| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
Metric Decrease:
haddock.compiler
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements a part of GHC Proposal #229 that covers five
operators:
* the bang operator (!)
* the tilde operator (~)
* the at operator (@)
* the dollar operator ($)
* the double dollar operator ($$)
Based on surrounding whitespace, these operators are disambiguated into
bang patterns, lazy patterns, strictness annotations, type
applications, splices, and typed splices.
This patch doesn't cover the (-) operator or the -Woperator-whitespace
warning, which are left as future work.
|
| |
|
| |
|
|
|
|
| |
This fixes the Darwin build.
|
|
|
|
| |
Including Phyx's backport of the process changes fixing #17480.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
* Make sure files are being read/written in UTF-8. Set encoding while writing
HTML output. Also set encoding while writing and reading .tix files although
we don't yet have a ticket complaining that this poses problems.
* Set encoding in html header to utf8
* Upgrade to new version of 'hpc' library and reuse `readFileUtf8`
and `writeFileUtf8` functions
* Update git submodule for `hpc`
* Bump up `hpc` executable version
Co-authored-by: Ben Gamari <ben@smart-cactus.org>
|
|
|
|
| |
Bumps haddock submodule.
|
|
|
|
|
| |
Metric Increase:
T4801
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously an import cycle between Type and TyCoRep meant that several
functions in TyCoRep ended up SOURCE import coreView. This is quite
unfortunate as coreView is intended to be fused into a larger pattern
match and not incur an extra call.
Fix this with a bit of restructuring:
* Move the functions in `TyCoRep` which depend upon things in `Type`
into `Type`
* Fold contents of `Kind` into `Type` and turn `Kind` into a simple
wrapper re-exporting kind-ish things from `Type`
* Clean up the redundant imports that popped up as a result
Closes #17441.
Metric Decrease:
T4334
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This checks the configuration about python3-sphinx.
We need python3-sphinx instead of python2-sphinx to build documentation.
The approach is as follows:
* Check python3 version with custom `conf.py` invoked from
sphinx-build` executable
* Place custom `conf.py` into new `utils/check-sphinx` directory
If sphinx is for python2 not python3, it's treated as config ERROR
instead of WARN.
See also #17346 and #17356.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since the Trees That Grow effort started, we had `type LPat = Pat`.
This is so that `SrcLoc`s would only be annotated in GHC's AST, which is
the reason why all GHC passes use the extension constructor `XPat` to
attach source locations. See #15495 for the design discussion behind
that.
But now suddenly there are `XPat`s everywhere!
There are several functions which dont't cope with `XPat`s by either
crashing (`hsPatType`) or simply returning incorrect results
(`collectEvVarsPat`).
This issue was raised in #17330. I also came up with a rather clean and
type-safe solution to the problem: We define
```haskell
type family XRec p (f :: * -> *) = r | r -> p f
type instance XRec (GhcPass p) f = Located (f (GhcPass p))
type instance XRec TH f = f p
type LPat p = XRec p Pat
```
This is a rather modular embedding of the old "ping-pong" style, while
we only pay for the `Located` wrapper within GHC. No ping-ponging in
a potential Template Haskell AST, for example. Yet, we miss no case
where we should've handled a `SrcLoc`: `hsPatType` and
`collectEvVarsPat` are not callable at an `LPat`.
Also, this gets rid of one indirection in `Located` variants:
Previously, we'd have to go through `XPat` and `Located` to get from
`LPat` to the wrapped `Pat`. Now it's just `Located` again.
Thus we fix #17330.
|
|
|
|
|
| |
This reverts commit aa31ceaf7568802590f73a740ffbc8b800096342 as
suggested in #17392.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
with equality constraints
In #17304, Richard and Simon dicovered that using `-XFlexibleInstances`
for `Outputable` instances of AST data types means users can provide orphan
`Outputable` instances for passes other than `GhcPass`.
Type inference doesn't currently to suffer, and Richard gave an example
in #17304 that shows how rare a case would be where the slightly worse
type inference would matter.
So I went ahead with the refactoring, attempting to fix #17304.
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This introduces a concurrent mark & sweep garbage collector to manage the old
generation. The concurrent nature of this collector typically results in
significantly reduced maximum and mean pause times in applications with large
working sets.
Due to the large and intricate nature of the change I have opted to
preserve the fully-buildable history, including merge commits, which is
described in the "Branch overview" section below.
Collector design
================
The full design of the collector implemented here is described in detail
in a technical note
> B. Gamari. "A Concurrent Garbage Collector For the Glasgow Haskell
> Compiler" (2018)
This document can be requested from @bgamari.
The basic heap structure used in this design is heavily inspired by
> K. Ueno & A. Ohori. "A fully concurrent garbage collector for
> functional programs on multicore processors." /ACM SIGPLAN Notices/
> Vol. 51. No. 9 (presented at ICFP 2016)
This design is intended to allow both marking and sweeping
concurrent to execution of a multi-core mutator. Unlike the Ueno design,
which requires no global synchronization pauses, the collector
introduced here requires a stop-the-world pause at the beginning and end
of the mark phase.
To avoid heap fragmentation, the allocator consists of a number of
fixed-size /sub-allocators/. Each of these sub-allocators allocators into
its own set of /segments/, themselves allocated from the block
allocator. Each segment is broken into a set of fixed-size allocation
blocks (which back allocations) in addition to a bitmap (used to track
the liveness of blocks) and some additional metadata (used also used
to track liveness).
This heap structure enables collection via mark-and-sweep, which can be
performed concurrently via a snapshot-at-the-beginning scheme (although
concurrent collection is not implemented in this patch).
Implementation structure
========================
The majority of the collector is implemented in a handful of files:
* `rts/Nonmoving.c` is the heart of the beast. It implements the entry-point
to the nonmoving collector (`nonmoving_collect`), as well as the allocator
(`nonmoving_allocate`) and a number of utilities for manipulating the heap.
* `rts/NonmovingMark.c` implements the mark queue functionality, update
remembered set, and mark loop.
* `rts/NonmovingSweep.c` implements the sweep loop.
* `rts/NonmovingScav.c` implements the logic necessary to scavenge the
nonmoving heap.
Branch overview
===============
```
* wip/gc/opt-pause:
| A variety of small optimisations to further reduce pause times.
|
* wip/gc/compact-nfdata:
| Introduce support for compact regions into the non-moving
|\ collector
| \
| \
| | * wip/gc/segment-header-to-bdescr:
| | | Another optimization that we are considering, pushing
| | | some segment metadata into the segment descriptor for
| | | the sake of locality during mark
| | |
| * | wip/gc/shortcutting:
| | | Support for indirection shortcutting and the selector optimization
| | | in the non-moving heap.
| | |
* | | wip/gc/docs:
| |/ Work on implementation documentation.
| /
|/
* wip/gc/everything:
| A roll-up of everything below.
|\
| \
| |\
| | \
| | * wip/gc/optimize:
| | | A variety of optimizations, primarily to the mark loop.
| | | Some of these are microoptimizations but a few are quite
| | | significant. In particular, the prefetch patches have
| | | produced a nontrivial improvement in mark performance.
| | |
| | * wip/gc/aging:
| | | Enable support for aging in major collections.
| | |
| * | wip/gc/test:
| | | Fix up the testsuite to more or less pass.
| | |
* | | wip/gc/instrumentation:
| | | A variety of runtime instrumentation including statistics
| | / support, the nonmoving census, and eventlog support.
| |/
| /
|/
* wip/gc/nonmoving-concurrent:
| The concurrent write barriers.
|
* wip/gc/nonmoving-nonconcurrent:
| The nonmoving collector without the write barriers necessary
| for concurrent collection.
|
* wip/gc/preparation:
| A merge of the various preparatory patches that aren't directly
| implementing the GC.
|
|
* GHC HEAD
.
.
.
```
|
| |
| |
| |
| |
| | |
This were previously quite unclear and will change a bit under the
non-moving collector so let's clear this up now.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
19 times out of 20 we already have dynflags in scope.
We could just always use `return dflags`. But this is in fact not free.
When looking at some STG code I noticed that we always allocate a
closure for this expression in the heap. Clearly a waste in these cases.
For the other cases we can either just modify the callsite to
get dynflags or use the _D variants of withTiming I added which
will use getDynFlags under the hood.
|
| |
| |
| |
| |
| |
| | |
This patch adds support for the s390x architecture for the LLVM code
generator. The patch includes a register mapping of STG registers onto
s390x machine registers which enables a registerised build.
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
FreeBSD does not support GNU libc, so it makes no sense to use this
triple. Most likely previous builds were just using the FreeBSD libc
instead of gnueabihf. To fix this, we should just use
armv6-unknown-freebsd and armv7-unknown-freebsd triples. Note that
both of these are actually "soft-float", not "hard-float". FreeBSD has
never officially released hard-float arm32:
https://wiki.freebsd.org/ARMTier1
|
|/ |
|
|
|
|
|
| |
It came back to life in 381c3ae31b68019177f1cd20cb4da2f9d3b7d6c6 by
mistake.
|
|
|
|
| |
To avoid polluting the macro namespace
|
|
|
|
| |
This ensure that it blurts an error on missing references.
|
|
|
|
|
| |
We no longer support booting from older GHC since
527bcc41630918977c73584d99125ff164400695.
|
|
|
|
|
|
|
|
|
|
|
|
| |
As described in the new Note [LLVM Configuration] in SysTools, we now
load llvm-targets and llvm-passes lazily to avoid the overhead of doing
so when -fllvm isn't used (also known as "the common case").
Noticed in #17003.
Metric Decrease:
T12234
T12150
|
|
|
|
|
|
| |
This was done in Nixpkgs, but never upstreamed. Musl is pretty much
the same as gnu, but with a different libc. I’ve used the same values
for everything.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The generated headers are now generated per stage, which means we can
skip hacks like `ghc_boot_platform.h` and just have that be the stage 0
header as proper. In general, stages are to be embraced: freely generate
everything in each stage but then just build what you depend on, and
everything is symmetrical and efficient. Trying to avoid stages because
bootstrapping is a mind bender just creates tons of bespoke
mini-mind-benders that add up to something far crazier.
Hadrian was pretty close to this "stage-major" approach already, and so
was fairly easy to fix. Make needed more work, however: it did know
about stages so at least there was a scaffold, but few packages except
for the compiler cared, and the compiler used its own counting system.
That said, make and Hadrian now work more similarly, which is good for
the transition to Hadrian. The merits of embracing stage aside, the
change may be worthy for easing that transition alone.
|
|
|
|
|
|
|
| |
The minimum required GHC version for bootstrapping is 8.6, so we can
get rid of some unneeded `#if `__GLASGOW_HASKELL__` CPP guards, as
well as one `MIN_VERSION_ghc_prim(0,5,3)` guard (since GHC 8.6 bundles
`ghc-prim-0.5.3`).
|
|
|
|
|
|
|
| |
Add GHC.Hs module hierarchy replacing hsSyn.
Metric Increase:
haddock.compiler
|
|
|
|
|
|
|
| |
Until 0472f0f6a92395d478e9644c0dbd12948518099f there was a meaningful
host vs target distinction (though it wasn't used right, in genapply).
After that, they did not differ in meaningful ways, so it's best to just
only keep one.
|
| |
|
|
|
|
|
|
|
|
| |
-------------------------
Metric Increase:
haddock.Cabal
T4029
-------------------------
|
|
|
|
|
|
| |
Add StgToCmm module hierarchy. Platform modules that are used in several
other places (NCG, LLVM codegen, Cmm transformations) are put into
GHC.Platform.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Mainly we now generate this
data PlatformConstants = PlatformConstants {
pc_CONTROL_GROUP_CONST_291 :: Int,
pc_STD_HDR_SIZE :: Int,
pc_PROF_HDR_SIZE :: Int,
pc_BLOCK_SIZE :: Int,
}
instead of
data PlatformConstants = PlatformConstants {
pc_platformConstants :: ()
, pc_CONTROL_GROUP_CONST_291 :: Int
, pc_STD_HDR_SIZE :: Int
, pc_PROF_HDR_SIZE :: Int
, pc_BLOCK_SIZE :: Int
...
}
The first field has no use and according to (removed) comments it was to
make code generator's work easier.. if anything this version is simpler
because it has less repetition (the commas in strings are gone).
|
|
|
|
| |
files
|
|
|
|
|
| |
As fromFlag is partial. The only case where we used fromFlag is when
determining whether to strip libraries; we now assume that we shouldn't.
|
|
|
|
|
|
|
|
| |
These are unexploded minds as far as the linter is concerned. I don't
want to hit in my MRs by mistake!
I did this with `sed`, and then rolled back some changes in the docs,
config.guess, and the linter itself.
|
|
|
|
|
|
| |
The code, including the generated module with the version, is now in
ghc-boot. Config.hs reexports stuff as needed, ghc-pkg doesn't need any
tricks at all.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
These prevent multi-target builds. They were gotten rid of in 3 ways:
1. In the compiler itself, replacing `#if` with runtime `if`. In these
cases, we care about the target platform still, but the target platform
is dynamic so we must delay the elimination to run time.
2. In the compiler itself, replacing `TARGET` with `HOST`. There was
just one bit of this, in some code splitting strings representing lists
of paths. These paths are used by GHC itself, and not by the compiled
binary. (They are compiler lookup paths, rather than RPATHS or something
that does matter to the compiled binary, and thus would legitamentally
be target-sensative.) As such, the path-splitting method only depends on
where GHC runs and not where code it produces runs. This should have
been `HOST` all along.
3. Changing the RTS. The RTS doesn't care about the target platform,
full stop.
4. `includes/stg/HaskellMachRegs.h` This file is also included in the
genapply executable. This is tricky because the RTS's host platform
really is that utility's target platform. so that utility really really
isn't multi-target either. But at least it isn't an installed part of
GHC, but just a one-off tool when building the RTS. Lying with the
`HOST` to a one-off program (genapply) that isn't installed doesn't seem so bad.
It's certainly better than the other way around of lying to the RTS
though not to genapply. The RTS is more important, and it is installed,
*and* this header is installed as part of the RTS.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To avoid having to `panic` any time a TTG extension constructor is
consumed, this MR introduces an uninhabited 'NoExtCon' type and uses
that in every extension constructor's type family instance where it
is appropriate. This also introduces a 'noExtCon' function which
eliminates a 'NoExtCon', much like 'Data.Void.absurd' eliminates
a 'Void'.
I also renamed the existing `NoExt` type to `NoExtField` to better
distinguish it from `NoExtCon`. Unsurprisingly, there is a lot of
code churn resulting from this.
Bumps the Haddock submodule. Fixes #15247.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit partly reverts e69619e923e84ae61a6bb4357f06862264daa94b
commit by reintroducing Sf_SafeInferred SafeHaskellMode.
We preserve whether module was declared or inferred Safe. When
declared-Safe module imports inferred-Safe, we warn. This inferred
status is volatile, often enough it's a happy coincidence, something
which cannot be relied upon. However, explicitly Safe or Trustworthy
packages won't accidentally become Unsafe.
Updates haddock submodule.
|
| |
|
| |
|
|
|
|
| |
This matches GHC itself getting the target platform from there.
|
|
|
|
|
|
|
|
| |
Before this patch, runghc would only run the GHC detection logic on Windows and
assume that it was invoked through a wrapper script on all other platforms.
This patch lifts this limitation and makes that logic work for the scenario
where someone is calling the runghc executable directly, without passing an
explicit path to GHC.
|
|
|
|
|
|
|
|
| |
This disables optimisation when building Cabal for Hadrian and
stage0 `ghc-cabal`. Cabal is performance critical in neither case nor
will any performance difference here be visible to the end-user.
See #16817.
|
|
|
|
|
|
| |
This should finally fix #14261.
[skip ci]
|