{-# LANGUAGE BangPatterns #-} module GHC.Cmm.Pipeline ( -- | Converts C-- with an implicit stack and native C-- calls into -- optimized, CPS converted and native-call-less C--. The latter -- C-- can be used to generate assembly. cmmPipeline ) where import GHC.Prelude import GHC.Cmm import GHC.Cmm.Lint import GHC.Cmm.Info.Build import GHC.Cmm.CommonBlockElim import GHC.Cmm.Switch.Implement import GHC.Cmm.ProcPoint import GHC.Cmm.ContFlowOpt import GHC.Cmm.LayoutStack import GHC.Cmm.Sink import GHC.Cmm.Dataflow.Collections import GHC.Types.Unique.Supply import GHC.Driver.Session import GHC.Driver.Backend import GHC.Utils.Error import GHC.Driver.Types import Control.Monad import GHC.Utils.Outputable import GHC.Platform import Data.Either (partitionEithers) ----------------------------------------------------------------------------- -- | Top level driver for C-- pipeline ----------------------------------------------------------------------------- cmmPipeline :: HscEnv -- Compilation env including -- dynamic flags: -dcmm-lint -ddump-cmm-cps -> ModuleSRTInfo -- Info about SRTs generated so far -> CmmGroup -- Input C-- with Procedures -> IO (ModuleSRTInfo, CmmGroupSRTs) -- Output CPS transformed C-- cmmPipeline hsc_env srtInfo prog = withTimingSilent dflags (text "Cmm pipeline") forceRes $ do let dflags = hsc_dflags hsc_env platform = targetPlatform dflags tops <- {-# SCC "tops" #-} mapM (cpsTop dflags) prog let (procs, data_) = partitionEithers tops (srtInfo, cmms) <- {-# SCC "doSRTs" #-} doSRTs dflags srtInfo procs data_ dumpWith dflags Opt_D_dump_cmm_cps "Post CPS Cmm" FormatCMM (pdoc platform cmms) return (srtInfo, cmms) where forceRes (info, group) = info `seq` foldr (\decl r -> decl `seq` r) () group dflags = hsc_dflags hsc_env cpsTop :: DynFlags -> CmmDecl -> IO (Either (CAFEnv, [CmmDecl]) (CAFSet, CmmDecl)) cpsTop dflags p@(CmmData _ statics) = return (Right (cafAnalData (targetPlatform dflags) statics, p)) cpsTop dflags proc = do ----------- Control-flow optimisations ---------------------------------- -- The first round of control-flow optimisation speeds up the -- later passes by removing lots of empty blocks, so we do it -- even when optimisation isn't turned on. -- CmmProc h l v g <- {-# SCC "cmmCfgOpts(1)" #-} return $ cmmCfgOptsProc splitting_proc_points proc dump Opt_D_dump_cmm_cfg "Post control-flow optimisations" g let !TopInfo {stack_info=StackInfo { arg_space = entry_off , do_layout = do_layout }} = h ----------- Eliminate common blocks ------------------------------------- g <- {-# SCC "elimCommonBlocks" #-} condPass Opt_CmmElimCommonBlocks elimCommonBlocks g Opt_D_dump_cmm_cbe "Post common block elimination" -- Any work storing block Labels must be performed _after_ -- elimCommonBlocks ----------- Implement switches ------------------------------------------ g <- {-# SCC "createSwitchPlans" #-} runUniqSM $ cmmImplementSwitchPlans (backend dflags) platform g dump Opt_D_dump_cmm_switch "Post switch plan" g ----------- Proc points ------------------------------------------------- let call_pps :: ProcPointSet -- LabelMap call_pps = {-# SCC "callProcPoints" #-} callProcPoints g proc_points <- if splitting_proc_points then do pp <- {-# SCC "minimalProcPointSet" #-} runUniqSM $ minimalProcPointSet platform call_pps g dumpWith dflags Opt_D_dump_cmm_proc "Proc points" FormatCMM (pdoc platform l $$ ppr pp $$ pdoc platform g) return pp else return call_pps ----------- Layout the stack and manifest Sp ---------------------------- (g, stackmaps) <- {-# SCC "layoutStack" #-} if do_layout then runUniqSM $ cmmLayoutStack dflags proc_points entry_off g else return (g, mapEmpty) dump Opt_D_dump_cmm_sp "Layout Stack" g ----------- Sink and inline assignments -------------------------------- g <- {-# SCC "sink" #-} -- See Note [Sinking after stack layout] condPass Opt_CmmSink (cmmSink platform) g Opt_D_dump_cmm_sink "Sink assignments" ------------- CAF analysis ---------------------------------------------- let cafEnv = {-# SCC "cafAnal" #-} cafAnal platform call_pps l g dumpWith dflags Opt_D_dump_cmm_caf "CAFEnv" FormatText (pdoc platform cafEnv) g <- if splitting_proc_points then do ------------- Split into separate procedures ----------------------- let pp_map = {-# SCC "procPointAnalysis" #-} procPointAnalysis proc_points g dumpWith dflags Opt_D_dump_cmm_procmap "procpoint map" FormatCMM (ppr pp_map) g <- {-# SCC "splitAtProcPoints" #-} runUniqSM $ splitAtProcPoints platform l call_pps proc_points pp_map (CmmProc h l v g) dumps Opt_D_dump_cmm_split "Post splitting" g return g else do -- attach info tables to return points return $ [attachContInfoTables call_pps (CmmProc h l v g)] ------------- Populate info tables with stack info ----------------- g <- {-# SCC "setInfoTableStackMap" #-} return $ map (setInfoTableStackMap platform stackmaps) g dumps Opt_D_dump_cmm_info "after setInfoTableStackMap" g ----------- Control-flow optimisations ----------------------------- g <- {-# SCC "cmmCfgOpts(2)" #-} return $ if optLevel dflags >= 1 then map (cmmCfgOptsProc splitting_proc_points) g else g g <- return (map removeUnreachableBlocksProc g) -- See Note [unreachable blocks] dumps Opt_D_dump_cmm_cfg "Post control-flow optimisations" g return (Left (cafEnv, g)) where platform = targetPlatform dflags dump = dumpGraph dflags dumps flag name = mapM_ (dumpWith dflags flag name FormatCMM . pdoc platform) condPass flag pass g dumpflag dumpname = if gopt flag dflags then do g <- return $ pass g dump dumpflag dumpname g return g else return g -- we don't need to split proc points for the NCG, unless -- tablesNextToCode is off. The latter is because we have no -- label to put on info tables for basic blocks that are not -- the entry point. splitting_proc_points = backend dflags /= NCG || not (platformTablesNextToCode platform) || -- Note [inconsistent-pic-reg] usingInconsistentPicReg usingInconsistentPicReg = case (platformArch platform, platformOS platform, positionIndependent dflags) of (ArchX86, OSDarwin, pic) -> pic _ -> False -- Note [Sinking after stack layout] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -- In the past we considered running sinking pass also before stack -- layout, but after making some measurements we realized that: -- -- a) running sinking only before stack layout produces slower -- code than running sinking only before stack layout -- -- b) running sinking both before and after stack layout produces -- code that has the same performance as when running sinking -- only after stack layout. -- -- In other words sinking before stack layout doesn't buy as anything. -- -- An interesting question is "why is it better to run sinking after -- stack layout"? It seems that the major reason are stores and loads -- generated by stack layout. Consider this code before stack layout: -- -- c1E: -- _c1C::P64 = R3; -- _c1B::P64 = R2; -- _c1A::P64 = R1; -- I64[(young + 8)] = c1D; -- call stg_gc_noregs() returns to c1D, args: 8, res: 8, upd: 8; -- c1D: -- R3 = _c1C::P64; -- R2 = _c1B::P64; -- R1 = _c1A::P64; -- call (P64[(old + 8)])(R3, R2, R1) args: 8, res: 0, upd: 8; -- -- Stack layout pass will save all local variables live across a call -- (_c1C, _c1B and _c1A in this example) on the stack just before -- making a call and reload them from the stack after returning from a -- call: -- -- c1E: -- _c1C::P64 = R3; -- _c1B::P64 = R2; -- _c1A::P64 = R1; -- I64[Sp - 32] = c1D; -- P64[Sp - 24] = _c1A::P64; -- P64[Sp - 16] = _c1B::P64; -- P64[Sp - 8] = _c1C::P64; -- Sp = Sp - 32; -- call stg_gc_noregs() returns to c1D, args: 8, res: 8, upd: 8; -- c1D: -- _c1A::P64 = P64[Sp + 8]; -- _c1B::P64 = P64[Sp + 16]; -- _c1C::P64 = P64[Sp + 24]; -- R3 = _c1C::P64; -- R2 = _c1B::P64; -- R1 = _c1A::P64; -- Sp = Sp + 32; -- call (P64[Sp])(R3, R2, R1) args: 8, res: 0, upd: 8; -- -- If we don't run sinking pass after stack layout we are basically -- left with such code. However, running sinking on this code can lead -- to significant improvements: -- -- c1E: -- I64[Sp - 32] = c1D; -- P64[Sp - 24] = R1; -- P64[Sp - 16] = R2; -- P64[Sp - 8] = R3; -- Sp = Sp - 32; -- call stg_gc_noregs() returns to c1D, args: 8, res: 8, upd: 8; -- c1D: -- R3 = P64[Sp + 24]; -- R2 = P64[Sp + 16]; -- R1 = P64[Sp + 8]; -- Sp = Sp + 32; -- call (P64[Sp])(R3, R2, R1) args: 8, res: 0, upd: 8; -- -- Now we only have 9 assignments instead of 15. -- -- There is one case when running sinking before stack layout could -- be beneficial. Consider this: -- -- L1: -- x = y -- call f() returns L2 -- L2: ...x...y... -- -- Since both x and y are live across a call to f, they will be stored -- on the stack during stack layout and restored after the call: -- -- L1: -- x = y -- P64[Sp - 24] = L2 -- P64[Sp - 16] = x -- P64[Sp - 8] = y -- Sp = Sp - 24 -- call f() returns L2 -- L2: -- y = P64[Sp + 16] -- x = P64[Sp + 8] -- Sp = Sp + 24 -- ...x...y... -- -- However, if we run sinking before stack layout we would propagate x -- to its usage place (both x and y must be local register for this to -- be possible - global registers cannot be floated past a call): -- -- L1: -- x = y -- call f() returns L2 -- L2: ...y...y... -- -- Thus making x dead at the call to f(). If we ran stack layout now -- we would generate less stores and loads: -- -- L1: -- x = y -- P64[Sp - 16] = L2 -- P64[Sp - 8] = y -- Sp = Sp - 16 -- call f() returns L2 -- L2: -- y = P64[Sp + 8] -- Sp = Sp + 16 -- ...y...y... -- -- But since we don't see any benefits from running sinking before stack -- layout, this situation probably doesn't arise too often in practice. -- {- Note [inconsistent-pic-reg] On x86/Darwin, PIC is implemented by inserting a sequence like call 1f 1: popl %reg at the proc entry point, and then referring to labels as offsets from %reg. If we don't split proc points, then we could have many entry points in a proc that would need this sequence, and each entry point would then get a different value for %reg. If there are any join points, then at the join point we don't have a consistent value for %reg, so we don't know how to refer to labels. Hence, on x86/Darwin, we have to split proc points, and then each proc point will get its own PIC initialisation sequence. This isn't an issue on x86/ELF, where the sequence is call 1f 1: popl %reg addl $_GLOBAL_OFFSET_TABLE_+(.-1b), %reg so %reg always has a consistent value: the address of _GLOBAL_OFFSET_TABLE_, regardless of which entry point we arrived via. -} {- Note [unreachable blocks] The control-flow optimiser sometimes leaves unreachable blocks behind containing junk code. These aren't necessarily a problem, but removing them is good because it might save time in the native code generator later. -} runUniqSM :: UniqSM a -> IO a runUniqSM m = do us <- mkSplitUniqSupply 'u' return (initUs_ us m) dumpGraph :: DynFlags -> DumpFlag -> String -> CmmGraph -> IO () dumpGraph dflags flag name g = do when (gopt Opt_DoCmmLinting dflags) $ do_lint g dumpWith dflags flag name FormatCMM (pdoc platform g) where platform = targetPlatform dflags do_lint g = case cmmLintGraph platform g of Just err -> do { fatalErrorMsg dflags err ; ghcExit dflags 1 } Nothing -> return () dumpWith :: DynFlags -> DumpFlag -> String -> DumpFormat -> SDoc -> IO () dumpWith dflags flag txt fmt sdoc = do dumpIfSet_dyn dflags flag txt fmt sdoc when (not (dopt flag dflags)) $ -- If `-ddump-cmm-verbose -ddump-to-file` is specified, -- dump each Cmm pipeline stage output to a separate file. #16930 when (dopt Opt_D_dump_cmm_verbose dflags) $ dumpAction dflags (mkDumpStyle alwaysQualify) (dumpOptionsFromFlag flag) txt fmt sdoc dumpIfSet_dyn dflags Opt_D_dump_cmm_verbose_by_proc txt fmt sdoc