summaryrefslogtreecommitdiff
path: root/testsuite/tests/simplCore/should_compile/T18013.stderr
Commit message (Collapse)AuthorAgeFilesLines
* Demand: Format Call SubDemands `Cn(sd)` as `C(n,sd)` (#22231)wip/T22231Sebastian Graf2022-09-291-1/+1
| | | | | | | | Justification in #22231. Short form: In a demand like `1C1(C1(L))` it was too easy to confuse which `1` belongs to which `C`. Now that should be more obvious. Fixes #22231
* Refactor UnfoldingSource and IfaceUnfoldingSimon Peyton Jones2022-09-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | I finally got tired of the way that IfaceUnfolding reflected a previous structure of unfoldings, not the current one. This MR refactors UnfoldingSource and IfaceUnfolding to be simpler and more consistent. It's largely just a refactor, but in UnfoldingSource (which moves to GHC.Types.Basic, since it is now used in IfaceSyn too), I distinguish between /user-specified/ and /system-generated/ stable unfoldings. data UnfoldingSource = VanillaSrc | StableUserSrc -- From a user-specified pragma | StableSystemSrc -- From a system-generated unfolding | CompulsorySrc This has a minor effect in CSE (see the use of isisStableUserUnfolding in GHC.Core.Opt.CSE), which I tripped over when working on specialisation, but it seems like a Good Thing to know anyway.
* Assume at least one evaluation for nested SubDemands (#21081, #21133)wip/T21081Sebastian Graf2022-05-031-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | See the new `Note [SubDemand denotes at least one evaluation]`. A demand `n :* sd` on a let binder `x=e` now means > "`x` was evaluated `n` times and in any program trace it is evaluated, `e` is > evaluated deeply in sub-demand `sd`." The "any time it is evaluated" premise is what this patch adds. As a result, we get better nested strictness. For example (T21081) ```hs f :: (Bool, Bool) -> (Bool, Bool) f pr = (case pr of (a,b) -> a /= b, True) -- before: <MP(L,L)> -- after: <MP(SL,SL)> g :: Int -> (Bool, Bool) g x = let y = let z = odd x in (z,z) in f y ``` The change in demand signature "before" to "after" allows us to case-bind `z` here. Similarly good things happen for the `sd` in call sub-demands `Cn(sd)`, which allows for more eta-reduction (which is only sound with `-fno-pedantic-bottoms`, albeit). We also fix #21085, a surprising inconsistency with `Poly` to `Call` sub-demand expansion. In an attempt to fix a regression caused by less inlining due to eta-reduction in T15426, I eta-expanded the definition of `elemIndex` and `elemIndices`, thus fixing #21345 on the go. The main point of this patch is that it fixes #21081 and #21133. Annoyingly, I discovered that more precise demand signatures for join points can transform a program into a lazier program if that join point gets floated to the top-level, see #21392. There is no simple fix at the moment, but !5349 might. Thus, we accept a ~5% regression in `MultiLayerModulesTH_OneShot`, where #21392 bites us in `addListToUniqDSet`. T21392 reliably reproduces the issue. Surprisingly, ghc/alloc perf on Windows improves much more than on other jobs, by 0.4% in the geometric mean and by 2% in T16875. Metric Increase: MultiLayerModulesTH_OneShot Metric Decrease: T16875
* Increase type sharingBen Gamari2021-11-171-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | Fixes #20541 by making mkTyConApp do more sharing of types. In particular, replace * BoxedRep Lifted ==> LiftedRep * BoxedRep Unlifted ==> UnliftedRep * TupleRep '[] ==> ZeroBitRep * TYPE ZeroBitRep ==> ZeroBitType In each case, the thing on the right is a type synonym for the thing on the left, declared in ghc-prim:GHC.Types. See Note [Using synonyms to compress types] in GHC.Core.Type. The synonyms for ZeroBitRep and ZeroBitType are new, but absolutely in the same spirit as the other ones. (These synonyms are mainly for internal use, though the programmer can use them too.) I also renamed GHC.Core.Ty.Rep.isVoidTy to isZeroBitTy, to be compatible with the "zero-bit" nomenclature above. See discussion on !6806. There is a tricky wrinkle: see GHC.Core.Types Note [Care using synonyms to compress types] Compiler allocation decreases by up to 0.8%.
* DmdAnal: Implement Boxity Analysis (#19871)Sebastian Graf2021-10-241-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch fixes some abundant reboxing of `DynFlags` in `GHC.HsToCore.Match.Literal.warnAboutOverflowedLit` (which was the topic of #19407) by introducing a Boxity analysis to GHC, done as part of demand analysis. This allows to accurately capture ad-hoc unboxing decisions previously made in worker/wrapper in demand analysis now, where the boxity info can propagate through demand signatures. See the new `Note [Boxity analysis]`. The actual fix for #19407 is described in `Note [No lazy, Unboxed demand in demand signature]`, but `Note [Finalising boxity for demand signature]` is probably a better entry-point. To support the fix for #19407, I had to change (what was) `Note [Add demands for strict constructors]` a bit (now `Note [Unboxing evaluated arguments]`). In particular, we now take care of it in `finaliseBoxity` (which is only called from demand analaysis) instead of `wantToUnboxArg`. I also had to resurrect `Note [Product demands for function body]` and rename it to `Note [Unboxed demand on function bodies returning small products]` to avoid huge regressions in `join004` and `join007`, thereby fixing #4267 again. See the updated Note for details. A nice side-effect is that the worker/wrapper transformation no longer needs to look at strictness info and other bits such as `InsideInlineableFun` flags (needed for `Note [Do not unbox class dictionaries]`) at all. It simply collects boxity info from argument demands and interprets them with a severely simplified `wantToUnboxArg`. All the smartness is in `finaliseBoxity`, which could be moved to DmdAnal completely, if it wasn't for the call to `dubiousDataConInstArgTys` which would be awkward to export. I spent some time figuring out the reason for why `T16197` failed prior to my amendments to `Note [Unboxing evaluated arguments]`. After having it figured out, I minimised it a bit and added `T16197b`, which simply compares computed strictness signatures and thus should be far simpler to eyeball. The 12% ghc/alloc regression in T11545 is because of the additional `Boxity` field in `Poly` and `Prod` that results in more allocation during `lubSubDmd` and `plusSubDmd`. I made sure in the ticky profiles that the number of calls to those functions stayed the same. We can bear such an increase here, as we recently improved it by -68% (in b760c1f). T18698* regress slightly because there is more unboxing of dictionaries happening and that causes Lint (mostly) to allocate more. Fixes #19871, #19407, #4267, #16859, #18907 and #13331. Metric Increase: T11545 T18698a T18698b Metric Decrease: T12425 T16577 T18223 T18282 T4267 T9961
* Add `-dsuppress-core-sizes` flag (#20342)Sylvain Henry2021-09-281-0/+6
| | | | | This flag is used to remove the output of core stats per binding in Core dumps.
* Only dump Core stats when requested to do so (#20342)Sylvain Henry2021-09-081-6/+0
|
* Define returnA = idOleg Grenrus2021-09-061-2/+4
|
* WorkWrap: Remove mkWWargs (#19874)Sebastian Graf2021-06-271-4/+4
| | | | | | | | | | | | | | | | | | | | `mkWWargs`'s job was pushing casts inwards and doing eta expansion to match the arity with the number of argument demands we w/w for. Nowadays, we use the Simplifier to eta expand to arity. In fact, in recent years we have even seen the eta expansion done by w/w as harmful, see Note [Don't eta expand in w/w]. If a function hasn't enough manifest lambdas, don't w/w it! What purpose does `mkWWargs` serve in this world? Not a great one, it turns out! I could remove it by pulling some important bits, notably Note [Freshen WW arguments] and Note [Join points and beta-redexes]. Result: We reuse the freshened binder names of the wrapper in the worker where possible (see testuite changes), much nicer! In order to avoid scoping errors due to lambda-bound unfoldings in worker arguments, we zap those unfoldings now. In doing so, we fix #19766. Fixes #19874.
* Improve pretty-printing of coercionsSimon Peyton Jones2021-06-181-4/+26
| | | | | | With -dsuppress-coercions, it's still good to be able to see the type of the coercion. This patch prints the type. Maybe we should have a flag to control this too.
* Worker/wrapper: Refactor CPR WW to work for nested CPR (#18174)wip/nested-cpr-wwSebastian Graf2021-04-201-8/+8
| | | | | | | | | | | | | | | | | | | | | In another small step towards bringing a manageable variant of Nested CPR into GHC, this patch refactors worker/wrapper to be able to exploit Nested CPR signatures. See the new Note [Worker/wrapper for CPR]. The nested code path is currently not triggered, though, because all signatures that we annotate are still flat. So purely a refactoring. I am very confident that it works, because I ripped it off !1866 95% unchanged. A few test case outputs changed, but only it's auxiliary names only. I also added test cases for #18109 and #18401. There's a 2.6% metric increase in T13056 after a rebase, caused by an additional Simplifier run. It appears b1d0b9c saw a similar additional iteration. I think it's just a fluke. Metric Increase: T13056
* Always generate ModDetails from ModIfaceMatthew Pickering2021-04-141-2/+2
| | | | | | | | | | | | | | | | | | This vastly reduces memory usage when compiling with `--make` mode, from about 900M when compiling Cabal to about 300M. As a matter of uniformity, it also ensures that reading from an interface performs the same as using the in-memory cache. We can also delete all the horrible knot-tying in updateIdInfos. Goes some way to fixing #13586 Accept new output of tests fixing some bugs along the way ------------------------- Metric Decrease: T12545 -------------------------
* Implement BoxedRep proposalwip/boxed-repBen Gamari2021-03-071-2/+2
| | | | | | | | | | | | | | | | | | | | | | | This implements the BoxedRep proposal, refactoring the `RuntimeRep` hierarchy from: ```haskell data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ... ``` to ```haskell data RuntimeRep = BoxedRep Levity | ... data Levity = Lifted | Unlifted ``` Updates binary, haddock submodules. Closes #17526. Metric Increase: T12545
* DmdAnal: Better syntax for demand signatures (#19016)Sebastian Graf2021-03-031-1/+1
| | | | | | | | | The update of the Outputable instance resulted in a slew of documentation changes within Notes that used the old syntax. The most important doc changes are to `Note [Demand notation]` and the user's guide. Fixes #19016.
* WorkWrap: Unbox constructors with existentials (#18982)Sebastian Graf2020-12-231-9/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Consider ```hs data Ex where Ex :: e -> Int -> Ex f :: Ex -> Int f (Ex e n) = e `seq` n + 1 ``` Worker/wrapper should build the following worker for `f`: ```hs $wf :: forall e. e -> Int# -> Int# $wf e n = e `seq` n +# 1# ``` But previously it didn't, because `Ex` binds an existential. This patch lifts that condition. That entailed having to instantiate existential binders in `GHC.Core.Opt.WorkWrap.Utils.mkWWstr` via `GHC.Core.Utils.dataConRepFSInstPat`, requiring a bit of a refactoring around what is now `DataConPatContext`. CPR W/W still won't unbox DataCons with existentials. See `Note [Which types are unboxed?]` for details. I also refactored the various `tyCon*DataCon(s)_maybe` functions in `GHC.Core.TyCon`, deleting some of them which are no longer needed (`isDataProductType_maybe` and `isDataSumType_maybe`). I cleaned up a couple of call sites, some of which weren't very explicit about whether they cared for existentials or not. The test output of `T18013` changed, because we now unbox the `Rule` data type. Its constructor carries existential state and will be w/w'd now. In the particular example, the worker functions inlines right back into the wrapper, which then unnecessarily has a (quite big) stable unfolding. I think this kind of fallout is inevitable; see also Note [Don't w/w inline small non-loop-breaker things]. There's a new regression test case `T18982`. Fixes #18982.
* Revert "Implement BoxedRep proposal"Ben Gamari2020-12-151-2/+2
| | | | | | This was inadvertently merged. This reverts commit 6c2eb2232b39ff4720fda0a4a009fb6afbc9dcea.
* Implement BoxedRep proposalAndrew Martin2020-12-141-2/+2
| | | | | | | | | | | | | | | | | | This implements the BoxedRep proposal, refacoring the `RuntimeRep` hierarchy from: ```haskell data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ... ``` to ```haskell data RuntimeRep = BoxedRep Levity | ... data Levity = Lifted | Unlifted ``` Closes #17526.
* Optimise nullary type constructor usagewip/tyconapp-optsBen Gamari2020-12-141-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | During the compilation of programs GHC very frequently deals with the `Type` type, which is a synonym of `TYPE 'LiftedRep`. This patch teaches GHC to avoid expanding the `Type` synonym (and other nullary type synonyms) during type comparisons, saving a good amount of work. This optimisation is described in `Note [Comparing nullary type synonyms]`. To maximize the impact of this optimisation, we introduce a few special-cases to reduce `TYPE 'LiftedRep` to `Type`. See `Note [Prefer Type over TYPE 'LiftedPtrRep]`. Closes #17958. Metric Decrease: T18698b T1969 T12227 T12545 T12707 T14683 T3064 T5631 T5642 T9020 T9630 T9872a T13035 haddock.Cabal haddock.base
* Revert "Optimise nullary type constructor usage"Ben Gamari2020-12-141-2/+2
| | | | | | This was inadvertently merged. This reverts commit 7e9debd4ceb068effe8ac81892d2cabcb8f55850.
* Optimise nullary type constructor usageBen Gamari2020-12-141-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | During the compilation of programs GHC very frequently deals with the `Type` type, which is a synonym of `TYPE 'LiftedRep`. This patch teaches GHC to avoid expanding the `Type` synonym (and other nullary type synonyms) during type comparisons, saving a good amount of work. This optimisation is described in `Note [Comparing nullary type synonyms]`. To maximize the impact of this optimisation, we introduce a few special-cases to reduce `TYPE 'LiftedRep` to `Type`. See `Note [Prefer Type over TYPE 'LiftedPtrRep]`. Closes #17958. Metric Decrease: T18698b T1969 T12227 T12545 T12707 T14683 T3064 T5631 T5642 T9020 T9630 T9872a T13035 haddock.Cabal haddock.base
* Demand: Interleave usage and strictness demands (#18903)Sebastian Graf2020-11-201-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As outlined in #18903, interleaving usage and strictness demands not only means a more compact demand representation, but also allows us to express demands that we weren't easily able to express before. Call demands are *relative* in the sense that a call demand `Cn(cd)` on `g` says "`g` is called `n` times. *Whenever `g` is called*, the result is used according to `cd`". Example from #18903: ```hs h :: Int -> Int h m = let g :: Int -> (Int,Int) g 1 = (m, 0) g n = (2 * n, 2 `div` n) {-# NOINLINE g #-} in case m of 1 -> 0 2 -> snd (g m) _ -> uncurry (+) (g m) ``` Without the interleaved representation, we would just get `L` for the strictness demand on `g`. Now we are able to express that whenever `g` is called, its second component is used strictly in denoting `g` by `1C1(P(1P(U),SP(U)))`. This would allow Nested CPR to unbox the division, for example. Fixes #18903. While fixing regressions, I also discovered and fixed #18957. Metric Decrease: T13253-spj
* Reduce result discount in conSizeSimon Peyton Jones2020-07-131-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Ticket #18282 showed that the result discount given by conSize was massively too large. This patch reduces that discount to a constant 10, which just balances the cost of the constructor application itself. Note [Constructor size and result discount] elaborates, as does the ticket #18282. Reducing result discount reduces inlining, which affects perf. I found that I could increase the unfoldingUseThrehold from 80 to 90 in compensation; in combination with the result discount change I get these overall nofib numbers: Program Size Allocs Runtime Elapsed TotalMem -------------------------------------------------------------------------------- boyer -0.2% +5.4% -3.2% -3.4% 0.0% cichelli -0.1% +5.9% -11.2% -11.7% 0.0% compress2 -0.2% +9.6% -6.0% -6.8% 0.0% cryptarithm2 -0.1% -3.9% -6.0% -5.7% 0.0% gamteb -0.2% +2.6% -13.8% -14.4% 0.0% genfft -0.1% -1.6% -29.5% -29.9% 0.0% gg -0.0% -2.2% -17.2% -17.8% -20.0% life -0.1% -2.2% -62.3% -63.4% 0.0% mate +0.0% +1.4% -5.1% -5.1% -14.3% parser -0.2% -2.1% +7.4% +6.7% 0.0% primetest -0.2% -12.8% -14.3% -14.2% 0.0% puzzle -0.2% +2.1% -10.0% -10.4% 0.0% rsa -0.2% -11.7% -3.7% -3.8% 0.0% simple -0.2% +2.8% -36.7% -38.3% -2.2% wheel-sieve2 -0.1% -19.2% -48.8% -49.2% -42.9% -------------------------------------------------------------------------------- Min -0.4% -19.2% -62.3% -63.4% -42.9% Max +0.3% +9.6% +7.4% +11.0% +16.7% Geometric Mean -0.1% -0.3% -17.6% -18.0% -0.7% I'm ok with these numbers, remembering that this change removes an *exponential* increase in code size in some in-the-wild cases. I investigated compress2. The difference is entirely caused by this function no longer inlining WriteRoutines.$woutputCodes = \ (w :: [CodeEvent]) -> let result_s1Sr = case WriteRoutines.outputCodes_$s$woutput w 0# 0# 8# 9# of (# ww1, ww2 #) -> (ww1, ww2) in (# case result_s1Sr of (x, _) -> map @Int @Char WriteRoutines.outputCodes1 x , case result_s1Sr of { (_, y) -> y } #) It was right on the cusp before, driven by the excessive result discount. Too bad! Happily, the compiler/perf tests show a number of improvements: T12227 compiler bytes-alloc -6.6% T12545 compiler bytes-alloc -4.7% T13056 compiler bytes-alloc -3.3% T15263 runtime bytes-alloc -13.1% T17499 runtime bytes-alloc -14.3% T3294 compiler bytes-alloc -1.1% T5030 compiler bytes-alloc -11.7% T9872a compiler bytes-alloc -2.0% T9872b compiler bytes-alloc -1.2% T9872c compiler bytes-alloc -1.5% Metric Decrease: T12227 T12545 T13056 T15263 T17499 T3294 T5030 T9872a T9872b T9872c
* Linear types (#15981)Krzysztof Gogolewski2020-06-171-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This is the first step towards implementation of the linear types proposal (https://github.com/ghc-proposals/ghc-proposals/pull/111). It features * A language extension -XLinearTypes * Syntax for linear functions in the surface language * Linearity checking in Core Lint, enabled with -dlinear-core-lint * Core-to-core passes are mostly compatible with linearity * Fields in a data type can be linear or unrestricted; linear fields have multiplicity-polymorphic constructors. If -XLinearTypes is disabled, the GADT syntax defaults to linear fields The following items are not yet supported: * a # m -> b syntax (only prefix FUN is supported for now) * Full multiplicity inference (multiplicities are really only checked) * Decent linearity error messages * Linear let, where, and case expressions in the surface language (each of these currently introduce the unrestricted variant) * Multiplicity-parametric fields * Syntax for annotating lambda-bound or let-bound with a multiplicity * Syntax for non-linear/multiple-field-multiplicity records * Linear projections for records with a single linear field * Linear pattern synonyms * Multiplicity coercions (test LinearPolyType) A high-level description can be found at https://ghc.haskell.org/trac/ghc/wiki/LinearTypes/Implementation Following the link above you will find a description of the changes made to Core. This commit has been authored by * Richard Eisenberg * Krzysztof Gogolewski * Matthew Pickering * Arnaud Spiwack With contributions from: * Mark Barbone * Alexander Vershilov Updates haddock submodule.
* CprAnal: Don't attach CPR sigs to expandable bindings (#18154)Sebastian Graf2020-05-131-3/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead, look through expandable unfoldings in `cprTransform`. See the new Note [CPR for expandable unfoldings]: ``` Long static data structures (whether top-level or not) like xs = x1 : xs1 xs1 = x2 : xs2 xs2 = x3 : xs3 should not get CPR signatures, because they * Never get WW'd, so their CPR signature should be irrelevant after analysis (in fact the signature might even be harmful for that reason) * Would need to be inlined/expanded to see their constructed product * Recording CPR on them blows up interface file sizes and is redundant with their unfolding. In case of Nested CPR, this blow-up can be quadratic! But we can't just stop giving DataCon application bindings the CPR property, for example fac 0 = 1 fac n = n * fac (n-1) fac certainly has the CPR property and should be WW'd! But FloatOut will transform the first clause to lvl = 1 fac 0 = lvl If lvl doesn't have the CPR property, fac won't either. But lvl doesn't have a CPR signature to extrapolate into a CPR transformer ('cprTransform'). So instead we keep on cprAnal'ing through *expandable* unfoldings for these arity 0 bindings via 'cprExpandUnfolding_maybe'. In practice, GHC generates a lot of (nested) TyCon and KindRep bindings, one for each data declaration. It's wasteful to attach CPR signatures to each of them (and intractable in case of Nested CPR). ``` Fixes #18154.
* Mark DataCon wrappers CONLIKEAlexis King2020-04-221-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | Now that DataCon wrappers don’t inline until phase 0 (see commit b78cc64e923716ac0512c299f42d4d0012306c05), it’s important that case-of-known-constructor and RULE matching be able to see saturated applications of DataCon wrappers in unfoldings. Making them conlike is a natural way to do it, since they are, in fact, precisely the sort of thing the CONLIKE pragma exists to solve. Fixes #18012. This also bumps the version of the parsec submodule to incorporate a patch that avoids a metric increase on the haddock perf tests. The increase was not really a flaw in this patch, as parsec was implicitly relying on inlining heuristics. The patch to parsec just adds some INLINABLE pragmas, and we get a nice performance bump out of it (well beyond the performance we lost from this patch). Metric Decrease: T12234 WWRec haddock.Cabal haddock.base haddock.compiler
* Add an INLINE pragma to Control.Category.>>>Alexis King2020-04-121-0/+210
This fixes #18013 by adding INLINE pragmas to both Control.Category.>>> and GHC.Desugar.>>>. The functional change in this patch is tiny (just two lines of pragmas!), but an accompanying Note explains in gory detail what’s going on.