| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements a first step towards #16762 by changing the renamer
to always use `rnImplicitBndrs` to bring implicitly bound type
variables into scope. The main change is in `rnFamInstEqn` and
`bindHsQTyVars`, which previously used _ad hoc_ methods of binding
their implicit tyvars.
There are a number of knock-on consequences:
* One of the reasons that `rnFamInstEqn` used an _ad hoc_ binding
mechanism was to give more precise source locations in
`-Wunused-type-patterns` warnings. (See
https://gitlab.haskell.org/ghc/ghc/issues/16762#note_273343 for an
example of this.) However, these warnings are actually a little
_too_ precise, since implicitly bound type variables don't have
exact binding sites like explicitly bound type variables do.
A similar problem existed for
"`Different names for the same type variable`" errors involving
implicit tyvars bound by `bindHsQTyVars`.
Therefore, we simply accept the less precise (but more accurate)
source locations from `rnImplicitBndrs` in `rnFamInstEqn` and
`bindHsQTyVars`. See
`Note [Source locations for implicitly bound type variables]` in
`GHC.Rename.HsType` for the full story.
* In order for `rnImplicitBndrs` to work in `rnFamInstEqn`, it needs
to be able to look up names from the parent class (in the event
that we are renaming an associated type family instance). As a
result, `rnImplicitBndrs` now takes an argument of type
`Maybe assoc`, which is `Just` in the event that a type family
instance is associated with a class.
* Previously, GHC kept track of three type synonyms for free type
variables in the renamer: `FreeKiTyVars`, `FreeKiTyVarsDups`
(which are allowed to contain duplicates), and
`FreeKiTyVarsNoDups` (which contain no duplicates). However, making
is a distinction between `-Dups` and `-NoDups` is now pointless, as
all code that returns `FreeKiTyVars{,Dups,NoDups}` will eventually
end up being passed to `rnImplicitBndrs`, which removes duplicates.
As a result, I decided to just get rid of `FreeKiTyVarsDups` and
`FreeKiTyVarsNoDups`, leaving only `FreeKiTyVars`.
* The `bindLRdrNames` and `deleteBys` functions are now dead code, so
I took the liberty of removing them.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch simplifies GHC to use simple subsumption.
Ticket #17775
Implements GHC proposal #287
https://github.com/ghc-proposals/ghc-proposals/blob/master/
proposals/0287-simplify-subsumption.rst
All the motivation is described there; I will not repeat it here.
The implementation payload:
* tcSubType and friends become noticably simpler, because it no
longer uses eta-expansion when checking subsumption.
* No deeplyInstantiate or deeplySkolemise
That in turn means that some tests fail, by design; they can all
be fixed by eta expansion. There is a list of such changes below.
Implementing the patch led me into a variety of sticky corners, so
the patch includes several othe changes, some quite significant:
* I made String wired-in, so that
"foo" :: String rather than
"foo" :: [Char]
This improves error messages, and fixes #15679
* The pattern match checker relies on knowing about in-scope equality
constraints, andd adds them to the desugarer's environment using
addTyCsDs. But the co_fn in a FunBind was missed, and for some reason
simple-subsumption ends up with dictionaries there. So I added a
call to addTyCsDs. This is really part of #18049.
* I moved the ic_telescope field out of Implication and into
ForAllSkol instead. This is a nice win; just expresses the code
much better.
* There was a bug in GHC.Tc.TyCl.Instance.tcDataFamInstHeader.
We called checkDataKindSig inside tc_kind_sig, /before/
solveEqualities and zonking. Obviously wrong, easily fixed.
* solveLocalEqualitiesX: there was a whole mess in here, around
failing fast enough. I discovered a bad latent bug where we
could successfully kind-check a type signature, and use it,
but have unsolved constraints that could fill in coercion
holes in that signature -- aargh.
It's all explained in Note [Failure in local type signatures]
in GHC.Tc.Solver. Much better now.
* I fixed a serious bug in anonymous type holes. IN
f :: Int -> (forall a. a -> _) -> Int
that "_" should be a unification variable at the /outer/
level; it cannot be instantiated to 'a'. This was plain
wrong. New fields mode_lvl and mode_holes in TcTyMode,
and auxiliary data type GHC.Tc.Gen.HsType.HoleMode.
This fixes #16292, but makes no progress towards the more
ambitious #16082
* I got sucked into an enormous refactoring of the reporting of
equality errors in GHC.Tc.Errors, especially in
mkEqErr1
mkTyVarEqErr
misMatchMsg
misMatchMsgOrCND
In particular, the very tricky mkExpectedActualMsg function
is gone.
It took me a full day. But the result is far easier to understand.
(Still not easy!) This led to various minor improvements in error
output, and an enormous number of test-case error wibbles.
One particular point: for occurs-check errors I now just say
Can't match 'a' against '[a]'
rather than using the intimidating language of "occurs check".
* Pretty-printing AbsBinds
Tests review
* Eta expansions
T11305: one eta expansion
T12082: one eta expansion (undefined)
T13585a: one eta expansion
T3102: one eta expansion
T3692: two eta expansions (tricky)
T2239: two eta expansions
T16473: one eta
determ004: two eta expansions (undefined)
annfail06: two eta (undefined)
T17923: four eta expansions (a strange program indeed!)
tcrun035: one eta expansion
* Ambiguity check at higher rank. Now that we have simple
subsumption, a type like
f :: (forall a. Eq a => Int) -> Int
is no longer ambiguous, because we could write
g :: (forall a. Eq a => Int) -> Int
g = f
and it'd typecheck just fine. But f's type is a bit
suspicious, and we might want to consider making the
ambiguity check do a check on each sub-term. Meanwhile,
these tests are accepted, whereas they were previously
rejected as ambiguous:
T7220a
T15438
T10503
T9222
* Some more interesting error message wibbles
T13381: Fine: one error (Int ~ Exp Int)
rather than two (Int ~ Exp Int, Exp Int ~ Int)
T9834: Small change in error (improvement)
T10619: Improved
T2414: Small change, due to order of unification, fine
T2534: A very simple case in which a change of unification order
means we get tow unsolved constraints instead of one
tc211: bizarre impredicative tests; just accept this for now
Updates Cabal and haddock submodules.
Metric Increase:
T12150
T12234
T5837
haddock.base
Metric Decrease:
haddock.compiler
haddock.Cabal
haddock.base
Merge note: This appears to break the
`UnliftedNewtypesDifficultUnification` test. It has been marked as
broken in the interest of merging.
(cherry picked from commit 66b7b195cb3dce93ed5078b80bf568efae904cc5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
TypeInType came with a new function: decideKindGeneralisationPlan.
This type-level counterpart to the term-level decideGeneralisationPlan
chose whether or not a kind should be generalized. The thinking was
that if `let` should not be generalized, then kinds shouldn't either
(under the same circumstances around -XMonoLocalBinds).
However, this is too conservative -- the situation described in the
motivation for "let should be be generalized" does not occur in types.
This commit thus removes decideKindGeneralisationPlan, always
generalizing.
One consequence is that tc_hs_sig_type_and_gen no longer calls
solveEqualities, which reports all unsolved constraints, instead
relying on the solveLocalEqualities in tcImplicitTKBndrs. An effect
of this is that reporing kind errors gets delayed more frequently.
This seems to be a net benefit in error reporting; often, alongside
a kind error, the type error is now reported (and users might find
type errors easier to understand).
Some of these errors ended up at the top level, where it was
discovered that the GlobalRdrEnv containing the definitions in the
local module was not in the TcGblEnv, and thus errors were reported
with qualified names unnecessarily. This commit rejiggers some of
the logic around captureTopConstraints accordingly.
One error message (typecheck/should_fail/T1633)
is a regression, mentioning the name of a default method. However,
that problem is already reported as #10087, its solution is far from
clear, and so I'm not addressing it here.
This commit fixes #15141. As it's an internal refactor, there is
no concrete test case for it.
Along the way, we no longer need the hsib_closed field of
HsImplicitBndrs (it was used only in decideKindGeneralisationPlan)
and so it's been removed, simplifying the datatype structure.
Along the way, I removed code in the validity checker that looks
at coercions. This isn't related to this patch, really (though
it was, at one point), but it's an improvement, so I kept it.
This updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the ideas originally put forward in
"System FC with Explicit Kind Equality" (ICFP'13).
There are several noteworthy changes with this patch:
* We now have casts in types. These change the kind
of a type. See new constructor `CastTy`.
* All types and all constructors can be promoted.
This includes GADT constructors. GADT pattern matches
take place in type family equations. In Core,
types can now be applied to coercions via the
`CoercionTy` constructor.
* Coercions can now be heterogeneous, relating types
of different kinds. A coercion proving `t1 :: k1 ~ t2 :: k2`
proves both that `t1` and `t2` are the same and also that
`k1` and `k2` are the same.
* The `Coercion` type has been significantly enhanced.
The documentation in `docs/core-spec/core-spec.pdf` reflects
the new reality.
* The type of `*` is now `*`. No more `BOX`.
* Users can write explicit kind variables in their code,
anywhere they can write type variables. For backward compatibility,
automatic inference of kind-variable binding is still permitted.
* The new extension `TypeInType` turns on the new user-facing
features.
* Type families and synonyms are now promoted to kinds. This causes
trouble with parsing `*`, leading to the somewhat awkward new
`HsAppsTy` constructor for `HsType`. This is dispatched with in
the renamer, where the kind `*` can be told apart from a
type-level multiplication operator. Without `-XTypeInType` the
old behavior persists. With `-XTypeInType`, you need to import
`Data.Kind` to get `*`, also known as `Type`.
* The kind-checking algorithms in TcHsType have been significantly
rewritten to allow for enhanced kinds.
* The new features are still quite experimental and may be in flux.
* TODO: Several open tickets: #11195, #11196, #11197, #11198, #11203.
* TODO: Update user manual.
Tickets addressed: #9017, #9173, #7961, #10524, #8566, #11142.
Updates Haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch began as a modest refactoring of HsType and friends, to
clarify and tidy up exactly where quantification takes place in types.
Although initially driven by making the implementation of wildcards more
tidy (and fixing a number of bugs), I gradually got drawn into a pretty
big process, which I've been doing on and off for quite a long time.
There is one compiler performance regression as a result of all
this, in perf/compiler/T3064. I still need to look into that.
* The principal driving change is described in Note [HsType binders]
in HsType. Well worth reading!
* Those data type changes drive almost everything else. In particular
we now statically know where
(a) implicit quantification only (LHsSigType),
e.g. in instance declaratios and SPECIALISE signatures
(b) implicit quantification and wildcards (LHsSigWcType)
can appear, e.g. in function type signatures
* As part of this change, HsForAllTy is (a) simplified (no wildcards)
and (b) split into HsForAllTy and HsQualTy. The two contructors
appear when and only when the correponding user-level construct
appears. Again see Note [HsType binders].
HsExplicitFlag disappears altogether.
* Other simplifications
- ExprWithTySig no longer needs an ExprWithTySigOut variant
- TypeSig no longer needs a PostRn name [name] field
for wildcards
- PatSynSig records a LHsSigType rather than the decomposed
pieces
- The mysterious 'GenericSig' is now 'ClassOpSig'
* Renamed LHsTyVarBndrs to LHsQTyVars
* There are some uninteresting knock-on changes in Haddock,
because of the HsSyn changes
I also did a bunch of loosely-related changes:
* We already had type synonyms CoercionN/CoercionR for nominal and
representational coercions. I've added similar treatment for
TcCoercionN/TcCoercionR
mkWpCastN/mkWpCastN
All just type synonyms but jolly useful.
* I record-ised ForeignImport and ForeignExport
* I improved the (poor) fix to Trac #10896, by making
TcTyClsDecls.checkValidTyCl recover from errors, but adding a
harmless, abstract TyCon to the envt if so.
* I did some significant refactoring in RnEnv.lookupSubBndrOcc,
for reasons that I have (embarrassingly) now totally forgotten.
It had to do with something to do with import and export
Updates haddock submodule.
|
|
|
|
|
|
|
| |
This matches GCC's choice of Unicode quotation marks (i.e. U+2018 and U+2019)
and therefore looks more familiar on the console. This addresses #2507.
Signed-off-by: Herbert Valerio Riedel <hvr@gnu.org>
|
| |
|
|
|