| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
The testsuite output now contains diagnostic codes, so many tests need
to be updated at once.
We decided it was best to keep the diagnostic codes in the testsuite
output, so that contributors don't inadvertently make changes to the
diagnostic codes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes the unification of concrete type variables.
The subtlety was that unifying concrete metavariables is more subtle
than other metavariables, as decomposition is possible. See the Note
[Unifying concrete metavariables], which explains how we unify a
concrete type variable with a type 'ty' by concretising 'ty', using
the function 'GHC.Tc.Utils.Concrete.concretise'.
This can be used to perform an eager syntactic check for concreteness,
allowing us to remove the IsRefl# special predicate. Instead of emitting
two constraints `rr ~# concrete_tv` and `IsRefl# rr concrete_tv`, we
instead concretise 'rr'. If this succeeds we can fill 'concrete_tv',
and otherwise we directly emit an error message to the typechecker
environment instead of deferring. We still need the error message
to be passed on (instead of directly thrown), as we might benefit from
further unification in which case we will need to zonk the stored types.
To achieve this, we change the 'wc_holes' field of 'WantedConstraints'
to 'wc_errors', which stores general delayed errors. For the moement,
a delayed error is either a hole, or a syntactic equality error.
hasFixedRuntimeRep_MustBeRefl is now hasFixedRuntimeRep_syntactic, and
hasFixedRuntimeRep has been refactored to directly return the most
useful coercion for PHASE 2 of FixedRuntimeRep.
This patch also adds a field ir_frr to the InferResult datatype,
holding a value of type Maybe FRROrigin. When this value is not
Nothing, this means that we must fill the ir_ref field with a type
which has a fixed RuntimeRep.
When it comes time to fill such an ExpType, we ensure that the type
has a fixed RuntimeRep by performing a representation-polymorphism
check with the given FRROrigin
This is similar to what we already do to ensure we fill an Infer
ExpType with a type of the correct TcLevel.
This allows us to properly perform representation-polymorphism checks
on 'Infer' 'ExpTypes'.
The fillInferResult function had to be moved to GHC.Tc.Utils.Unify
to avoid a cyclic import now that it calls hasFixedRuntimeRep.
This patch also changes the code in matchExpectedFunTys to make use
of the coercions, which is now possible thanks to the previous change.
This implements PHASE 2 of FixedRuntimeRep in some situations.
For example, the test cases T13105 and T17536b are now both accepted.
Fixes #21239 and #21325
-------------------------
Metric Decrease:
T18223
T5631
-------------------------
|
|
As #20837 pointed out, `isLiftedType_maybe` returned `Just False` in
many situations where it should return `Nothing`, because it didn't
take into account type families or type variables.
In this patch, we fix this issue. We rename `isLiftedType_maybe` to
`typeLevity_maybe`, which now returns a `Levity` instead of a boolean.
We now return `Nothing` for types with kinds of the form
`TYPE (F a1 ... an)` for a type family `F`, as well as
`TYPE (BoxedRep l)` where `l` is a type variable.
This fix caused several other problems, as other parts of the compiler
were relying on `isLiftedType_maybe` returning a `Just` value, and were
now panicking after the above fix. There were two main situations in
which panics occurred:
1. Issues involving the let/app invariant. To uphold that invariant,
we need to know whether something is lifted or not. If we get an
answer of `Nothing` from `isLiftedType_maybe`, then we don't know
what to do. As this invariant isn't particularly invariant, we
can change the affected functions to not panic, e.g. by behaving
the same in the `Just False` case and in the `Nothing` case
(meaning: no observable change in behaviour compared to before).
2. Typechecking of data (/newtype) constructor patterns. Some programs
involving patterns with unknown representations were accepted, such
as T20363. Now that we are stricter, this caused further issues,
culminating in Core Lint errors. However, the behaviour was
incorrect the whole time; the incorrectness only being revealed by
this change, not triggered by it.
This patch fixes this by overhauling where the representation
polymorphism involving pattern matching are done. Instead of doing
it in `tcMatches`, we instead ensure that the `matchExpected`
functions such as `matchExpectedFunTys`, `matchActualFunTySigma`,
`matchActualFunTysRho` allow return argument pattern types which
have a fixed RuntimeRep (as defined in Note [Fixed RuntimeRep]).
This ensures that the pattern matching code only ever handles types
with a known runtime representation. One exception was that
patterns with an unknown representation type could sneak in via
`tcConPat`, which points to a missing representation-polymorphism
check, which this patch now adds.
This means that we now reject the program in #20363, at least until
we implement PHASE 2 of FixedRuntimeRep (allowing type families in
RuntimeRep positions). The aforementioned refactoring, in which
checks have been moved to `matchExpected` functions, is a first
step in implementing PHASE 2 for patterns.
Fixes #20837
|