| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
| |
Ensure it is ready for -Wincomplete-uni-patterns and
-Wincomplete-record-updates in -Wall
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Issue #18914 revealed that `GeneralizedNewtypeDeriving` would generate code
that mentions unbound type variables, which is dangerously fragile. The
problem (and fix) is described in the new `Wrinkle: Use HsOuterExplicit`
in `Note [GND and QuantifiedConstraints]`. The gist of it: make sure to
put the top-level `forall`s in `deriving`-generated instance signatures in an
`HsOuterExplicit` to ensure that they scope over the bodies of methods
correctly. A side effect of this process is that it will expand any type
synonyms in the instance signature, which will surface any `forall`s that
are hidden underneath type synonyms (such as in the test case for #18914).
While I was in town, I also performed some maintenance on `NewHsTypeX`, which
powers `GeneralizedNewtypeDeriving`:
* I renamed `NewHsTypeX` to `HsCoreTy`, which more accurately describes its
intended purpose (#15706). I also made `HsCoreTy` a type synonym instead of
a newtype, as making it a distinct data type wasn't buying us much.
* To make sure that mistakes similar to #18914 do not occur later, I added an
additional validity check when renaming `HsCoreTy`s that complains if an
`HsCoreTy`s contains an out-of-scope type variable. See the new
`Note [Renaming HsCoreTys]` in `GHC.Rename.HsType` for the details.
Fixes #15706. Fixes #18914. Bumps the `haddock` submodule.
|
|
|
|
| |
To adapt haddock for the nullary tyconapp optimisation patch.
|
| |
|
|
|
|
| |
Updates haddock submodule to revert a commit that does not build.
|
|
|
|
|
|
| |
This was inadvertently merged.
This reverts commit 6c2eb2232b39ff4720fda0a4a009fb6afbc9dcea.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements the BoxedRep proposal, refacoring the `RuntimeRep`
hierarchy from:
```haskell
data RuntimeRep = LiftedPtrRep | UnliftedPtrRep | ...
```
to
```haskell
data RuntimeRep = BoxedRep Levity | ...
data Levity = Lifted | Unlifted
```
Closes #17526.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During the compilation of programs GHC very frequently deals with
the `Type` type, which is a synonym of `TYPE 'LiftedRep`. This patch
teaches GHC to avoid expanding the `Type` synonym (and other nullary
type synonyms) during type comparisons, saving a good amount of work.
This optimisation is described in `Note [Comparing nullary type
synonyms]`.
To maximize the impact of this optimisation, we introduce a few
special-cases to reduce `TYPE 'LiftedRep` to `Type`. See
`Note [Prefer Type over TYPE 'LiftedPtrRep]`.
Closes #17958.
Metric Decrease:
T18698b
T1969
T12227
T12545
T12707
T14683
T3064
T5631
T5642
T9020
T9630
T9872a
T13035
haddock.Cabal
haddock.base
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The naive way of putting out n characters of indent would be something
like `hPutStr hdl (replicate n ' ')`. However this is quite inefficient
as we allocate an absurd number of strings consisting of simply spaces
as we don't cache them.
To improve on this we now track if we can simply write ascii spaces via
hPutBuf instead. This is the case when running with -ddump-to-file where
we force the encoding to be UTF8.
This avoids both the cost of going through encoding as well as avoiding
allocation churn from all the white space. Instead we simply use hPutBuf
on a preallocated unlifted string.
When dumping stg like this:
> nofib/spectral/simple/Main.hs -fforce-recomp -ddump-stg-final -ddump-to-file -c +RTS -s
Allocations went from 1,778 MB to 1,702MB. About a 4% reduction of
allocation! I did not measure the difference in runtime but expect it
to be similar.
Bumps the haddock submodule since the interface of GHC's Pretty
slightly changed.
-------------------------
Metric Decrease:
T12227
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The unit database cache, the home unit and the unit state were stored in
DynFlags while they ought to be stored in the compiler session state
(HscEnv). This patch fixes this.
It introduces a new UnitEnv type that should be used in the future to
handle separate unit environments (especially host vs target units).
Related to #17957
Bump haddock submodule
|
|
|
|
|
|
| |
This was inadvertently merged.
This reverts commit 7e9debd4ceb068effe8ac81892d2cabcb8f55850.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
During the compilation of programs GHC very frequently deals with
the `Type` type, which is a synonym of `TYPE 'LiftedRep`. This patch
teaches GHC to avoid expanding the `Type` synonym (and other nullary
type synonyms) during type comparisons, saving a good amount of work.
This optimisation is described in `Note [Comparing nullary type
synonyms]`.
To maximize the impact of this optimisation, we introduce a few
special-cases to reduce `TYPE 'LiftedRep` to `Type`. See
`Note [Prefer Type over TYPE 'LiftedPtrRep]`.
Closes #17958.
Metric Decrease:
T18698b
T1969
T12227
T12545
T12707
T14683
T3064
T5631
T5642
T9020
T9630
T9872a
T13035
haddock.Cabal
haddock.base
|
|
|
|
|
| |
The haddock submodule is also updated so that it understands the changes
to patterns.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch redesigns the flattener to simplify type family applications
directly instead of using flattening meta-variables and skolems. The key new
innovation is the CanEqLHS type and the new CEqCan constraint (Ct). A CanEqLHS
is either a type variable or exactly-saturated type family application; either
can now be rewritten using a CEqCan constraint in the inert set.
Because the flattener no longer reduces all type family applications to
variables, there was some performance degradation if a lengthy type family
application is now flattened over and over (not making progress). To
compensate, this patch contains some extra optimizations in the flattener,
leading to a number of performance improvements.
Close #18875.
Close #18910.
There are many extra parts of the compiler that had to be affected in writing
this patch:
* The family-application cache (formerly the flat-cache) sometimes stores
coercions built from Given inerts. When these inerts get kicked out, we must
kick out from the cache as well. (This was, I believe, true previously, but
somehow never caused trouble.) Kicking out from the cache requires adding a
filterTM function to TrieMap.
* This patch obviates the need to distinguish "blocking" coercion holes from
non-blocking ones (which, previously, arose from CFunEqCans). There is thus
some simplification around coercion holes.
* Extra commentary throughout parts of the code I read through, to preserve
the knowledge I gained while working.
* A change in the pure unifier around unifying skolems with other types.
Unifying a skolem now leads to SurelyApart, not MaybeApart, as documented
in Note [Binding when looking up instances] in GHC.Core.InstEnv.
* Some more use of MCoercion where appropriate.
* Previously, class-instance lookup automatically noticed that e.g. C Int was
a "unifier" to a target [W] C (F Bool), because the F Bool was flattened to
a variable. Now, a little more care must be taken around checking for
unifying instances.
* Previously, tcSplitTyConApp_maybe would split (Eq a => a). This is silly,
because (=>) is not a tycon in Haskell. Fixed now, but there are some
knock-on changes in e.g. TrieMap code and in the canonicaliser.
* New function anyFreeVarsOf{Type,Co} to check whether a free variable
satisfies a certain predicate.
* Type synonyms now remember whether or not they are "forgetful"; a forgetful
synonym drops at least one argument. This is useful when flattening; see
flattenView.
* The pattern-match completeness checker invokes the solver. This invocation
might need to look through newtypes when checking representational equality.
Thus, the desugarer needs to keep track of the in-scope variables to know
what newtype constructors are in scope. I bet this bug was around before but
never noticed.
* Extra-constraints wildcards are no longer simplified before printing.
See Note [Do not simplify ConstraintHoles] in GHC.Tc.Solver.
* Whether or not there are Given equalities has become slightly subtler.
See the new HasGivenEqs datatype.
* Note [Type variable cycles in Givens] in GHC.Tc.Solver.Canonical
explains a significant new wrinkle in the new approach.
* See Note [What might match later?] in GHC.Tc.Solver.Interact, which
explains the fix to #18910.
* The inert_count field of InertCans wasn't actually used, so I removed
it.
Though I (Richard) did the implementation, Simon PJ was very involved
in design and review.
This updates the Haddock submodule to avoid #18932 by adding
a type signature.
-------------------------
Metric Decrease:
T12227
T5030
T9872a
T9872b
T9872c
Metric Increase:
T9872d
-------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This replaces all Word<N> = W<N># Word# and Int<N> = I<N># Int# with
Word<N> = W<N># Word<N># and Int<N> = I<N># Int<N>#, thus providing us
with properly sized primitives in the codegenerator instead of pretending
they are all full machine words.
This came up when implementing darwinpcs for arm64. The darwinpcs reqires
us to pack function argugments in excess of registers on the stack. While
most procedure call standards (pcs) assume arguments are just passed in
8 byte slots; and thus the caller does not know the exact signature to make
the call, darwinpcs requires us to adhere to the prototype, and thus have
the correct sizes. If we specify CInt in the FFI call, it should correspond
to the C int, and not just be Word sized, when it's only half the size.
This does change the expected output of T16402 but the new result is no
less correct as it eliminates the narrowing (instead of the `and` as was
previously done).
Bumps the array, bytestring, text, and binary submodules.
Co-Authored-By: Ben Gamari <ben@well-typed.com>
Metric Increase:
T13701
T14697
|
|
|
|
|
|
| |
Also bumps directory, Cabal, hpc, time, and unix submodules.
Closes #18847.
|
|
|
|
|
|
|
|
|
|
| |
Loaded plugins have nothing to do in DynFlags so this patch moves them
into HscEnv (session state).
"DynFlags plugins" become "Driver plugins" to still be able to register
static plugins.
Bump haddock submodule
|
|
|
|
|
|
|
|
| |
This addes the necessary logic to support aarch64 on elf, as well
as aarch64 on mach-o, which Apple calls arm64.
We change architecture name to AArch64, which is the official arm
naming scheme.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The use of `tcSplitForAllTyVars` in `tcDataFamInstHeader` was the immediate
cause of #18939, and replacing it with a new `tcSplitForAllInvisTyVars`
function (which behaves like `tcSplitForAllTyVars` but only splits invisible
type variables) fixes the issue. However, this led me to realize that _most_
uses of `tcSplitForAllTyVars` in GHC really ought to be
`tcSplitForAllInvisTyVars` instead. While I was in town, I opted to replace
most uses of `tcSplitForAllTys` with `tcSplitForAllTysInvis` to reduce the
likelihood of such bugs in the future.
I say "most uses" above since there is one notable place where we _do_ want
to use `tcSplitForAllTyVars`: in `GHC.Tc.Validity.forAllTyErr`, which produces
the "`Illegal polymorphic type`" error message if you try to use a higher-rank
`forall` without having `RankNTypes` enabled. Here, we really do want to split
all `forall`s, not just invisible ones, or we run the risk of giving an
inaccurate error message in the newly added `T18939_Fail` test case.
I debated at some length whether I wanted to name the new function
`tcSplitForAllInvisTyVars` or `tcSplitForAllTyVarsInvisible`, but in the end,
I decided that I liked the former better. For consistency's sake, I opted to
rename the existing `splitPiTysInvisible` and `splitPiTysInvisibleN` functions
to `splitInvisPiTys` and `splitPiTysInvisN`, respectively, so that they use the
same naming convention. As a consequence, this ended up requiring a `haddock`
submodule bump.
Fixes #18939.
|
|
|
|
| |
The previous merge mistakenly reverted it.
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This refactors the GHC AST to remove `HsImplicitBndrs` and replace it with
`HsOuterTyVarBndrs`, a type which records whether the outermost quantification
in a type is explicit (i.e., with an outermost, invisible `forall`) or
implicit. As a result of this refactoring, it is now evident in the AST where
the `forall`-or-nothing rule applies: it's all the places that use
`HsOuterTyVarBndrs`. See the revamped `Note [forall-or-nothing rule]` in
`GHC.Hs.Type` (previously in `GHC.Rename.HsType`).
Moreover, the places where `ScopedTypeVariables` brings lexically scoped type
variables into scope are a subset of the places that adhere to the
`forall`-or-nothing rule, so this also makes places that interact with
`ScopedTypeVariables` easier to find. See the revamped
`Note [Lexically scoped type variables]` in `GHC.Hs.Type` (previously in
`GHC.Tc.Gen.Sig`).
`HsOuterTyVarBndrs` are used in type signatures (see `HsOuterSigTyVarBndrs`)
and type family equations (see `HsOuterFamEqnTyVarBndrs`). The main difference
between the former and the latter is that the former cares about specificity
but the latter does not.
There are a number of knock-on consequences:
* There is now a dedicated `HsSigType` type, which is the combination of
`HsOuterSigTyVarBndrs` and `HsType`. `LHsSigType` is now an alias for an
`XRec` of `HsSigType`.
* Working out the details led us to a substantial refactoring of
the handling of explicit (user-written) and implicit type-variable
bindings in `GHC.Tc.Gen.HsType`.
Instead of a confusing family of higher order functions, we now
have a local data type, `SkolemInfo`, that controls how these
binders are kind-checked.
It remains very fiddly, not fully satisfying. But it's better
than it was.
Fixes #16762. Bumps the Haddock submodule.
Co-authored-by: Simon Peyton Jones <simonpj@microsoft.com>
Co-authored-by: Richard Eisenberg <rae@richarde.dev>
Co-authored-by: Zubin Duggal <zubin@cmi.ac.in>
|
| |
| |
| |
| |
| | |
Previously these were mostly undocumented and was ripe for potential
inconsistencies.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Haskell98 and GADT constructors both use `HsConDeclDetails`, which includes
`InfixCon`. But `InfixCon` is never used for GADT constructors, which results
in an awkward unrepresentable state. This removes the unrepresentable state by:
* Renaming the existing `HsConDeclDetails` synonym to `HsConDeclH98Details`,
which emphasizes the fact that it is now only used for Haskell98-style data
constructors, and
* Creating a new `HsConDeclGADTDetails` data type with `PrefixConGADT` and
`RecConGADT` constructors that closely resemble `PrefixCon` and `InfixCon`
in `HsConDeclH98Details`. The key difference is that `HsConDeclGADTDetails`
lacks any way to represent infix constructors.
The rest of the patch is refactoring to accommodate the new structure of
`HsConDecl{H98,GADT}Details`. Some highlights:
* The `getConArgs` and `hsConDeclArgTys` functions have been removed, as
there is no way to implement these functions uniformly for all
`ConDecl`s. For the most part, their previous call sites now
pattern match on the `ConDecl`s directly and do different things for
`ConDeclH98`s and `ConDeclGADT`s.
I did introduce one new function to make the transition easier:
`getRecConArgs_maybe`, which extracts the arguments from a `RecCon(GADT)`.
This is still possible since `RecCon(GADT)`s still use the same representation
in both `HsConDeclH98Details` and `HsConDeclGADTDetails`, and since the
pattern that `getRecConArgs_maybe` implements is used in several places,
I thought it worthwhile to factor it out into its own function.
* Previously, the `con_args` fields in `ConDeclH98` and `ConDeclGADT` were
both of type `HsConDeclDetails`. Now, the former is of type
`HsConDeclH98Details`, and the latter is of type `HsConDeclGADTDetails`,
which are distinct types. As a result, I had to rename the `con_args` field
in `ConDeclGADT` to `con_g_args` to make it typecheck.
A consequence of all this is that the `con_args` field is now partial, so
using `con_args` as a top-level field selector is dangerous. (Indeed, Haddock
was using `con_args` at the top-level, which caused it to crash at runtime
before I noticed what was wrong!) I decided to add a disclaimer in the 9.2.1
release notes to advertise this pitfall.
Fixes #18844. Bumps the `haddock` submodule.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This fixes #18723 by:
* Moving the existing `GHC.Tc.Gen.HsType.bigConstraintTuple` validity
check to `GHC.Rename.Utils.checkCTupSize` for consistency with
`GHC.Rename.Utils.checkTupSize`, and
* Using `check(C)TupSize` when checking tuple _types_, in addition
to checking names, expressions, and patterns.
Note that I put as many of these checks as possible in the typechecker so
that GHC can properly distinguish between boxed and constraint tuples. The
exception to this rule is checking names, which I perform in the renamer
(in `GHC.Rename.Env`) so that we can rule out `(,, ... ,,)` and
`''(,, ... ,,)` alike in one fell swoop.
While I was in town, I also removed the `HsConstraintTuple` and
`HsBoxedTuple` constructors of `HsTupleSort`, which are functionally
unused. This requires a `haddock` submodule bump.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
I was working on making DynFlags stateless (#17957), especially by
storing loaded plugins into HscEnv instead of DynFlags. It turned out to
be complicated because HscEnv is in GHC.Driver.Types but LoadedPlugin
isn't: it is in GHC.Driver.Plugins which depends on GHC.Driver.Types. I
didn't feel like introducing yet another hs-boot file to break the loop.
Additionally I remember that while we introduced the module hierarchy
(#13009) we talked about splitting GHC.Driver.Types because it contained
various unrelated types and functions, but we never executed. I didn't
feel like making GHC.Driver.Types bigger with more unrelated Plugins
related types, so finally I bit the bullet and split GHC.Driver.Types.
As a consequence this patch moves a lot of things. I've tried to put
them into appropriate modules but nothing is set in stone.
Several other things moved to avoid loops.
* Removed Binary instances from GHC.Utils.Binary for random compiler
things
* Moved Typeable Binary instances into GHC.Utils.Binary.Typeable: they
import a lot of things that users of GHC.Utils.Binary don't want to
depend on.
* put everything related to Units/Modules under GHC.Unit:
GHC.Unit.Finder, GHC.Unit.Module.{ModGuts,ModIface,Deps,etc.}
* Created several modules under GHC.Types: GHC.Types.Fixity, SourceText,
etc.
* Split GHC.Utils.Error (into GHC.Types.Error)
* Finally removed GHC.Driver.Types
Note that this patch doesn't put loaded plugins into HscEnv. It's left
for another patch.
Bump haddock submodule
|
|/
|
|
| |
Also bumps upper bounds on base in boot libraries (incl. submodules).
|
|
|
|
|
|
|
|
|
|
|
| |
The linear arrow can be parsed as `%1 ->` or a direct single token unicode
equivalent.
Make sure that this distinction is captured in the parsed AST by using
IsUnicodeSyntax where it appears, and introduce a new API Annotation,
AnnMult to represent its location when unicode is not used.
Updated haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements two related warnings:
-Woperator-whitespace-ext-conflict
warns on uses of infix operators that would be parsed
differently were a particular GHC extension enabled
-Woperator-whitespace
warns on prefix, suffix, and tight infix uses of infix
operators
Updates submodules: haddock, containers.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit removes the separate kind 'Nat' and enables promotion
of type 'Natural' for using as type literal.
It partially solves #10776
Now the following code will be successfully typechecked:
data C = MkC Natural
type CC = MkC 1
Before this change we had to create the separate type for promotion
data C = MkC Natural
data CP = MkCP Nat
type CC = MkCP 1
But CP is uninhabited in terms.
For backward compatibility type synonym `Nat` has been made:
type Nat = Natural
The user's documentation and tests have been updated.
The haddock submodule also have been updated.
|
|
|
|
|
|
|
| |
The HomeUnitId is only used by the Cmm parser and this one has access to
the DynFlags, so it can grab the UnitId of the HomeUnit from them.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Metric Decrease:
Naperian
T10421
T10421a
T10547
T12150
T12234
T12425
T13035
T18140
T18304
T5837
T6048
T13253-spj
T18282
T18223
T3064
T9961
Metric Increase
T13701
HFSKJH
|
|
|
|
| |
[skip ci]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Haskell and Cmm parsers/lexers now report errors and warnings using ADTs
defined in GHC.Parser.Errors. They can be printed using functions in
GHC.Parser.Errors.Ppr.
Some of the errors provide hints with a separate ADT (e.g. to suggest to
turn on some extension). For now, however, hints are not consistent
across all messages. For example some errors contain the hints in the
main message. I didn't want to change any message with this patch. I
expect these changes to be discussed and implemented later.
Surprisingly, this patch enhances performance. On CI
(x86_64/deb9/hadrian, ghc/alloc):
parsing001 -11.5%
T13719 -2.7%
MultiLayerModules -3.5%
Naperian -3.1%
Bump haddock submodule
Metric Decrease:
MultiLayerModules
Naperian
T13719
parsing001
|
|
|
|
| |
Necessary for recent Win32 bump.
|
|
|
|
| |
Bump haddock submodule
|
|
|
|
|
|
| |
Implements GHC Proposal #356
Updates the haddock submodule.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements Quick Look impredicativity (#18126), sticking
very closely to the design in
A quick look at impredicativity, Serrano et al, ICFP 2020
The main change is that a big chunk of GHC.Tc.Gen.Expr has been
extracted to two new modules
GHC.Tc.Gen.App
GHC.Tc.Gen.Head
which deal with typechecking n-ary applications, and the head of
such applications, respectively. Both contain a good deal of
documentation.
Three other loosely-related changes are in this patch:
* I implemented (partly by accident) points (2,3)) of the accepted GHC
proposal "Clean up printing of foralls", namely
https://github.com/ghc-proposals/ghc-proposals/blob/
master/proposals/0179-printing-foralls.rst
(see #16320).
In particular, see Note [TcRnExprMode] in GHC.Tc.Module
- :type instantiates /inferred/, but not /specified/, quantifiers
- :type +d instantiates /all/ quantifiers
- :type +v is killed off
That completes the implementation of the proposal,
since point (1) was done in
commit df08468113ab46832b7ac0a7311b608d1b418c4d
Author: Krzysztof Gogolewski <krzysztof.gogolewski@tweag.io>
Date: Mon Feb 3 21:17:11 2020 +0100
Always display inferred variables using braces
* HsRecFld (which the renamer introduces for record field selectors),
is now preserved by the typechecker, rather than being rewritten
back to HsVar. This is more uniform, and turned out to be more
convenient in the new scheme of things.
* The GHCi debugger uses a non-standard unification that allows the
unification variables to unify with polytypes. We used to hack
this by using ImpredicativeTypes, but that doesn't work anymore
so I introduces RuntimeUnkTv. See Note [RuntimeUnkTv] in
GHC.Runtime.Heap.Inspect
Updates haddock submodule.
WARNING: this patch won't validate on its own. It was too
hard to fully disentangle it from the following patch, on
type errors and kind generalisation.
Changes to tests
* Fixes #9730 (test added)
* Fixes #7026 (test added)
* Fixes most of #8808, except function `g2'` which uses a
section (which doesn't play with QL yet -- see #18126)
Test added
* Fixes #1330. NB Church1.hs subsumes Church2.hs, which is now deleted
* Fixes #17332 (test added)
* Fixes #4295
* This patch makes typecheck/should_run/T7861 fail.
But that turns out to be a pre-existing bug: #18467.
So I have just made T7861 into expect_broken(18467)
|
|
|
|
|
|
| |
Bumps haskeline and haddock submodules.
(cherry picked from commit f218cfc92f7b1a1e01190851972bb9a0e0f3c682)
|
|
|
|
| |
Also bumps Cabal, directory
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
@alanz pointed out on ghc-devs that the payload of this pragma does
not appear to be used anywhere.
I (@bgamari) did some digging and traced the pragma's addition back to
d386e0d2 (way back in 2006!).
It appears that it was intended to be used by code generators for use
in informing the code coveraging checker about generated code
provenance. When it was added it used the pragma's "payload" fields as
source location information to build an "ExternalBox". However, it
looks like this was dropped a year later in 55a5d8d9. At this point
it seems like the pragma serves no useful purpose.
Given that it also is not documented, I think we should remove it.
Updates haddock submodule
Closes #18639
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
FastStrings can be compared in 2 ways: by Unique or lexically. We don't
want to bless one particular way with an "Ord" instance because it leads
to bugs (#18562) or to suboptimal code (e.g. using lexical comparison
while a Unique comparison would suffice).
UTF-8 encoding has the advantage that sorting strings by their encoded
bytes also sorts them by their Unicode code points, without having to
decode the actual code points. BUT GHC uses Modified UTF-8 which
diverges from UTF-8 by encoding \0 as 0xC080 instead of 0x00 (to avoid
null bytes in the middle of a String so that the string can still be
null-terminated). This patch adds a new `utf8CompareShortByteString`
function that performs sorting by bytes but that also takes Modified
UTF-8 into account. It is much more performant than decoding the strings
into [Char] to perform comparisons (which we did in the previous patch).
Bump haddock submodule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Add three pseudoops to primops.txt.pp, so that Haddock renders
the documentation
- Update comments
- Remove special case for "->" - it's no longer exported from GHC.Prim
- Remove reference to Note [Compiling GHC.Prim] - the ad-hoc fix is no
longer there after updates to levity polymorphism.
- Document GHC.Prim
- Remove the comment that lazy is levity-polymorphic.
As far as I can tell, it never was: in 80e399639,
only the unfolding was given an open type variable.
- Remove haddock hack in GHC.Magic - no longer neccessary after
adding realWorld# to primops.txt.pp.
|
|
|
|
|
|
|
|
|
| |
There were four categories of primops: Monadic, Dyadic, Compare, GenPrimOp.
The compiler does not treat Monadic and Dyadic in any special way,
we can just replace them with GenPrimOp.
Compare is still used in isComparisonPrimOp.
|
|
|
|
| |
Addresses #18422.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since Backpack the "home unit" is much more involved than what it was
before (just an identifier obtained with `-this-unit-id`). Now it is
used in conjunction with `-component-id` and `-instantiated-with` to
configure module instantiations and to detect if we are type-checking an
indefinite unit or compiling a definite one.
This patch introduces a new HomeUnit datatype which is much easier to
understand. Moreover to make GHC support several packages in the same
instances, we will need to handle several HomeUnits so having a
dedicated (documented) type is helpful.
Finally in #14335 we will also need to handle the case where we have no
HomeUnit at all because we are only loading existing interfaces for
plugins which live in a different space compared to units used to
produce target code. Several functions will have to be refactored to
accept "Maybe HomeUnit" parameters instead of implicitly querying the
HomeUnit fields in DynFlags. Having a dedicated type will make this
easier.
Bump haddock submodule
|
|
|
|
|
|
|
|
|
| |
- put panic related functions into GHC.Utils.Panic
- put trace related functions using DynFlags in GHC.Driver.Ppr
One step closer making Outputable fully independent of DynFlags.
Bump haddock submodule
|
| |
|