| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
Lint was not able to see that x*y <= x*y, because this inequality
was decomposed to x <= x*y && y <= x*y, but there was no rule
to see that x <= x*y.
Fixes #22546.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before this patch, GHC unconditionally printed ticks before promoted
data constructors:
ghci> type T = True -- unticked (user-written)
ghci> :kind! T
T :: Bool
= 'True -- ticked (compiler output)
After this patch, GHC prints ticks only when necessary:
ghci> type F = False -- unticked (user-written)
ghci> :kind! F
F :: Bool
= False -- unticked (compiler output)
ghci> data False -- introduce ambiguity
ghci> :kind! F
F :: Bool
= 'False -- ticked by necessity (compiler output)
The old behavior can be enabled by -fprint-redundant-promotion-ticks.
Summary of changes:
* Rename PrintUnqualified to NamePprCtx
* Add QueryPromotionTick to it
* Consult the GlobalRdrEnv to decide whether to print a tick (see mkPromTick)
* Introduce -fprint-redundant-promotion-ticks
Co-authored-by: Artyom Kuznetsov <hi@wzrd.ht>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This big patch addresses the rats-nest of issues that have plagued
us for years, about the relationship between Type and Constraint.
See #11715/#21623.
The main payload of the patch is:
* To introduce CONSTRAINT :: RuntimeRep -> Type
* To make TYPE and CONSTRAINT distinct throughout the compiler
Two overview Notes in GHC.Builtin.Types.Prim
* Note [TYPE and CONSTRAINT]
* Note [Type and Constraint are not apart]
This is the main complication.
The specifics
* New primitive types (GHC.Builtin.Types.Prim)
- CONSTRAINT
- ctArrowTyCon (=>)
- tcArrowTyCon (-=>)
- ccArrowTyCon (==>)
- funTyCon FUN -- Not new
See Note [Function type constructors and FunTy]
and Note [TYPE and CONSTRAINT]
* GHC.Builtin.Types:
- New type Constraint = CONSTRAINT LiftedRep
- I also stopped nonEmptyTyCon being built-in; it only needs to be wired-in
* Exploit the fact that Type and Constraint are distinct throughout GHC
- Get rid of tcView in favour of coreView.
- Many tcXX functions become XX functions.
e.g. tcGetCastedTyVar --> getCastedTyVar
* Kill off Note [ForAllTy and typechecker equality], in (old)
GHC.Tc.Solver.Canonical. It said that typechecker-equality should ignore
the specified/inferred distinction when comparein two ForAllTys. But
that wsa only weakly supported and (worse) implies that we need a separate
typechecker equality, different from core equality. No no no.
* GHC.Core.TyCon: kill off FunTyCon in data TyCon. There was no need for it,
and anyway now we have four of them!
* GHC.Core.TyCo.Rep: add two FunTyFlags to FunCo
See Note [FunCo] in that module.
* GHC.Core.Type. Lots and lots of changes driven by adding CONSTRAINT.
The key new function is sORTKind_maybe; most other changes are built
on top of that.
See also `funTyConAppTy_maybe` and `tyConAppFun_maybe`.
* Fix a longstanding bug in GHC.Core.Type.typeKind, and Core Lint, in
kinding ForAllTys. See new tules (FORALL1) and (FORALL2) in GHC.Core.Type.
(The bug was that before (forall (cv::t1 ~# t2). blah), where
blah::TYPE IntRep, would get kind (TYPE IntRep), but it should be
(TYPE LiftedRep). See Note [Kinding rules for types] in GHC.Core.Type.
* GHC.Core.TyCo.Compare is a new module in which we do eqType and cmpType.
Of course, no tcEqType any more.
* GHC.Core.TyCo.FVs. I moved some free-var-like function into this module:
tyConsOfType, visVarsOfType, and occCheckExpand. Refactoring only.
* GHC.Builtin.Types. Compiletely re-engineer boxingDataCon_maybe to
have one for each /RuntimeRep/, rather than one for each /Type/.
This dramatically widens the range of types we can auto-box.
See Note [Boxing constructors] in GHC.Builtin.Types
The boxing types themselves are declared in library ghc-prim:GHC.Types.
GHC.Core.Make. Re-engineer the treatment of "big" tuples (mkBigCoreVarTup
etc) GHC.Core.Make, so that it auto-boxes unboxed values and (crucially)
types of kind Constraint. That allows the desugaring for arrows to work;
it gathers up free variables (including dictionaries) into tuples.
See Note [Big tuples] in GHC.Core.Make.
There is still work to do here: #22336. But things are better than
before.
* GHC.Core.Make. We need two absent-error Ids, aBSENT_ERROR_ID for types of
kind Type, and aBSENT_CONSTRAINT_ERROR_ID for vaues of kind Constraint.
Ditto noInlineId vs noInlieConstraintId in GHC.Types.Id.Make;
see Note [inlineId magic].
* GHC.Core.TyCo.Rep. Completely refactor the NthCo coercion. It is now called
SelCo, and its fields are much more descriptive than the single Int we used to
have. A great improvement. See Note [SelCo] in GHC.Core.TyCo.Rep.
* GHC.Core.RoughMap.roughMatchTyConName. Collapse TYPE and CONSTRAINT to
a single TyCon, so that the rough-map does not distinguish them.
* GHC.Core.DataCon
- Mainly just improve documentation
* Some significant renamings:
GHC.Core.Multiplicity: Many --> ManyTy (easier to grep for)
One --> OneTy
GHC.Core.TyCo.Rep TyCoBinder --> GHC.Core.Var.PiTyBinder
GHC.Core.Var TyCoVarBinder --> ForAllTyBinder
AnonArgFlag --> FunTyFlag
ArgFlag --> ForAllTyFlag
GHC.Core.TyCon TyConTyCoBinder --> TyConPiTyBinder
Many functions are renamed in consequence
e.g. isinvisibleArgFlag becomes isInvisibleForAllTyFlag, etc
* I refactored FunTyFlag (was AnonArgFlag) into a simple, flat data type
data FunTyFlag
= FTF_T_T -- (->) Type -> Type
| FTF_T_C -- (-=>) Type -> Constraint
| FTF_C_T -- (=>) Constraint -> Type
| FTF_C_C -- (==>) Constraint -> Constraint
* GHC.Tc.Errors.Ppr. Some significant refactoring in the TypeEqMisMatch case
of pprMismatchMsg.
* I made the tyConUnique field of TyCon strict, because I
saw code with lots of silly eval's. That revealed that
GHC.Settings.Constants.mAX_SUM_SIZE can only be 63, because
we pack the sum tag into a 6-bit field. (Lurking bug squashed.)
Fixes
* #21530
Updates haddock submodule slightly.
Performance changes
~~~~~~~~~~~~~~~~~~~
I was worried that compile times would get worse, but after
some careful profiling we are down to a geometric mean 0.1%
increase in allocation (in perf/compiler). That seems fine.
There is a big runtime improvement in T10359
Metric Decrease:
LargeRecord
MultiLayerModulesTH_OneShot
T13386
T13719
Metric Increase:
T8095
|
|
|
|
|
| |
Necessary for newer cross-compiling backends (JS, Wasm) that don't
support TH yet.
|
|
|
|
|
|
|
|
|
|
|
| |
When a newtype introduces GADT eq_specs due to a defaulted
RuntimeRep, we detect this and print the error message with
explicit kinds.
This also refactors newtype type checking to use the new
diagnostic infra.
Fixes #21447
|
|
|
|
|
|
|
|
| |
The testsuite output now contains diagnostic codes, so many tests need
to be updated at once.
We decided it was best to keep the diagnostic codes in the testsuite
output, so that contributors don't inadvertently make changes to the
diagnostic codes.
|
|
|
|
|
|
|
| |
This patch improves the uniformity of error message formatting by
printing constraints in quotes, as we do for types.
Fix #21167
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch refactors hasFixedRuntimeRep_remainingValArgs, renaming it
to tcRemainingValArgs. The logic is moved to rebuildHsApps, which
ensures consistent behaviour across tcApp and quickLookArg1/tcEValArg.
This patch also refactors the treatment of stupid theta for data
constructors, changing the place we drop stupid theta arguments
from dsConLike to mkDataConRep (now the datacon wrapper drops these
arguments).
We decided not to implement PHASE 2 of the FixedRuntimeRep plan for
these remaining ValArgs. Future directions are outlined on the wiki:
https://gitlab.haskell.org/ghc/ghc/-/wikis/Remaining-ValArgs
Fixes #21544 and #21650
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit redefines the structure of Splices in the AST.
We get rid of `HsSplice` which used to represent typed and untyped
splices, quasi quotes, and the result of splicing either an expression,
a type or a pattern.
Instead we have `HsUntypedSplice` which models an untyped splice or a
quasi quoter, which works in practice just like untyped splices.
The `HsExpr` constructor `HsSpliceE` which used to be constructed with
an `HsSplice` is split into `HsTypedSplice` and `HsUntypedSplice`. The
former is directly constructed with an `HsExpr` and the latter now takes
an `HsUntypedSplice`.
Both `HsType` and `Pat` constructors `HsSpliceTy` and `SplicePat` now
take an `HsUntypedSplice` instead of a `HsSplice` (remember only
/untyped splices/ can be spliced as types or patterns).
The result of splicing an expression, type, or pattern is now
comfortably stored in the extension fields `XSpliceTy`, `XSplicePat`,
`XUntypedSplice` as, respectively, `HsUntypedSpliceResult (HsType
GhcRn)`, `HsUntypedSpliceResult (Pat GhcRn)`, and `HsUntypedSpliceResult
(HsExpr GhcRn)`
Overall the TTG extension points are now better used to
make invalid states unrepresentable and model the progression between
stages better.
See Note [Lifecycle of an untyped splice, and PendingRnSplice]
and Note [Lifecycle of an typed splice, and PendingTcSplice] for more
details.
Updates haddock submodule
Fixes #21263
-------------------------
Metric Decrease:
hard_hole_fits
-------------------------
|
|
|
|
|
| |
This patch adds several tests relating to the eta-expansion of
data constructors, including UnliftedNewtypes and DataTypeContexts.
|
|
|
|
|
|
|
|
|
|
| |
This fixes #21479
See Note [Unquantified tyvars in a pattern synonym]
While doing this, I found that some error messages pointed at the
pattern synonym /name/, rather than the /declaration/ so I widened the
SrcSpan to encompass the declaration.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PHASE 1: we never rewrite Concrete# evidence.
This patch migrates all the representation polymorphism checks to
the typechecker, using a new constraint form
Concrete# :: forall k. k -> TupleRep '[]
Whenever a type `ty` must be representation-polymorphic
(e.g. it is the type of an argument to a function), we emit a new
`Concrete# ty` Wanted constraint. If this constraint goes
unsolved, we report a representation-polymorphism error to the user.
The 'FRROrigin' datatype keeps track of the context of the
representation-polymorphism check, for more informative error messages.
This paves the way for further improvements, such as
allowing type families in RuntimeReps and improving the soundness
of typed Template Haskell. This is left as future work (PHASE 2).
fixes #17907 #20277 #20330 #20423 #20426
updates haddock submodule
-------------------------
Metric Decrease:
T5642
-------------------------
|
|
|
|
|
|
| |
When determining whether to default a RuntimeRep or Multiplicity
variable, use isMetaTyVar to distinguish between metavariables
(which can be hidden) and skolems (which cannot).
|
|
|
|
| |
The previous version did not substitute the type used in the scrutinee.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds proper hints to most diagnostic types in the
`GHC.Parser.Errors.Types` module. By "proper" we mean that previous to
this commit the hints were bundled together with the diagnostic message,
whereas now we moved most of them as proper `[GhcHint]` in the
implementation of `diagnosticHints`.
More specifically, this is the list of constructors which now has
proper hints:
* PsErrIllegalBangPattern
* PsWarnOperatorWhitespaceExtConflict
* PsErrLambdaCase
* PsErrIllegalPatSynExport
* PsWarnOperatorWhitespace
* PsErrMultiWayIf
* PsErrIllegalQualifiedDo
* PsErrNumUnderscores
* PsErrLinearFunction
* PsErrIllegalTraditionalRecordSyntax
* PsErrIllegalExplicitNamespace
* PsErrOverloadedRecordUpdateNotEnabled
* PsErrIllegalDataTypeContext
* PsErrSemiColonsInCondExpr
* PsErrSemiColonsInCondCmd
* PsWarnStarIsType
* PsWarnImportPreQualified
* PsErrImportPostQualified
* PsErrEmptyDoubleQuotes
* PsErrIllegalRoleName
* PsWarnStarBinder
For some reason, this patch increases the peak_megabyte_allocated of
the T11545 test to 90 (from a baseline of 80) but that particular test
doesn't emit any parsing diagnostic or hint and the metric increase
happens only for the `aarch64-linux-deb10`.
Metric Increase:
T11545
|
|
|
|
|
|
|
|
|
|
| |
- Fix linearity error with incomplete MultiWayIf (#20023)
- Fix partial pattern binding error message (#20024)
- Remove obsolete test LinearPolyTest
It tested the special typing rule for ($), which was removed
during the implementation of Quick Look 97cff9190d3.
- Fix ticket numbers in linear/*/all.T, they referred to linear types
issue tracker
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Remove fstName, sndName, fstIdKey, sndIdKey - no longer used,
removed from basicKnownKeyNames
- Remove breakpointId, breakpointCondId, opaqueTyCon, unknownTyCon -
they were used in the old implementation of the GHCi debugger
- Fix typos in comments
- Remove outdated comment in Lint.hs
- Use 'LitRubbish' instead of 'RubbishLit' for consistency
- Remove comment about subkinding - superseded by
Note [Kind Constraint and kind Type]
- Mention ticket ID in a linear types error message
- Fix formatting in using-warnings.rst and linear-types.rst
- Remove comment about 'Any' in Dynamic.hs - Dynamic
now uses Typeable + existential instead of Any
- Remove codeGen/should_compile/T13233.hs
This was added by accident, it is not used and T13233 is already in
should_fail
|
|
|
|
|
|
|
|
| |
Metric Increase:
T10370
parsing001
Updates haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This addresses points (1a) and (1b) of #19165.
- Move mkFailExpr to HsToCore/Utils, as it can be shared
- Desugar incomplete patterns and holes to an empty case,
as in Note [Incompleteness and linearity]
- Enable linear linting of desugarer output
- Mark MultConstructor as broken. It fails Lint, but I'd like to fix this
separately.
Metric Decrease:
T6048
|
|
|
|
| |
This is a first step towards #18738.
|
|
|
|
|
| |
The previous code using TyCoMapper could promote the same metavar twice.
Use a set instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When implementing Quick Look I'd failed to remember that overloaded
labels, like #foo, should be treated as a "head", so that they can be
instantiated with Visible Type Application. This caused #19154.
A very similar ticket covers overloaded literals: #19167.
This patch fixes both problems, but (annoyingly, albeit temporarily)
in two different ways.
Overloaded labels
I dealt with overloaded labels by buying fully into the
Rebindable Syntax approach described in GHC.Hs.Expr
Note [Rebindable syntax and HsExpansion].
There is a good overview in GHC.Rename.Expr
Note [Handling overloaded and rebindable constructs].
That module contains much of the payload for this patch.
Specifically:
* Overloaded labels are expanded in the renamer, fixing #19154.
See Note [Overloaded labels] in GHC.Rename.Expr.
* Left and right sections used to have special code paths in the
typechecker and desugarer. Now we just expand them in the
renamer. This is harder than it sounds. See GHC.Rename.Expr
Note [Left and right sections].
* Infix operator applications are expanded in the typechecker,
specifically in GHC.Tc.Gen.App.splitHsApps. See
Note [Desugar OpApp in the typechecker] in that module
* ExplicitLists are expanded in the renamer, when (and only when)
OverloadedLists is on.
* HsIf is expanded in the renamer when (and only when) RebindableSyntax
is on. Reason: the coverage checker treats HsIf specially. Maybe
we could instead expand it unconditionally, and fix up the coverage
checker, but I did not attempt that.
Overloaded literals
Overloaded literals, like numbers (3, 4.2) and strings with
OverloadedStrings, were not working correctly with explicit type
applications (see #19167). Ideally I'd also expand them in the
renamer, like the stuff above, but I drew back on that because they
can occur in HsPat as well, and I did not want to to do the HsExpanded
thing for patterns.
But they *can* now be the "head" of an application in the typechecker,
and hence something like ("foo" @T) works now. See
GHC.Tc.Gen.Head.tcInferOverLit. It's also done a bit more elegantly,
rather than by constructing a new HsExpr and re-invoking the
typechecker. There is some refactoring around tcShortCutLit.
Ultimately there is more to do here, following the Rebindable Syntax
story.
There are a lot of knock-on effects:
* HsOverLabel and ExplicitList no longer need funny (Maybe SyntaxExpr)
fields to support rebindable syntax -- good!
* HsOverLabel, OpApp, SectionL, SectionR all become impossible in the
output of the typecheker, GhcTc; so we set their extension fields to
Void. See GHC.Hs.Expr Note [Constructor cannot occur]
* Template Haskell quotes for HsExpanded is a bit tricky. See
Note [Quotation and rebindable syntax] in GHC.HsToCore.Quote.
* In GHC.HsToCore.Match.viewLExprEq, which groups equal HsExprs for the
purpose of pattern-match overlap checking, I found that dictionary
evidence for the same type could have two different names. Easily
fixed by comparing types not names.
* I did quite a bit of annoying fiddling around in GHC.Tc.Gen.Head and
GHC.Tc.Gen.App to get error message locations and contexts right,
esp in splitHsApps, and the HsExprArg type. Tiresome and not very
illuminating. But at least the tricky, higher order, Rebuilder
function is gone.
* Some refactoring in GHC.Tc.Utils.Monad around contexts and locations
for rebindable syntax.
* Incidentally fixes #19346, because we now print renamed, rather than
typechecked, syntax in error mesages about applications.
The commit removes the vestigial module GHC.Builtin.RebindableNames,
and thus triggers a 2.4% metric decrease for test MultiLayerModules
(#19293).
Metric Decrease:
MultiLayerModules
T12545
|
| |
|
|
|
|
|
|
|
| |
Commit 65721691ce9c (Improve inference with linear types, !4632)
fixed the bug.
Closes #18736.
|
| |
|
|
|
|
|
| |
This fixes test Linear14. The code in Unify.hs was always using
multiplicity Many instead of a new metavariable.
|
|
|
|
|
|
|
| |
This disallows `a %001 -> b`, and makes sure the type literal is
printed from its SourceText so it is clear why.
Closes #18888
|
| |
|
| |
|
| |
|
|
|
|
| |
Patch taken from https://gitlab.haskell.org/ghc/ghc/-/issues/18624#note_300673
|
|
|
|
| |
A follow-up to !4020 (5830a12c46e7227c276a8a71213057595ee4fc04)
|
|
|
|
|
|
|
|
| |
Detect when the user forgets to enable the LinearTypes
extension and produce a better error message.
Steals the (a %m) syntax from TypeOperators, the workaround
is to write (a % m) instead.
|
|
|
|
|
|
| |
Implements GHC Proposal #356
Updates the haddock submodule.
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
Fixes #18439 .
The rhs of the pattern guard was consumed with multiplicity one, while
the pattern assumed it was Many. We use Many everywhere instead.
This is behaviour consistent with that of `case` expression. See #18738.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does two things:
* It refactors GHC.Tc.Errors a bit. In debugging Quick Look I was
forced to look in detail at error messages, and ended up doing a bit
of refactoring, esp in mkTyVarEqErr'. It's still quite a mess, but
a bit better, I think.
* It makes a significant improvement to the kind checking of type and
class declarations. Specifically, we now ensure that if kind
checking fails with an unsolved constraint, all the skolems are in
scope. That wasn't the case before, which led to some obscure error
messages; and occasional failures with "no skolem info" (eg #16245).
Both of these, and the main Quick Look patch itself, affect a /lot/ of
error messages, as you can see from the number of files changed. I've
checked them all; I think they are as good or better than before.
Smaller things
* I documented the various instances of VarBndr better.
See Note [The VarBndr tyep and its uses] in GHC.Types.Var
* Renamed GHC.Tc.Solver.simpl_top to simplifyTopWanteds
* A bit of refactoring in bindExplicitTKTele, to avoid the
footwork with Either. Simpler now.
* Move promoteTyVar from GHC.Tc.Solver to GHC.Tc.Utils.TcMType
Fixes #16245 (comment 211369), memorialised as
typecheck/polykinds/T16245a
Also fixes the three bugs in #18640
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements Quick Look impredicativity (#18126), sticking
very closely to the design in
A quick look at impredicativity, Serrano et al, ICFP 2020
The main change is that a big chunk of GHC.Tc.Gen.Expr has been
extracted to two new modules
GHC.Tc.Gen.App
GHC.Tc.Gen.Head
which deal with typechecking n-ary applications, and the head of
such applications, respectively. Both contain a good deal of
documentation.
Three other loosely-related changes are in this patch:
* I implemented (partly by accident) points (2,3)) of the accepted GHC
proposal "Clean up printing of foralls", namely
https://github.com/ghc-proposals/ghc-proposals/blob/
master/proposals/0179-printing-foralls.rst
(see #16320).
In particular, see Note [TcRnExprMode] in GHC.Tc.Module
- :type instantiates /inferred/, but not /specified/, quantifiers
- :type +d instantiates /all/ quantifiers
- :type +v is killed off
That completes the implementation of the proposal,
since point (1) was done in
commit df08468113ab46832b7ac0a7311b608d1b418c4d
Author: Krzysztof Gogolewski <krzysztof.gogolewski@tweag.io>
Date: Mon Feb 3 21:17:11 2020 +0100
Always display inferred variables using braces
* HsRecFld (which the renamer introduces for record field selectors),
is now preserved by the typechecker, rather than being rewritten
back to HsVar. This is more uniform, and turned out to be more
convenient in the new scheme of things.
* The GHCi debugger uses a non-standard unification that allows the
unification variables to unify with polytypes. We used to hack
this by using ImpredicativeTypes, but that doesn't work anymore
so I introduces RuntimeUnkTv. See Note [RuntimeUnkTv] in
GHC.Runtime.Heap.Inspect
Updates haddock submodule.
WARNING: this patch won't validate on its own. It was too
hard to fully disentangle it from the following patch, on
type errors and kind generalisation.
Changes to tests
* Fixes #9730 (test added)
* Fixes #7026 (test added)
* Fixes most of #8808, except function `g2'` which uses a
section (which doesn't play with QL yet -- see #18126)
Test added
* Fixes #1330. NB Church1.hs subsumes Church2.hs, which is now deleted
* Fixes #17332 (test added)
* Fixes #4295
* This patch makes typecheck/should_run/T7861 fail.
But that turns out to be a pre-existing bug: #18467.
So I have just made T7861 into expect_broken(18467)
|
|
This is the first step towards implementation of the linear types proposal
(https://github.com/ghc-proposals/ghc-proposals/pull/111).
It features
* A language extension -XLinearTypes
* Syntax for linear functions in the surface language
* Linearity checking in Core Lint, enabled with -dlinear-core-lint
* Core-to-core passes are mostly compatible with linearity
* Fields in a data type can be linear or unrestricted; linear fields
have multiplicity-polymorphic constructors.
If -XLinearTypes is disabled, the GADT syntax defaults to linear fields
The following items are not yet supported:
* a # m -> b syntax (only prefix FUN is supported for now)
* Full multiplicity inference (multiplicities are really only checked)
* Decent linearity error messages
* Linear let, where, and case expressions in the surface language
(each of these currently introduce the unrestricted variant)
* Multiplicity-parametric fields
* Syntax for annotating lambda-bound or let-bound with a multiplicity
* Syntax for non-linear/multiple-field-multiplicity records
* Linear projections for records with a single linear field
* Linear pattern synonyms
* Multiplicity coercions (test LinearPolyType)
A high-level description can be found at
https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation
Following the link above you will find a description of the changes made to Core.
This commit has been authored by
* Richard Eisenberg
* Krzysztof Gogolewski
* Matthew Pickering
* Arnaud Spiwack
With contributions from:
* Mark Barbone
* Alexander Vershilov
Updates haddock submodule.
|