| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
Users are supposed to import GHC.Exts rather than GHC.Prim.
Part of #18749.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Multiple home units allows you to load different packages which may depend on
each other into one GHC session. This will allow both GHCi and HLS to support
multi component projects more naturally.
Public Interface
~~~~~~~~~~~~~~~~
In order to specify multiple units, the -unit @⟨filename⟩ flag
is given multiple times with a response file containing the arguments for each unit.
The response file contains a newline separated list of arguments.
```
ghc -unit @unitLibCore -unit @unitLib
```
where the `unitLibCore` response file contains the normal arguments that cabal would pass to `--make` mode.
```
-this-unit-id lib-core-0.1.0.0
-i
-isrc
LibCore.Utils
LibCore.Types
```
The response file for lib, can specify a dependency on lib-core, so then modules in lib can use modules from lib-core.
```
-this-unit-id lib-0.1.0.0
-package-id lib-core-0.1.0.0
-i
-isrc
Lib.Parse
Lib.Render
```
Then when the compiler starts in --make mode it will compile both units lib and lib-core.
There is also very basic support for multiple home units in GHCi, at the
moment you can start a GHCi session with multiple units but only the
:reload is supported. Most commands in GHCi assume a single home unit,
and so it is additional work to work out how to modify the interface to
support multiple loaded home units.
Options used when working with Multiple Home Units
There are a few extra flags which have been introduced specifically for
working with multiple home units. The flags allow a home unit to pretend
it’s more like an installed package, for example, specifying the package
name, module visibility and reexported modules.
-working-dir ⟨dir⟩
It is common to assume that a package is compiled in the directory
where its cabal file resides. Thus, all paths used in the compiler
are assumed to be relative to this directory. When there are
multiple home units the compiler is often not operating in the
standard directory and instead where the cabal.project file is
located. In this case the -working-dir option can be passed which
specifies the path from the current directory to the directory the
unit assumes to be it’s root, normally the directory which contains
the cabal file.
When the flag is passed, any relative paths used by the compiler are
offset by the working directory. Notably this includes -i and
-I⟨dir⟩ flags.
-this-package-name ⟨name⟩
This flag papers over the awkward interaction of the PackageImports
and multiple home units. When using PackageImports you can specify
the name of the package in an import to disambiguate between modules
which appear in multiple packages with the same name.
This flag allows a home unit to be given a package name so that you
can also disambiguate between multiple home units which provide
modules with the same name.
-hidden-module ⟨module name⟩
This flag can be supplied multiple times in order to specify which
modules in a home unit should not be visible outside of the unit it
belongs to.
The main use of this flag is to be able to recreate the difference
between an exposed and hidden module for installed packages.
-reexported-module ⟨module name⟩
This flag can be supplied multiple times in order to specify which
modules are not defined in a unit but should be reexported. The
effect is that other units will see this module as if it was defined
in this unit.
The use of this flag is to be able to replicate the reexported
modules feature of packages with multiple home units.
Offsetting Paths in Template Haskell splices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When using Template Haskell to embed files into your program,
traditionally the paths have been interpreted relative to the directory
where the .cabal file resides. This causes problems for multiple home
units as we are compiling many different libraries at once which have
.cabal files in different directories.
For this purpose we have introduced a way to query the value of the
-working-dir flag to the Template Haskell API. By using this function we
can implement a makeRelativeToProject function which offsets a path
which is relative to the original project root by the value of
-working-dir.
```
import Language.Haskell.TH.Syntax ( makeRelativeToProject )
foo = $(makeRelativeToProject "./relative/path" >>= embedFile)
```
> If you write a relative path in a Template Haskell splice you should use the makeRelativeToProject function so that your library works correctly with multiple home units.
A similar function already exists in the file-embed library. The
function in template-haskell implements this function in a more robust
manner by honouring the -working-dir flag rather than searching the file
system.
Closure Property for Home Units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For tools or libraries using the API there is one very important closure
property which must be adhered to:
> Any dependency which is not a home unit must not (transitively) depend
on a home unit.
For example, if you have three packages p, q and r, then if p depends on
q which depends on r then it is illegal to load both p and r as home
units but not q, because q is a dependency of the home unit p which
depends on another home unit r.
If you are using GHC by the command line then this property is checked,
but if you are using the API then you need to check this property
yourself. If you get it wrong you will probably get some very confusing
errors about overlapping instances.
Limitations of Multiple Home Units
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are a few limitations of the initial implementation which will be smoothed out on user demand.
* Package thinning/renaming syntax is not supported
* More complicated reexports/renaming are not yet supported.
* It’s more common to run into existing linker bugs when loading a
large number of packages in a session (for example #20674, #20689)
* Backpack is not yet supported when using multiple home units.
* Dependency chasing can be quite slow with a large number of
modules and packages.
* Loading wired-in packages as home units is currently not supported
(this only really affects GHC developers attempting to load
template-haskell).
* Barely any normal GHCi features are supported, it would be good to
support enough for ghcid to work correctly.
Despite these limitations, the implementation works already for nearly
all packages. It has been testing on large dependency closures,
including the whole of head.hackage which is a total of 4784 modules
from 452 packages.
Internal Changes
~~~~~~~~~~~~~~~~
* The biggest change is that the HomePackageTable is replaced with the
HomeUnitGraph. The HomeUnitGraph is a map from UnitId to HomeUnitEnv,
which contains information specific to each home unit.
* The HomeUnitEnv contains:
- A unit state, each home unit can have different package db flags
- A set of dynflags, each home unit can have different flags
- A HomePackageTable
* LinkNode: A new node type is added to the ModuleGraph, this is used to
place the linking step into the build plan so linking can proceed in
parralel with other packages being built.
* New invariant: Dependencies of a ModuleGraphNode can be completely
determined by looking at the value of the node. In order to achieve
this, downsweep now performs a more complete job of downsweeping and
then the dependenices are recorded forever in the node rather than
being computed again from the ModSummary.
* Some transitive module calculations are rewritten to use the
ModuleGraph which is more efficient.
* There is always an active home unit, which simplifies modifying a lot
of the existing API code which is unit agnostic (for example, in the
driver).
The road may be bumpy for a little while after this change but the
basics are well-tested.
One small metric increase, which we accept and also submodule update to
haddock which removes ExtendedModSummary.
Closes #10827
-------------------------
Metric Increase:
MultiLayerModules
-------------------------
Co-authored-by: Fendor <power.walross@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The reqlib modifer was supposed to indicate that a test needed a certain
library in order to work. If the library happened to be installed then
the test would run as normal.
However, CI has never run these tests as the packages have not been
installed and we don't want out tests to depend on things which might
get externally broken by updating the compiler.
The new strategy is to run these tests in head.hackage, where the tests
have been cabalised as well as possible. Some tests couldn't be
transferred into the normal style testsuite but it's better than never
running any of the reqlib tests. https://gitlab.haskell.org/ghc/head.hackage/-/merge_requests/169
A few submodules also had reqlib tests and have been updated to remove
it.
Closes #16264 #20032 #17764 #16561
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to make the packages in this repo "reinstallable", we need to
associate source code with a specific packages. Having a top level
`/includes` dir that mixes concerns (which packages' includes?) gets in
the way of this.
To start, I have moved everything to `rts/`, which is mostly correct.
There are a few things however that really don't belong in the rts (like
the generated constants haskell type, `CodeGen.Platform.h`). Those
needed to be manually adjusted.
Things of note:
- No symlinking for sake of windows, so we hard-link at configure time.
- `CodeGen.Platform.h` no longer as `.hs` extension (in addition to
being moved to `compiler/`) so as not to confuse anyone, since it is
next to Haskell files.
- Blanket `-Iincludes` is gone in both build systems, include paths now
more strictly respect per-package dependencies.
- `deriveConstants` has been taught to not require a `--target-os` flag
when generating the platform-agnostic Haskell type. Make takes
advantage of this, but Hadrian has yet to.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In which we add a new code generator to the Glasgow Haskell
Compiler. This codegen supports ELF and Mach-O targets, thus covering
Linux, macOS, and BSDs in principle. It was tested only on macOS and
Linux. The NCG follows a similar structure as the other native code
generators we already have, and should therfore be realtively easy to
follow.
It supports most of the features required for a proper native code
generator, but does not claim to be perfect or fully optimised. There
are still opportunities for optimisations.
Metric Decrease:
ManyAlternatives
ManyConstructors
MultiLayerModules
PmSeriesG
PmSeriesS
PmSeriesT
PmSeriesV
T10421
T10421a
T10858
T11195
T11276
T11303b
T11374
T11822
T12227
T12545
T12707
T13035
T13253
T13253-spj
T13379
T13701
T13719
T14683
T14697
T15164
T15630
T16577
T17096
T17516
T17836
T17836b
T17977
T17977b
T18140
T18282
T18304
T18478
T18698a
T18698b
T18923
T1969
T3064
T5030
T5321FD
T5321Fun
T5631
T5642
T5837
T783
T9198
T9233
T9630
T9872d
T9961
WWRec
Metric Increase:
T4801
|
| |
|
| |
|
|
|
|
|
|
| |
Metric Decrease:
T12150
T12234
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* support detection of slow ghc-bignum backend (to replace the detection
of integer-simple use). There are still some test cases that the
native backend doesn't handle efficiently enough.
* remove tests for GMP only functions that have been removed from
ghc-bignum
* fix test results showing dependent packages (e.g. integer-gmp) or
showing suggested instances
* fix test using Integer/Natural API or showing internal names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously `makefile_test` and `run_command` tests could easily end up
in a situation where they wouldn't be run if the user used the
`only_ways` modifier. The reason is to build the set of a ways to run
the test in we first start with a candidate set determined by the test
type (e.g. `makefile_test`, `compile_run`, etc.) and then filter that
set with the constraints given by the test's modifiers.
`makefile_test` and `run_command` tests' candidate sets were simply
`{normal}`, and consequently most uses of `only_ways` would result in
the test being never run.
To avoid this we rather use all ways as the candidate sets for these
test types. This may result in a few more testcases than we would like
(given that some `run_command` tests are insensitive to way) but this
can be fixed by adding modifiers and we would much rather run too many
tests than too few.
This fixes #16042 and a number of other tests afflicted by the same issue.
However, there were a few cases that required special attention:
* `T14028` is currently failing and is therefore marked as broken due
to #17300
* `T-signals-child` is fragile in the `threaded1` and `threaded2` ways
(tracked in #17307)
|
|
|
|
|
| |
This moves all URL references to Trac tickets to their corresponding
GitLab counterparts.
|
|
|
|
|
| |
This eliminates most uses of run_command in the testsuite in favor of the more
structured makefile_test.
|
|
|
|
| |
This reverts commit 76c8fd674435a652c75a96c85abbf26f1f221876.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The `clean_cmd` and `extra_clean` setup functions don't do anything.
Remove them from .T files.
Created using https://github.com/thomie/refactor-ghc-testsuite. This
diff is a test for the .T-file parser/processor/pretty-printer in that
repository.
find . -name '*.T' -exec ~/refactor-ghc-testsuite/Main "{}" \;
Tests containing inline comments or multiline strings are not modified.
Preparation for #12223.
Test Plan: Harbormaster
Reviewers: austin, hvr, simonmar, mpickering, bgamari
Reviewed By: mpickering
Subscribers: mpickering
Differential Revision: https://phabricator.haskell.org/D3000
GHC Trac Issues: #12223
|
|
|
|
|
|
|
|
|
|
|
| |
These tests no longer compile, because the hmatrix api has completely
changed. Even if we managed to fix the tests, I don't think they would
provided much value, since the ghc/llvm bug from #5054 was not
reproducible in the first place.
Reviewed by: bgamari
Differential Revision: https://phabricator.haskell.org/D2139
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 673efccb3b uncovered a bug in LLVM code generation that produced
LLVM code that the LLVM compiler refused to compile:
{
clpH:
br label %clpH
}
This may well be a bug in LLVM itself. The solution is to keep the
existing entry label and rewrite the function as:
{
clpH:
br label %nPV
nPV:
br label %nPV
}
Thanks to Ben Gamari for pointing me in the right direction on this
one.
Test Plan: Build GHC with BuildFlavour=quick-llvm
Reviewers: hvr, austin, bgamari
Reviewed By: bgamari
Subscribers: thomie
Differential Revision: https://phabricator.haskell.org/D1996
GHC Trac Issues: #11649
|
| |
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
|
|
|
|
| |
Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
Alignment needs to be a compile-time constant. Previously the code
generators had to jump through hoops to ensure this was the case as the
alignment was passed as a CmmExpr in the arguments list. Now we take
care of this up front.
This fixes #8131.
Authored-by: Reid Barton <rwbarton@gmail.com>
Dusted-off-by: Ben Gamari <ben@smart-cactus.org>
Tests for T8131
Test Plan: Validate
Reviewers: rwbarton, austin
Reviewed By: rwbarton, austin
Subscribers: bgamari, carter, thomie
Differential Revision: https://phabricator.haskell.org/D624
GHC Trac Issues: #8131
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary: Signed-off-by: Edward Z. Yang <ezyang@cs.stanford.edu>
Test Plan: validate
Reviewers: austin
Subscribers: carter, thomie
Differential Revision: https://phabricator.haskell.org/D567
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Summary:
This allows to link objects produced with the llvm code generator to be linked with -dead_strip. This applies to at least the iOS cross compiler and OS X compiler.
Signed-off-by: Moritz Angermann <moritz@lichtzwerge.de>
Test Plan: Create a ffi library and link it with -dead_strip. If the resulting binary does not crash, the patch works as advertised.
Reviewers: rwbarton, simonmar, hvr, dterei, mzero, ezyang, austin
Reviewed By: dterei, ezyang, austin
Subscribers: thomie, mzero, simonmar, ezyang, carter
Differential Revision: https://phabricator.haskell.org/D206
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is done as a separate `integer-gmp2` backend library because it
turned out to become a complete rewrite from scratch.
Due to the different (over)allocation scheme and potentially different
accounting (via the new `{shrink,resize}MutableByteArray#` primitives),
some of the nofib benchmarks actually results in increased allocation
numbers (but not necessarily an increase in runtime!). I believe the
allocation numbers could improve if `{resize,shrink}MutableByteArray#`
could be optimised to reallocate in-place more efficiently.
Here are the more apparent changes in the latest nofib comparision
between `integer-gmp` and `integer-gmp2`:
------------------------------------------------------------------
Program Size Allocs Runtime Elapsed TotalMem
------------------------------------------------------------------
...
bernouilli +1.6% +15.3% 0.132 0.132 0.0%
...
cryptarithm1 -2.2% 0.0% -9.7% -9.7% 0.0%
...
fasta -0.7% -0.0% +10.9% +10.9% 0.0%
...
kahan +0.6% +38.9% 0.169 0.169 0.0%
...
lcss -0.7% -0.0% -6.4% -6.4% 0.0%
...
mandel +1.6% +33.6% 0.049 0.049 0.0%
...
pidigits +0.8% +8.5% +3.9% +3.9% 0.0%
power +1.4% -23.8% -18.6% -18.6% -16.7%
...
primetest +1.3% +50.1% 0.085 0.085 0.0%
...
rsa +1.6% +53.4% 0.026 0.026 0.0%
...
scs +1.2% +6.6% +6.5% +6.6% +14.3%
...
symalg +1.0% +9.5% 0.010 0.010 0.0%
...
transform -0.6% -0.0% -5.9% -5.9% 0.0%
...
------------------------------------------------------------------
Min -2.3% -23.8% -18.6% -18.6% -16.7%
Max +1.6% +53.4% +10.9% +10.9% +14.3%
Geometric Mean -0.3% +1.9% -0.8% -0.8% +0.0%
(see P35 / https://phabricator.haskell.org/P35 for full report)
By default, `INTEGER_LIBRARY=integer-gmp2` is active now, which results
in the package `integer-gmp-1.0.0.0` being registered in the package db.
The previous `integer-gmp-0.5.1.0` can be restored by setting
`INTEGER_LIBRARY=integer-gmp` (but will probably be removed altogether
for GHC 7.12). In-tree GMP support has been stolen from the old
`integer-gmp` (while unpatching the custom memory-allocators, as well as
forcing `-fPIC`)
A minor hack to `ghc-cabal` was necessary in order to support two different
`integer-gmp` packages (in different folders) with the same package key.
There will be a couple of follow-up commits re-implementing some features
that were dropped to keep D82 minimal, as well as further
clean-ups/improvements.
More information can be found via #9281 and
https://ghc.haskell.org/trac/ghc/wiki/Design/IntegerGmp2
Reviewed By: austin, rwbarton, simonmar
Differential Revision: https://phabricator.haskell.org/D82
|
|
|
|
| |
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
|
|
|
|
| |
Signed-off-by: Austin Seipp <aseipp@pobox.com>
|
|
|
|
|
|
|
|
| |
This allows them to give framework failures.
I also had to change how setTestOpts works. Now, rather than applying
the options to the directory's "default options", it just stores the
options to be applied for each test (i.e. once we know the test name).
|
|
|
|
| |
This will reduce the number of helper functions that we need
|
| |
|
| |
|
| |
|
|
|
|
| |
Signed-off-by: David Terei <davidterei@gmail.com>
|
| |
|
| |
|
| |
|
|
|