now define this invariant as An object being marked as dirty implies that all of its fields are on the mark queue (or, equivalently, update remembered set). To maintain this invariant we teach nonmovingScavengeOne to push the fields of objects which we fail to evacuate to the update remembered set. This is a simple and reasonably cheap solution and avoids the complexity and fragility that other, more strict alternative invariants would require. All of this is described in a new Note, Note [Dirty flags in the non-moving collector] in NonMoving.c.
* rts: COMPACT_NFDATA support for the nonmoving collectorÖmer Sinan Ağacan2019-10-221-0/+4
| | | | | | This largely follows the model used for large objects, with appropriate adjustments made to account for references in the sharing deduplication hashtable.
* Nonmoving: Allow aging and refactor static objects logicBen Gamari2019-10-221-13/+32
| | | | | | | This commit does two things: * Allow aging of objects during the preparatory minor GC * Refactor handling of static objects to avoid the use of a hashtable
* rts: Non-concurrent mark and sweepÖmer Sinan Ağacan2019-10-201-0/+366
This implements the core heap structure and a serial mark/sweep collector which can be used to manage the oldest-generation heap. This is the first step towards a concurrent mark-and-sweep collector aimed at low-latency applications. The full design of the collector implemented here is described in detail in a technical note B. Gamari. "A Concurrent Garbage Collector For the Glasgow Haskell Compiler" (2018) The basic heap structure used in this design is heavily inspired by K. Ueno & A. Ohori. "A fully concurrent garbage collector for functional programs on multicore processors." /ACM SIGPLAN Notices/ Vol. 51. No. 9 (presented by ICFP 2016) This design is intended to allow both marking and sweeping concurrent to execution of a multi-core mutator. Unlike the Ueno design, which requires no global synchronization pauses, the collector introduced here requires a stop-the-world pause at the beginning and end of the mark phase. To avoid heap fragmentation, the allocator consists of a number of fixed-size /sub-allocators/. Each of these sub-allocators allocators into its own set of /segments/, themselves allocated from the block allocator. Each segment is broken into a set of fixed-size allocation blocks (which back allocations) in addition to a bitmap (used to track the liveness of blocks) and some additional metadata (used also used to track liveness). This heap structure enables collection via mark-and-sweep, which can be performed concurrently via a snapshot-at-the-beginning scheme (although concurrent collection is not implemented in this patch). The mark queue is a fairly straightforward chunked-array structure. The representation is a bit more verbose than a typical mark queue to accomodate a combination of two features: * a mark FIFO, which improves the locality of marking, reducing one of the major overheads seen in mark/sweep allocators (see [1] for details) * the selector optimization and indirection shortcutting, which requires that we track where we found each reference to an object in case we need to update the reference at a later point (e.g. when we find that it is an indirection). See Note [Origin references in the nonmoving collector] (in `NonMovingMark.h`) for details. Beyond this the mark/sweep is fairly run-of-the-mill. [1] R. Garner, S.M. Blackburn, D. Frampton. "Effective Prefetch for Mark-Sweep Garbage Collection." ISMM 2007. Co-Authored-By: Ben Gamari <ben@well-typed.com>