{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 \section[HsLit]{Abstract syntax: source-language literals} -} {-# LANGUAGE CPP, DeriveDataTypeable #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow] -- in module GHC.Hs.Extension {-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE TypeFamilies #-} module GHC.Hs.Lit where #include "HsVersions.h" import GHC.Prelude import {-# SOURCE #-} GHC.Hs.Expr( HsExpr, pprExpr ) import GHC.Types.Basic ( IntegralLit(..), FractionalLit(..), negateIntegralLit , negateFractionalLit, SourceText(..), pprWithSourceText , PprPrec(..), topPrec ) import GHC.Core.Type import GHC.Utils.Outputable import GHC.Utils.Panic import GHC.Data.FastString import GHC.Hs.Extension import Data.ByteString (ByteString) import Data.Data hiding ( Fixity ) {- ************************************************************************ * * \subsection[HsLit]{Literals} * * ************************************************************************ -} -- Note [Literal source text] in GHC.Types.Basic for SourceText fields in -- the following -- Note [Trees that grow] in GHC.Hs.Extension for the Xxxxx fields in the following -- | Haskell Literal data HsLit x = HsChar (XHsChar x) {- SourceText -} Char -- ^ Character | HsCharPrim (XHsCharPrim x) {- SourceText -} Char -- ^ Unboxed character | HsString (XHsString x) {- SourceText -} FastString -- ^ String | HsStringPrim (XHsStringPrim x) {- SourceText -} !ByteString -- ^ Packed bytes | HsInt (XHsInt x) IntegralLit -- ^ Genuinely an Int; arises from -- "GHC.Tc.Deriv.Generate", and from TRANSLATION | HsIntPrim (XHsIntPrim x) {- SourceText -} Integer -- ^ literal @Int#@ | HsWordPrim (XHsWordPrim x) {- SourceText -} Integer -- ^ literal @Word#@ | HsInt64Prim (XHsInt64Prim x) {- SourceText -} Integer -- ^ literal @Int64#@ | HsWord64Prim (XHsWord64Prim x) {- SourceText -} Integer -- ^ literal @Word64#@ | HsInteger (XHsInteger x) {- SourceText -} Integer Type -- ^ Genuinely an integer; arises only -- from TRANSLATION (overloaded -- literals are done with HsOverLit) | HsRat (XHsRat x) FractionalLit Type -- ^ Genuinely a rational; arises only from -- TRANSLATION (overloaded literals are -- done with HsOverLit) | HsFloatPrim (XHsFloatPrim x) FractionalLit -- ^ Unboxed Float | HsDoublePrim (XHsDoublePrim x) FractionalLit -- ^ Unboxed Double | XLit !(XXLit x) type instance XHsChar (GhcPass _) = SourceText type instance XHsCharPrim (GhcPass _) = SourceText type instance XHsString (GhcPass _) = SourceText type instance XHsStringPrim (GhcPass _) = SourceText type instance XHsInt (GhcPass _) = NoExtField type instance XHsIntPrim (GhcPass _) = SourceText type instance XHsWordPrim (GhcPass _) = SourceText type instance XHsInt64Prim (GhcPass _) = SourceText type instance XHsWord64Prim (GhcPass _) = SourceText type instance XHsInteger (GhcPass _) = SourceText type instance XHsRat (GhcPass _) = NoExtField type instance XHsFloatPrim (GhcPass _) = NoExtField type instance XHsDoublePrim (GhcPass _) = NoExtField type instance XXLit (GhcPass _) = NoExtCon instance Eq (HsLit x) where (HsChar _ x1) == (HsChar _ x2) = x1==x2 (HsCharPrim _ x1) == (HsCharPrim _ x2) = x1==x2 (HsString _ x1) == (HsString _ x2) = x1==x2 (HsStringPrim _ x1) == (HsStringPrim _ x2) = x1==x2 (HsInt _ x1) == (HsInt _ x2) = x1==x2 (HsIntPrim _ x1) == (HsIntPrim _ x2) = x1==x2 (HsWordPrim _ x1) == (HsWordPrim _ x2) = x1==x2 (HsInt64Prim _ x1) == (HsInt64Prim _ x2) = x1==x2 (HsWord64Prim _ x1) == (HsWord64Prim _ x2) = x1==x2 (HsInteger _ x1 _) == (HsInteger _ x2 _) = x1==x2 (HsRat _ x1 _) == (HsRat _ x2 _) = x1==x2 (HsFloatPrim _ x1) == (HsFloatPrim _ x2) = x1==x2 (HsDoublePrim _ x1) == (HsDoublePrim _ x2) = x1==x2 _ == _ = False -- | Haskell Overloaded Literal data HsOverLit p = OverLit { ol_ext :: (XOverLit p), ol_val :: OverLitVal, ol_witness :: HsExpr p} -- Note [Overloaded literal witnesses] | XOverLit !(XXOverLit p) data OverLitTc = OverLitTc { ol_rebindable :: Bool, -- Note [ol_rebindable] ol_type :: Type } deriving Data type instance XOverLit GhcPs = NoExtField type instance XOverLit GhcRn = Bool -- Note [ol_rebindable] type instance XOverLit GhcTc = OverLitTc type instance XXOverLit (GhcPass _) = NoExtCon -- Note [Literal source text] in GHC.Types.Basic for SourceText fields in -- the following -- | Overloaded Literal Value data OverLitVal = HsIntegral !IntegralLit -- ^ Integer-looking literals; | HsFractional !FractionalLit -- ^ Frac-looking literals | HsIsString !SourceText !FastString -- ^ String-looking literals deriving Data negateOverLitVal :: OverLitVal -> OverLitVal negateOverLitVal (HsIntegral i) = HsIntegral (negateIntegralLit i) negateOverLitVal (HsFractional f) = HsFractional (negateFractionalLit f) negateOverLitVal _ = panic "negateOverLitVal: argument is not a number" overLitType :: HsOverLit GhcTc -> Type overLitType (OverLit (OverLitTc _ ty) _ _) = ty -- | Convert a literal from one index type to another convertLit :: HsLit (GhcPass p1) -> HsLit (GhcPass p2) convertLit (HsChar a x) = HsChar a x convertLit (HsCharPrim a x) = HsCharPrim a x convertLit (HsString a x) = HsString a x convertLit (HsStringPrim a x) = HsStringPrim a x convertLit (HsInt a x) = HsInt a x convertLit (HsIntPrim a x) = HsIntPrim a x convertLit (HsWordPrim a x) = HsWordPrim a x convertLit (HsInt64Prim a x) = HsInt64Prim a x convertLit (HsWord64Prim a x) = HsWord64Prim a x convertLit (HsInteger a x b) = HsInteger a x b convertLit (HsRat a x b) = HsRat a x b convertLit (HsFloatPrim a x) = HsFloatPrim a x convertLit (HsDoublePrim a x) = HsDoublePrim a x {- Note [ol_rebindable] ~~~~~~~~~~~~~~~~~~~~ The ol_rebindable field is True if this literal is actually using rebindable syntax. Specifically: False iff ol_witness is the standard one True iff ol_witness is non-standard Equivalently it's True if a) RebindableSyntax is on b) the witness for fromInteger/fromRational/fromString that happens to be in scope isn't the standard one Note [Overloaded literal witnesses] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ *Before* type checking, the HsExpr in an HsOverLit is the name of the coercion function, 'fromInteger' or 'fromRational'. *After* type checking, it is a witness for the literal, such as (fromInteger 3) or lit_78 This witness should replace the literal. This dual role is unusual, because we're replacing 'fromInteger' with a call to fromInteger. Reason: it allows commoning up of the fromInteger calls, which wouldn't be possible if the desugarer made the application. The PostTcType in each branch records the type the overload literal is found to have. -} -- Comparison operations are needed when grouping literals -- for compiling pattern-matching (module GHC.HsToCore.Match.Literal) instance (Eq (XXOverLit p)) => Eq (HsOverLit p) where (OverLit _ val1 _) == (OverLit _ val2 _) = val1 == val2 (XOverLit val1) == (XOverLit val2) = val1 == val2 _ == _ = panic "Eq HsOverLit" instance Eq OverLitVal where (HsIntegral i1) == (HsIntegral i2) = i1 == i2 (HsFractional f1) == (HsFractional f2) = f1 == f2 (HsIsString _ s1) == (HsIsString _ s2) = s1 == s2 _ == _ = False instance (Ord (XXOverLit p)) => Ord (HsOverLit p) where compare (OverLit _ val1 _) (OverLit _ val2 _) = val1 `compare` val2 compare (XOverLit val1) (XOverLit val2) = val1 `compare` val2 compare _ _ = panic "Ord HsOverLit" instance Ord OverLitVal where compare (HsIntegral i1) (HsIntegral i2) = i1 `compare` i2 compare (HsIntegral _) (HsFractional _) = LT compare (HsIntegral _) (HsIsString _ _) = LT compare (HsFractional f1) (HsFractional f2) = f1 `compare` f2 compare (HsFractional _) (HsIntegral _) = GT compare (HsFractional _) (HsIsString _ _) = LT compare (HsIsString _ s1) (HsIsString _ s2) = s1 `compare` s2 compare (HsIsString _ _) (HsIntegral _) = GT compare (HsIsString _ _) (HsFractional _) = GT -- Instance specific to GhcPs, need the SourceText instance Outputable (HsLit (GhcPass p)) where ppr (HsChar st c) = pprWithSourceText st (pprHsChar c) ppr (HsCharPrim st c) = pp_st_suffix st primCharSuffix (pprPrimChar c) ppr (HsString st s) = pprWithSourceText st (pprHsString s) ppr (HsStringPrim st s) = pprWithSourceText st (pprHsBytes s) ppr (HsInt _ i) = pprWithSourceText (il_text i) (integer (il_value i)) ppr (HsInteger st i _) = pprWithSourceText st (integer i) ppr (HsRat _ f _) = ppr f ppr (HsFloatPrim _ f) = ppr f <> primFloatSuffix ppr (HsDoublePrim _ d) = ppr d <> primDoubleSuffix ppr (HsIntPrim st i) = pprWithSourceText st (pprPrimInt i) ppr (HsWordPrim st w) = pprWithSourceText st (pprPrimWord w) ppr (HsInt64Prim st i) = pp_st_suffix st primInt64Suffix (pprPrimInt64 i) ppr (HsWord64Prim st w) = pp_st_suffix st primWord64Suffix (pprPrimWord64 w) pp_st_suffix :: SourceText -> SDoc -> SDoc -> SDoc pp_st_suffix NoSourceText _ doc = doc pp_st_suffix (SourceText st) suffix _ = text st <> suffix -- in debug mode, print the expression that it's resolved to, too instance OutputableBndrId p => Outputable (HsOverLit (GhcPass p)) where ppr (OverLit {ol_val=val, ol_witness=witness}) = ppr val <+> (whenPprDebug (parens (pprExpr witness))) instance Outputable OverLitVal where ppr (HsIntegral i) = pprWithSourceText (il_text i) (integer (il_value i)) ppr (HsFractional f) = ppr f ppr (HsIsString st s) = pprWithSourceText st (pprHsString s) -- | pmPprHsLit pretty prints literals and is used when pretty printing pattern -- match warnings. All are printed the same (i.e., without hashes if they are -- primitive and not wrapped in constructors if they are boxed). This happens -- mainly for too reasons: -- * We do not want to expose their internal representation -- * The warnings become too messy pmPprHsLit :: HsLit (GhcPass x) -> SDoc pmPprHsLit (HsChar _ c) = pprHsChar c pmPprHsLit (HsCharPrim _ c) = pprHsChar c pmPprHsLit (HsString st s) = pprWithSourceText st (pprHsString s) pmPprHsLit (HsStringPrim _ s) = pprHsBytes s pmPprHsLit (HsInt _ i) = integer (il_value i) pmPprHsLit (HsIntPrim _ i) = integer i pmPprHsLit (HsWordPrim _ w) = integer w pmPprHsLit (HsInt64Prim _ i) = integer i pmPprHsLit (HsWord64Prim _ w) = integer w pmPprHsLit (HsInteger _ i _) = integer i pmPprHsLit (HsRat _ f _) = ppr f pmPprHsLit (HsFloatPrim _ f) = ppr f pmPprHsLit (HsDoublePrim _ d) = ppr d -- | @'hsLitNeedsParens' p l@ returns 'True' if a literal @l@ needs -- to be parenthesized under precedence @p@. hsLitNeedsParens :: PprPrec -> HsLit x -> Bool hsLitNeedsParens p = go where go (HsChar {}) = False go (HsCharPrim {}) = False go (HsString {}) = False go (HsStringPrim {}) = False go (HsInt _ x) = p > topPrec && il_neg x go (HsIntPrim _ x) = p > topPrec && x < 0 go (HsWordPrim {}) = False go (HsInt64Prim _ x) = p > topPrec && x < 0 go (HsWord64Prim {}) = False go (HsInteger _ x _) = p > topPrec && x < 0 go (HsRat _ x _) = p > topPrec && fl_neg x go (HsFloatPrim _ x) = p > topPrec && fl_neg x go (HsDoublePrim _ x) = p > topPrec && fl_neg x go (XLit _) = False -- | @'hsOverLitNeedsParens' p ol@ returns 'True' if an overloaded literal -- @ol@ needs to be parenthesized under precedence @p@. hsOverLitNeedsParens :: PprPrec -> HsOverLit x -> Bool hsOverLitNeedsParens p (OverLit { ol_val = olv }) = go olv where go :: OverLitVal -> Bool go (HsIntegral x) = p > topPrec && il_neg x go (HsFractional x) = p > topPrec && fl_neg x go (HsIsString {}) = False hsOverLitNeedsParens _ (XOverLit { }) = False