{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 Type checking of type signatures in interface files -} {-# LANGUAGE CPP #-} {-# LANGUAGE NondecreasingIndentation #-} {-# OPTIONS_GHC -Wno-incomplete-record-updates #-} module GHC.IfaceToCore ( tcLookupImported_maybe, importDecl, checkWiredInTyCon, tcHiBootIface, typecheckIface, typecheckIfacesForMerging, typecheckIfaceForInstantiate, tcIfaceDecl, tcIfaceDecls, tcIfaceInst, tcIfaceFamInst, tcIfaceRules, tcIfaceAnnotations, tcIfaceCompleteMatches, tcIfaceExpr, -- Desired by HERMIT (#7683) tcIfaceGlobal, tcIfaceOneShot ) where #include "HsVersions.h" import GHC.Prelude import GHC.Driver.Env import GHC.Driver.Session import GHC.Builtin.Types.Literals(typeNatCoAxiomRules) import GHC.Builtin.Types import GHC.Iface.Syntax import GHC.Iface.Load import GHC.Iface.Env import GHC.StgToCmm.Types import GHC.Tc.TyCl.Build import GHC.Tc.Utils.Monad import GHC.Tc.Utils.TcType import GHC.Core.Type import GHC.Core.Coercion import GHC.Core.Coercion.Axiom import GHC.Core.FVs import GHC.Core.TyCo.Rep -- needs to build types & coercions in a knot import GHC.Core.TyCo.Subst ( substTyCoVars ) import GHC.Core.InstEnv import GHC.Core.FamInstEnv import GHC.Core import GHC.Core.Utils import GHC.Core.Unfold.Make import GHC.Core.Lint import GHC.Core.Make import GHC.Core.Class import GHC.Core.TyCon import GHC.Core.ConLike import GHC.Core.DataCon import GHC.Core.Opt.OccurAnal ( occurAnalyseExpr ) import GHC.Core.Ppr import GHC.Unit.External import GHC.Unit.Module import GHC.Unit.Module.ModDetails import GHC.Unit.Module.ModIface import GHC.Unit.Home.ModInfo import GHC.Utils.Outputable import GHC.Utils.Misc import GHC.Utils.Panic import GHC.Data.Bag import GHC.Data.Maybe import GHC.Data.FastString import GHC.Data.List.SetOps import GHC.Types.Annotations import GHC.Types.SourceFile import GHC.Types.SourceText import GHC.Types.Basic hiding ( SuccessFlag(..) ) import GHC.Types.SrcLoc import GHC.Types.TypeEnv import GHC.Types.Unique.FM import GHC.Types.Unique.DSet ( mkUniqDSet ) import GHC.Types.Unique.Supply import GHC.Types.Literal import GHC.Types.Var as Var import GHC.Types.Var.Set import GHC.Types.Name import GHC.Types.Name.Env import GHC.Types.Name.Set import GHC.Types.Id import GHC.Types.Id.Make import GHC.Types.Id.Info import GHC.Types.TyThing import GHC.Fingerprint import qualified GHC.Data.BooleanFormula as BF import Control.Monad {- This module takes IfaceDecl -> TyThing IfaceType -> Type etc An IfaceDecl is populated with RdrNames, and these are not renamed to Names before typechecking, because there should be no scope errors etc. -- For (b) consider: f = \$(...h....) -- where h is imported, and calls f via an hi-boot file. -- This is bad! But it is not seen as a staging error, because h -- is indeed imported. We don't want the type-checker to black-hole -- when simplifying and compiling the splice! -- -- Simple solution: discard any unfolding that mentions a variable -- bound in this module (and hence not yet processed). -- The discarding happens when forkM finds a type error. ************************************************************************ * * Type-checking a complete interface * * ************************************************************************ Suppose we discover we don't need to recompile. Then we must type check the old interface file. This is a bit different to the incremental type checking we do as we suck in interface files. Instead we do things similarly as when we are typechecking source decls: we bring into scope the type envt for the interface all at once, using a knot. Remember, the decls aren't necessarily in dependency order -- and even if they were, the type decls might be mutually recursive. Note [Knot-tying typecheckIface] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we are typechecking an interface A.hi, and we come across a Name for another entity defined in A.hi. How do we get the 'TyCon', in this case? There are three cases: 1) tcHiBootIface in GHC.IfaceToCore: We're typechecking an hi-boot file in preparation of checking if the hs file we're building is compatible. In this case, we want all of the internal TyCons to MATCH the ones that we just constructed during typechecking: the knot is thus tied through if_rec_types. 2) retypecheckLoop in GHC.Driver.Make: We are retypechecking a mutually recursive cluster of hi files, in order to ensure that all of the references refer to each other correctly. In this case, the knot is tied through the HPT passed in, which contains all of the interfaces we are in the process of typechecking. 3) genModDetails in GHC.Driver.Main: We are typechecking an old interface to generate the ModDetails. In this case, we do the same thing as (2) and pass in an HPT with the HomeModInfo being generated to tie knots. The upshot is that the CLIENT of this function is responsible for making sure that the knot is tied correctly. If you don't, then you'll get a message saying that we couldn't load the declaration you wanted. BTW, in one-shot mode we never call typecheckIface; instead, loadInterface handles type-checking interface. In that case, knots are tied through the EPS. No problem! -} -- Clients of this function be careful, see Note [Knot-tying typecheckIface] typecheckIface :: ModIface -- Get the decls from here -> IfG ModDetails typecheckIface iface = initIfaceLcl (mi_semantic_module iface) (text "typecheckIface") (mi_boot iface) $ do { -- Get the right set of decls and rules. If we are compiling without -O -- we discard pragmas before typechecking, so that we don't "see" -- information that we shouldn't. From a versioning point of view -- It's not actually *wrong* to do so, but in fact GHCi is unable -- to handle unboxed tuples, so it must not see unfoldings. ignore_prags <- goptM Opt_IgnoreInterfacePragmas -- Typecheck the decls. This is done lazily, so that the knot-tying -- within this single module works out right. It's the callers -- job to make sure the knot is tied. ; names_w_things <- tcIfaceDecls ignore_prags (mi_decls iface) ; let type_env = mkNameEnv names_w_things -- Now do those rules, instances and annotations ; insts <- mapM tcIfaceInst (mi_insts iface) ; fam_insts <- mapM tcIfaceFamInst (mi_fam_insts iface) ; rules <- tcIfaceRules ignore_prags (mi_rules iface) ; anns <- tcIfaceAnnotations (mi_anns iface) -- Exports ; exports <- ifaceExportNames (mi_exports iface) -- Complete Sigs ; complete_matches <- tcIfaceCompleteMatches (mi_complete_matches iface) -- Finished ; traceIf (vcat [text "Finished typechecking interface for" <+> ppr (mi_module iface), -- Careful! If we tug on the TyThing thunks too early -- we'll infinite loop with hs-boot. See #10083 for -- an example where this would cause non-termination. text "Type envt:" <+> ppr (map fst names_w_things)]) ; return $ ModDetails { md_types = type_env , md_insts = insts , md_fam_insts = fam_insts , md_rules = rules , md_anns = anns , md_exports = exports , md_complete_matches = complete_matches } } {- ************************************************************************ * * Typechecking for merging * * ************************************************************************ -} -- | Returns true if an 'IfaceDecl' is for @data T@ (an abstract data type) isAbstractIfaceDecl :: IfaceDecl -> Bool isAbstractIfaceDecl IfaceData{ ifCons = IfAbstractTyCon } = True isAbstractIfaceDecl IfaceClass{ ifBody = IfAbstractClass } = True isAbstractIfaceDecl IfaceFamily{ ifFamFlav = IfaceAbstractClosedSynFamilyTyCon } = True isAbstractIfaceDecl _ = False ifMaybeRoles :: IfaceDecl -> Maybe [Role] ifMaybeRoles IfaceData { ifRoles = rs } = Just rs ifMaybeRoles IfaceSynonym { ifRoles = rs } = Just rs ifMaybeRoles IfaceClass { ifRoles = rs } = Just rs ifMaybeRoles _ = Nothing -- | Merge two 'IfaceDecl's together, preferring a non-abstract one. If -- both are non-abstract we pick one arbitrarily (and check for consistency -- later.) mergeIfaceDecl :: IfaceDecl -> IfaceDecl -> IfaceDecl mergeIfaceDecl d1 d2 | isAbstractIfaceDecl d1 = d2 `withRolesFrom` d1 | isAbstractIfaceDecl d2 = d1 `withRolesFrom` d2 | IfaceClass{ ifBody = IfConcreteClass { ifSigs = ops1, ifMinDef = bf1 } } <- d1 , IfaceClass{ ifBody = IfConcreteClass { ifSigs = ops2, ifMinDef = bf2 } } <- d2 = let ops = nameEnvElts $ plusNameEnv_C mergeIfaceClassOp (mkNameEnv [ (n, op) | op@(IfaceClassOp n _ _) <- ops1 ]) (mkNameEnv [ (n, op) | op@(IfaceClassOp n _ _) <- ops2 ]) in d1 { ifBody = (ifBody d1) { ifSigs = ops, ifMinDef = BF.mkOr [noLoc bf1, noLoc bf2] } } `withRolesFrom` d2 -- It doesn't matter; we'll check for consistency later when -- we merge, see 'mergeSignatures' | otherwise = d1 `withRolesFrom` d2 -- Note [Role merging] -- ~~~~~~~~~~~~~~~~~~~ -- First, why might it be necessary to do a non-trivial role -- merge? It may rescue a merge that might otherwise fail: -- -- signature A where -- type role T nominal representational -- data T a b -- -- signature A where -- type role T representational nominal -- data T a b -- -- A module that defines T as representational in both arguments -- would successfully fill both signatures, so it would be better -- if we merged the roles of these types in some nontrivial -- way. -- -- However, we have to be very careful about how we go about -- doing this, because role subtyping is *conditional* on -- the supertype being NOT representationally injective, e.g., -- if we have instead: -- -- signature A where -- type role T nominal representational -- data T a b = T a b -- -- signature A where -- type role T representational nominal -- data T a b = T a b -- -- Should we merge the definitions of T so that the roles are R/R (or N/N)? -- Absolutely not: neither resulting type is a subtype of the original -- types (see Note [Role subtyping]), because data is not representationally -- injective. -- -- Thus, merging only occurs when BOTH TyCons in question are -- representationally injective. If they're not, no merge. withRolesFrom :: IfaceDecl -> IfaceDecl -> IfaceDecl d1 `withRolesFrom` d2 | Just roles1 <- ifMaybeRoles d1 , Just roles2 <- ifMaybeRoles d2 , not (isRepInjectiveIfaceDecl d1 || isRepInjectiveIfaceDecl d2) = d1 { ifRoles = mergeRoles roles1 roles2 } | otherwise = d1 where mergeRoles roles1 roles2 = zipWithEqual "mergeRoles" max roles1 roles2 isRepInjectiveIfaceDecl :: IfaceDecl -> Bool isRepInjectiveIfaceDecl IfaceData{ ifCons = IfDataTyCon _ } = True isRepInjectiveIfaceDecl IfaceFamily{ ifFamFlav = IfaceDataFamilyTyCon } = True isRepInjectiveIfaceDecl _ = False mergeIfaceClassOp :: IfaceClassOp -> IfaceClassOp -> IfaceClassOp mergeIfaceClassOp op1@(IfaceClassOp _ _ (Just _)) _ = op1 mergeIfaceClassOp _ op2 = op2 -- | Merge two 'OccEnv's of 'IfaceDecl's by 'OccName'. mergeIfaceDecls :: OccEnv IfaceDecl -> OccEnv IfaceDecl -> OccEnv IfaceDecl mergeIfaceDecls = plusOccEnv_C mergeIfaceDecl -- | This is a very interesting function. Like typecheckIface, we want -- to type check an interface file into a ModDetails. However, the use-case -- for these ModDetails is different: we want to compare all of the -- ModDetails to ensure they define compatible declarations, and then -- merge them together. So in particular, we have to take a different -- strategy for knot-tying: we first speculatively merge the declarations -- to get the "base" truth for what we believe the types will be -- (this is "type computation.") Then we read everything in relative -- to this truth and check for compatibility. -- -- During the merge process, we may need to nondeterministically -- pick a particular declaration to use, if multiple signatures define -- the declaration ('mergeIfaceDecl'). If, for all choices, there -- are no type synonym cycles in the resulting merged graph, then -- we can show that our choice cannot matter. Consider the -- set of entities which the declarations depend on: by assumption -- of acyclicity, we can assume that these have already been shown to be equal -- to each other (otherwise merging will fail). Then it must -- be the case that all candidate declarations here are type-equal -- (the choice doesn't matter) or there is an inequality (in which -- case merging will fail.) -- -- Unfortunately, the choice can matter if there is a cycle. Consider the -- following merge: -- -- signature H where { type A = C; type B = A; data C } -- signature H where { type A = (); data B; type C = B } -- -- If we pick @type A = C@ as our representative, there will be -- a cycle and merging will fail. But if we pick @type A = ()@ as -- our representative, no cycle occurs, and we instead conclude -- that all of the types are unit. So it seems that we either -- (a) need a stronger acyclicity check which considers *all* -- possible choices from a merge, or (b) we must find a selection -- of declarations which is acyclic, and show that this is always -- the "best" choice we could have made (ezyang conjectures this -- is the case but does not have a proof). For now this is -- not implemented. -- -- It's worth noting that at the moment, a data constructor and a -- type synonym are never compatible. Consider: -- -- signature H where { type Int=C; type B = Int; data C = Int} -- signature H where { export Prelude.Int; data B; type C = B; } -- -- This will be rejected, because the reexported Int in the second -- signature (a proper data type) is never considered equal to a -- type synonym. Perhaps this should be relaxed, where a type synonym -- in a signature is considered implemented by a data type declaration -- which matches the reference of the type synonym. typecheckIfacesForMerging :: Module -> [ModIface] -> IORef TypeEnv -> IfM lcl (TypeEnv, [ModDetails]) typecheckIfacesForMerging mod ifaces tc_env_var = -- cannot be boot (False) initIfaceLcl mod (text "typecheckIfacesForMerging") NotBoot $ do ignore_prags <- goptM Opt_IgnoreInterfacePragmas -- Build the initial environment -- NB: Don't include dfuns here, because we don't want to -- serialize them out. See Note [rnIfaceNeverExported] in GHC.Iface.Rename -- NB: But coercions are OK, because they will have the right OccName. let mk_decl_env decls = mkOccEnv [ (getOccName decl, decl) | decl <- decls , case decl of IfaceId { ifIdDetails = IfDFunId } -> False -- exclude DFuns _ -> True ] decl_envs = map (mk_decl_env . map snd . mi_decls) ifaces :: [OccEnv IfaceDecl] decl_env = foldl' mergeIfaceDecls emptyOccEnv decl_envs :: OccEnv IfaceDecl -- TODO: change tcIfaceDecls to accept w/o Fingerprint names_w_things <- tcIfaceDecls ignore_prags (map (\x -> (fingerprint0, x)) (occEnvElts decl_env)) let global_type_env = mkNameEnv names_w_things writeMutVar tc_env_var global_type_env -- OK, now typecheck each ModIface using this environment details <- forM ifaces $ \iface -> do -- See Note [Resolving never-exported Names] in GHC.IfaceToCore type_env <- fixM $ \type_env -> setImplicitEnvM type_env $ do decls <- tcIfaceDecls ignore_prags (mi_decls iface) return (mkNameEnv decls) -- But note that we use this type_env to typecheck references to DFun -- in 'IfaceInst' setImplicitEnvM type_env $ do insts <- mapM tcIfaceInst (mi_insts iface) fam_insts <- mapM tcIfaceFamInst (mi_fam_insts iface) rules <- tcIfaceRules ignore_prags (mi_rules iface) anns <- tcIfaceAnnotations (mi_anns iface) exports <- ifaceExportNames (mi_exports iface) complete_matches <- tcIfaceCompleteMatches (mi_complete_matches iface) return $ ModDetails { md_types = type_env , md_insts = insts , md_fam_insts = fam_insts , md_rules = rules , md_anns = anns , md_exports = exports , md_complete_matches = complete_matches } return (global_type_env, details) -- | Typecheck a signature 'ModIface' under the assumption that we have -- instantiated it under some implementation (recorded in 'mi_semantic_module') -- and want to check if the implementation fills the signature. -- -- This needs to operate slightly differently than 'typecheckIface' -- because (1) we have a 'NameShape', from the exports of the -- implementing module, which we will use to give our top-level -- declarations the correct 'Name's even when the implementor -- provided them with a reexport, and (2) we have to deal with -- DFun silliness (see Note [rnIfaceNeverExported]) typecheckIfaceForInstantiate :: NameShape -> ModIface -> IfM lcl ModDetails typecheckIfaceForInstantiate nsubst iface = initIfaceLclWithSubst (mi_semantic_module iface) (text "typecheckIfaceForInstantiate") (mi_boot iface) nsubst $ do ignore_prags <- goptM Opt_IgnoreInterfacePragmas -- See Note [Resolving never-exported Names] in GHC.IfaceToCore type_env <- fixM $ \type_env -> setImplicitEnvM type_env $ do decls <- tcIfaceDecls ignore_prags (mi_decls iface) return (mkNameEnv decls) -- See Note [rnIfaceNeverExported] setImplicitEnvM type_env $ do insts <- mapM tcIfaceInst (mi_insts iface) fam_insts <- mapM tcIfaceFamInst (mi_fam_insts iface) rules <- tcIfaceRules ignore_prags (mi_rules iface) anns <- tcIfaceAnnotations (mi_anns iface) exports <- ifaceExportNames (mi_exports iface) complete_matches <- tcIfaceCompleteMatches (mi_complete_matches iface) return $ ModDetails { md_types = type_env , md_insts = insts , md_fam_insts = fam_insts , md_rules = rules , md_anns = anns , md_exports = exports , md_complete_matches = complete_matches } -- Note [Resolving never-exported Names] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- For the high-level overview, see -- Note [Handling never-exported TyThings under Backpack] -- -- As described in 'typecheckIfacesForMerging', the splendid innovation -- of signature merging is to rewrite all Names in each of the signatures -- we are merging together to a pre-merged structure; this is the key -- ingredient that lets us solve some problems when merging type -- synonyms. -- -- However, when a 'Name' refers to a NON-exported entity, as is the -- case with the DFun of a ClsInst, or a CoAxiom of a type family, -- this strategy causes problems: if we pick one and rewrite all -- references to a shared 'Name', we will accidentally fail to check -- if the DFun or CoAxioms are compatible, as they will never be -- checked--only exported entities are checked for compatibility, -- and a non-exported TyThing is checked WHEN we are checking the -- ClsInst or type family for compatibility in checkBootDeclM. -- By virtue of the fact that everything's been pointed to the merged -- declaration, you'll never notice there's a difference even if there -- is one. -- -- Fortunately, there are only a few places in the interface declarations -- where this can occur, so we replace those calls with 'tcIfaceImplicit', -- which will consult a local TypeEnv that records any never-exported -- TyThings which we should wire up with. -- -- Note that we actually knot-tie this local TypeEnv (the 'fixM'), because a -- type family can refer to a coercion axiom, all of which are done in one go -- when we typecheck 'mi_decls'. An alternate strategy would be to typecheck -- coercions first before type families, but that seemed more fragile. -- {- ************************************************************************ * * Type and class declarations * * ************************************************************************ -} tcHiBootIface :: HscSource -> Module -> TcRn SelfBootInfo -- Load the hi-boot iface for the module being compiled, -- if it indeed exists in the transitive closure of imports -- Return the ModDetails; Nothing if no hi-boot iface tcHiBootIface hsc_src mod | HsBootFile <- hsc_src -- Already compiling a hs-boot file = return NoSelfBoot | otherwise = do { traceIf (text "loadHiBootInterface" <+> ppr mod) ; mode <- getGhcMode ; if not (isOneShot mode) -- In --make and interactive mode, if this module has an hs-boot file -- we'll have compiled it already, and it'll be in the HPT -- -- We check whether the interface is a *boot* interface. -- It can happen (when using GHC from Visual Studio) that we -- compile a module in TypecheckOnly mode, with a stable, -- fully-populated HPT. In that case the boot interface isn't there -- (it's been replaced by the mother module) so we can't check it. -- And that's fine, because if M's ModInfo is in the HPT, then -- it's been compiled once, and we don't need to check the boot iface then do { hpt <- getHpt ; case lookupHpt hpt (moduleName mod) of Just info | mi_boot (hm_iface info) == IsBoot -> mkSelfBootInfo (hm_iface info) (hm_details info) _ -> return NoSelfBoot } else do -- OK, so we're in one-shot mode. -- Re #9245, we always check if there is an hi-boot interface -- to check consistency against, rather than just when we notice -- that an hi-boot is necessary due to a circular import. { read_result <- findAndReadIface need (fst (getModuleInstantiation mod)) mod IsBoot -- Hi-boot file ; case read_result of { Succeeded (iface, _path) -> do { tc_iface <- initIfaceTcRn $ typecheckIface iface ; mkSelfBootInfo iface tc_iface } ; Failed err -> -- There was no hi-boot file. But if there is circularity in -- the module graph, there really should have been one. -- Since we've read all the direct imports by now, -- eps_is_boot will record if any of our imports mention the -- current module, which either means a module loop (not -- a SOURCE import) or that our hi-boot file has mysteriously -- disappeared. do { eps <- getEps ; case lookupUFM (eps_is_boot eps) (moduleName mod) of -- The typical case Nothing -> return NoSelfBoot -- error cases Just (GWIB { gwib_isBoot = is_boot }) -> case is_boot of IsBoot -> failWithTc (elaborate err) -- The hi-boot file has mysteriously disappeared. NotBoot -> failWithTc moduleLoop -- Someone below us imported us! -- This is a loop with no hi-boot in the way }}}} where need = text "Need the hi-boot interface for" <+> ppr mod <+> text "to compare against the Real Thing" moduleLoop = text "Circular imports: module" <+> quotes (ppr mod) <+> text "depends on itself" elaborate err = hang (text "Could not find hi-boot interface for" <+> quotes (ppr mod) <> colon) 4 err mkSelfBootInfo :: ModIface -> ModDetails -> TcRn SelfBootInfo mkSelfBootInfo iface mds = do -- NB: This is computed DIRECTLY from the ModIface rather -- than from the ModDetails, so that we can query 'sb_tcs' -- WITHOUT forcing the contents of the interface. let tcs = map ifName . filter isIfaceTyCon . map snd $ mi_decls iface return $ SelfBoot { sb_mds = mds , sb_tcs = mkNameSet tcs } where -- | Retuerns @True@ if, when you call 'tcIfaceDecl' on -- this 'IfaceDecl', an ATyCon would be returned. -- NB: This code assumes that a TyCon cannot be implicit. isIfaceTyCon IfaceId{} = False isIfaceTyCon IfaceData{} = True isIfaceTyCon IfaceSynonym{} = True isIfaceTyCon IfaceFamily{} = True isIfaceTyCon IfaceClass{} = True isIfaceTyCon IfaceAxiom{} = False isIfaceTyCon IfacePatSyn{} = False {- ************************************************************************ * * Type and class declarations * * ************************************************************************ When typechecking a data type decl, we *lazily* (via forkM) typecheck the constructor argument types. This is in the hope that we may never poke on those argument types, and hence may never need to load the interface files for types mentioned in the arg types. E.g. data Foo.S = MkS Baz.T Maybe we can get away without even loading the interface for Baz! This is not just a performance thing. Suppose we have data Foo.S = MkS Baz.T data Baz.T = MkT Foo.S (in different interface files, of course). Now, first we load and typecheck Foo.S, and add it to the type envt. If we do explore MkS's argument, we'll load and typecheck Baz.T. If we explore MkT's argument we'll find Foo.S already in the envt. If we typechecked constructor args eagerly, when loading Foo.S we'd try to typecheck the type Baz.T. So we'd fault in Baz.T... and then need Foo.S... which isn't done yet. All very cunning. However, there is a rather subtle gotcha which bit me when developing this stuff. When we typecheck the decl for S, we extend the type envt with S, MkS, and all its implicit Ids. Suppose (a bug, but it happened) that the list of implicit Ids depended in turn on the constructor arg types. Then the following sequence of events takes place: * we build a thunk for the constructor arg tys * we build a thunk for the extended type environment (depends on ) * we write the extended type envt into the global EPS mutvar Now we look something up in the type envt * that pulls on * which reads the global type envt out of the global EPS mutvar * but that depends in turn on It's subtle, because, it'd work fine if we typechecked the constructor args eagerly -- they don't need the extended type envt. They just get the extended type envt by accident, because they look at it later. What this means is that the implicitTyThings MUST NOT DEPEND on any of the forkM stuff. -} tcIfaceDecl :: Bool -- ^ True <=> discard IdInfo on IfaceId bindings -> IfaceDecl -> IfL TyThing tcIfaceDecl = tc_iface_decl Nothing tc_iface_decl :: Maybe Class -- ^ For associated type/data family declarations -> Bool -- ^ True <=> discard IdInfo on IfaceId bindings -> IfaceDecl -> IfL TyThing tc_iface_decl _ ignore_prags (IfaceId {ifName = name, ifType = iface_type, ifIdDetails = details, ifIdInfo = info}) = do { ty <- tcIfaceType iface_type ; details <- tcIdDetails ty details ; info <- tcIdInfo ignore_prags TopLevel name ty info ; return (AnId (mkGlobalId details name ty info)) } tc_iface_decl _ _ (IfaceData {ifName = tc_name, ifCType = cType, ifBinders = binders, ifResKind = res_kind, ifRoles = roles, ifCtxt = ctxt, ifGadtSyntax = gadt_syn, ifCons = rdr_cons, ifParent = mb_parent }) = bindIfaceTyConBinders_AT binders $ \ binders' -> do { res_kind' <- tcIfaceType res_kind ; tycon <- fixM $ \ tycon -> do { stupid_theta <- tcIfaceCtxt ctxt ; parent' <- tc_parent tc_name mb_parent ; cons <- tcIfaceDataCons tc_name tycon binders' rdr_cons ; return (mkAlgTyCon tc_name binders' res_kind' roles cType stupid_theta cons parent' gadt_syn) } ; traceIf (text "tcIfaceDecl4" <+> ppr tycon) ; return (ATyCon tycon) } where tc_parent :: Name -> IfaceTyConParent -> IfL AlgTyConFlav tc_parent tc_name IfNoParent = do { tc_rep_name <- newTyConRepName tc_name ; return (VanillaAlgTyCon tc_rep_name) } tc_parent _ (IfDataInstance ax_name _ arg_tys) = do { ax <- tcIfaceCoAxiom ax_name ; let fam_tc = coAxiomTyCon ax ax_unbr = toUnbranchedAxiom ax ; lhs_tys <- tcIfaceAppArgs arg_tys ; return (DataFamInstTyCon ax_unbr fam_tc lhs_tys) } tc_iface_decl _ _ (IfaceSynonym {ifName = tc_name, ifRoles = roles, ifSynRhs = rhs_ty, ifBinders = binders, ifResKind = res_kind }) = bindIfaceTyConBinders_AT binders $ \ binders' -> do { res_kind' <- tcIfaceType res_kind -- Note [Synonym kind loop] ; rhs <- forkM (mk_doc tc_name) $ tcIfaceType rhs_ty ; let tycon = buildSynTyCon tc_name binders' res_kind' roles rhs ; return (ATyCon tycon) } where mk_doc n = text "Type synonym" <+> ppr n tc_iface_decl parent _ (IfaceFamily {ifName = tc_name, ifFamFlav = fam_flav, ifBinders = binders, ifResKind = res_kind, ifResVar = res, ifFamInj = inj }) = bindIfaceTyConBinders_AT binders $ \ binders' -> do { res_kind' <- tcIfaceType res_kind -- Note [Synonym kind loop] ; rhs <- forkM (mk_doc tc_name) $ tc_fam_flav tc_name fam_flav ; res_name <- traverse (newIfaceName . mkTyVarOccFS) res ; let tycon = mkFamilyTyCon tc_name binders' res_kind' res_name rhs parent inj ; return (ATyCon tycon) } where mk_doc n = text "Type synonym" <+> ppr n tc_fam_flav :: Name -> IfaceFamTyConFlav -> IfL FamTyConFlav tc_fam_flav tc_name IfaceDataFamilyTyCon = do { tc_rep_name <- newTyConRepName tc_name ; return (DataFamilyTyCon tc_rep_name) } tc_fam_flav _ IfaceOpenSynFamilyTyCon= return OpenSynFamilyTyCon tc_fam_flav _ (IfaceClosedSynFamilyTyCon mb_ax_name_branches) = do { ax <- traverse (tcIfaceCoAxiom . fst) mb_ax_name_branches ; return (ClosedSynFamilyTyCon ax) } tc_fam_flav _ IfaceAbstractClosedSynFamilyTyCon = return AbstractClosedSynFamilyTyCon tc_fam_flav _ IfaceBuiltInSynFamTyCon = pprPanic "tc_iface_decl" (text "IfaceBuiltInSynFamTyCon in interface file") tc_iface_decl _parent _ignore_prags (IfaceClass {ifName = tc_name, ifRoles = roles, ifBinders = binders, ifFDs = rdr_fds, ifBody = IfAbstractClass}) = bindIfaceTyConBinders binders $ \ binders' -> do { fds <- mapM tc_fd rdr_fds ; cls <- buildClass tc_name binders' roles fds Nothing ; return (ATyCon (classTyCon cls)) } tc_iface_decl _parent ignore_prags (IfaceClass {ifName = tc_name, ifRoles = roles, ifBinders = binders, ifFDs = rdr_fds, ifBody = IfConcreteClass { ifClassCtxt = rdr_ctxt, ifATs = rdr_ats, ifSigs = rdr_sigs, ifMinDef = mindef_occ }}) = bindIfaceTyConBinders binders $ \ binders' -> do { traceIf (text "tc-iface-class1" <+> ppr tc_name) ; ctxt <- mapM tc_sc rdr_ctxt ; traceIf (text "tc-iface-class2" <+> ppr tc_name) ; sigs <- mapM tc_sig rdr_sigs ; fds <- mapM tc_fd rdr_fds ; traceIf (text "tc-iface-class3" <+> ppr tc_name) ; mindef <- traverse (lookupIfaceTop . mkVarOccFS) mindef_occ ; cls <- fixM $ \ cls -> do { ats <- mapM (tc_at cls) rdr_ats ; traceIf (text "tc-iface-class4" <+> ppr tc_name) ; buildClass tc_name binders' roles fds (Just (ctxt, ats, sigs, mindef)) } ; return (ATyCon (classTyCon cls)) } where tc_sc pred = forkM (mk_sc_doc pred) (tcIfaceType pred) -- The *length* of the superclasses is used by buildClass, and hence must -- not be inside the thunk. But the *content* maybe recursive and hence -- must be lazy (via forkM). Example: -- class C (T a) => D a where -- data T a -- Here the associated type T is knot-tied with the class, and -- so we must not pull on T too eagerly. See #5970 tc_sig :: IfaceClassOp -> IfL TcMethInfo tc_sig (IfaceClassOp op_name rdr_ty dm) = do { let doc = mk_op_doc op_name rdr_ty ; op_ty <- forkM (doc <+> text "ty") $ tcIfaceType rdr_ty -- Must be done lazily for just the same reason as the -- type of a data con; to avoid sucking in types that -- it mentions unless it's necessary to do so ; dm' <- tc_dm doc dm ; return (op_name, op_ty, dm') } tc_dm :: SDoc -> Maybe (DefMethSpec IfaceType) -> IfL (Maybe (DefMethSpec (SrcSpan, Type))) tc_dm _ Nothing = return Nothing tc_dm _ (Just VanillaDM) = return (Just VanillaDM) tc_dm doc (Just (GenericDM ty)) = do { -- Must be done lazily to avoid sucking in types ; ty' <- forkM (doc <+> text "dm") $ tcIfaceType ty ; return (Just (GenericDM (noSrcSpan, ty'))) } tc_at cls (IfaceAT tc_decl if_def) = do ATyCon tc <- tc_iface_decl (Just cls) ignore_prags tc_decl mb_def <- case if_def of Nothing -> return Nothing Just def -> forkM (mk_at_doc tc) $ extendIfaceTyVarEnv (tyConTyVars tc) $ do { tc_def <- tcIfaceType def ; return (Just (tc_def, NoATVI)) } -- Must be done lazily in case the RHS of the defaults mention -- the type constructor being defined here -- e.g. type AT a; type AT b = AT [b] #8002 return (ATI tc mb_def) mk_sc_doc pred = text "Superclass" <+> ppr pred mk_at_doc tc = text "Associated type" <+> ppr tc mk_op_doc op_name op_ty = text "Class op" <+> sep [ppr op_name, ppr op_ty] tc_iface_decl _ _ (IfaceAxiom { ifName = tc_name, ifTyCon = tc , ifAxBranches = branches, ifRole = role }) = do { tc_tycon <- tcIfaceTyCon tc -- Must be done lazily, because axioms are forced when checking -- for family instance consistency, and the RHS may mention -- a hs-boot declared type constructor that is going to be -- defined by this module. -- e.g. type instance F Int = ToBeDefined -- See #13803 ; tc_branches <- forkM (text "Axiom branches" <+> ppr tc_name) $ tc_ax_branches branches ; let axiom = CoAxiom { co_ax_unique = nameUnique tc_name , co_ax_name = tc_name , co_ax_tc = tc_tycon , co_ax_role = role , co_ax_branches = manyBranches tc_branches , co_ax_implicit = False } ; return (ACoAxiom axiom) } tc_iface_decl _ _ (IfacePatSyn{ ifName = name , ifPatMatcher = if_matcher , ifPatBuilder = if_builder , ifPatIsInfix = is_infix , ifPatUnivBndrs = univ_bndrs , ifPatExBndrs = ex_bndrs , ifPatProvCtxt = prov_ctxt , ifPatReqCtxt = req_ctxt , ifPatArgs = args , ifPatTy = pat_ty , ifFieldLabels = field_labels }) = do { traceIf (text "tc_iface_decl" <+> ppr name) ; matcher <- tc_pr if_matcher ; builder <- fmapMaybeM tc_pr if_builder ; bindIfaceForAllBndrs univ_bndrs $ \univ_tvs -> do { bindIfaceForAllBndrs ex_bndrs $ \ex_tvs -> do { patsyn <- forkM (mk_doc name) $ do { prov_theta <- tcIfaceCtxt prov_ctxt ; req_theta <- tcIfaceCtxt req_ctxt ; pat_ty <- tcIfaceType pat_ty ; arg_tys <- mapM tcIfaceType args ; return $ buildPatSyn name is_infix matcher builder (univ_tvs, req_theta) (ex_tvs, prov_theta) arg_tys pat_ty field_labels } ; return $ AConLike . PatSynCon $ patsyn }}} where mk_doc n = text "Pattern synonym" <+> ppr n tc_pr :: (IfExtName, Bool) -> IfL (Id, Bool) tc_pr (nm, b) = do { id <- forkM (ppr nm) (tcIfaceExtId nm) ; return (id, b) } tcIfaceDecls :: Bool -> [(Fingerprint, IfaceDecl)] -> IfL [(Name,TyThing)] tcIfaceDecls ignore_prags ver_decls = concatMapM (tc_iface_decl_fingerprint ignore_prags) ver_decls tc_iface_decl_fingerprint :: Bool -- Don't load pragmas into the decl pool -> (Fingerprint, IfaceDecl) -> IfL [(Name,TyThing)] -- The list can be poked eagerly, but the -- TyThings are forkM'd thunks tc_iface_decl_fingerprint ignore_prags (_version, decl) = do { -- Populate the name cache with final versions of all -- the names associated with the decl let main_name = ifName decl -- Typecheck the thing, lazily -- NB. Firstly, the laziness is there in case we never need the -- declaration (in one-shot mode), and secondly it is there so that -- we don't look up the occurrence of a name before calling mk_new_bndr -- on the binder. This is important because we must get the right name -- which includes its nameParent. ; thing <- forkM doc $ do { bumpDeclStats main_name ; tcIfaceDecl ignore_prags decl } -- Populate the type environment with the implicitTyThings too. -- -- Note [Tricky iface loop] -- ~~~~~~~~~~~~~~~~~~~~~~~~ -- Summary: The delicate point here is that 'mini-env' must be -- buildable from 'thing' without demanding any of the things -- 'forkM'd by tcIfaceDecl. -- -- In more detail: Consider the example -- data T a = MkT { x :: T a } -- The implicitTyThings of T are: [ , ] -- (plus their workers, wrappers, coercions etc etc) -- -- We want to return an environment -- [ "MkT" -> , "x" -> , ... ] -- (where the "MkT" is the *Name* associated with MkT, etc.) -- -- We do this by mapping the implicit_names to the associated -- TyThings. By the invariant on ifaceDeclImplicitBndrs and -- implicitTyThings, we can use getOccName on the implicit -- TyThings to make this association: each Name's OccName should -- be the OccName of exactly one implicitTyThing. So the key is -- to define a "mini-env" -- -- [ 'MkT' -> , 'x' -> , ... ] -- where the 'MkT' here is the *OccName* associated with MkT. -- -- However, there is a subtlety: due to how type checking needs -- to be staged, we can't poke on the forkM'd thunks inside the -- implicitTyThings while building this mini-env. -- If we poke these thunks too early, two problems could happen: -- (1) When processing mutually recursive modules across -- hs-boot boundaries, poking too early will do the -- type-checking before the recursive knot has been tied, -- so things will be type-checked in the wrong -- environment, and necessary variables won't be in -- scope. -- -- (2) Looking up one OccName in the mini_env will cause -- others to be looked up, which might cause that -- original one to be looked up again, and hence loop. -- -- The code below works because of the following invariant: -- getOccName on a TyThing does not force the suspended type -- checks in order to extract the name. For example, we don't -- poke on the "T a" type of on the way to -- extracting 's OccName. Of course, there is no -- reason in principle why getting the OccName should force the -- thunks, but this means we need to be careful in -- implicitTyThings and its helper functions. -- -- All a bit too finely-balanced for my liking. -- This mini-env and lookup function mediates between the --'Name's n and the map from 'OccName's to the implicit TyThings ; let mini_env = mkOccEnv [(getOccName t, t) | t <- implicitTyThings thing] lookup n = case lookupOccEnv mini_env (getOccName n) of Just thing -> thing Nothing -> pprPanic "tc_iface_decl_fingerprint" (ppr main_name <+> ppr n $$ ppr (decl)) ; implicit_names <- mapM lookupIfaceTop (ifaceDeclImplicitBndrs decl) -- ; traceIf (text "Loading decl for " <> ppr main_name $$ ppr implicit_names) ; return $ (main_name, thing) : -- uses the invariant that implicit_names and -- implicitTyThings are bijective [(n, lookup n) | n <- implicit_names] } where doc = text "Declaration for" <+> ppr (ifName decl) bumpDeclStats :: Name -> IfL () -- Record that one more declaration has actually been used bumpDeclStats name = do { traceIf (text "Loading decl for" <+> ppr name) ; updateEps_ (\eps -> let stats = eps_stats eps in eps { eps_stats = stats { n_decls_out = n_decls_out stats + 1 } }) } tc_fd :: FunDep IfLclName -> IfL (FunDep TyVar) tc_fd (tvs1, tvs2) = do { tvs1' <- mapM tcIfaceTyVar tvs1 ; tvs2' <- mapM tcIfaceTyVar tvs2 ; return (tvs1', tvs2') } tc_ax_branches :: [IfaceAxBranch] -> IfL [CoAxBranch] tc_ax_branches if_branches = foldlM tc_ax_branch [] if_branches tc_ax_branch :: [CoAxBranch] -> IfaceAxBranch -> IfL [CoAxBranch] tc_ax_branch prev_branches (IfaceAxBranch { ifaxbTyVars = tv_bndrs , ifaxbEtaTyVars = eta_tv_bndrs , ifaxbCoVars = cv_bndrs , ifaxbLHS = lhs, ifaxbRHS = rhs , ifaxbRoles = roles, ifaxbIncomps = incomps }) = bindIfaceTyConBinders_AT (map (\b -> Bndr (IfaceTvBndr b) (NamedTCB Inferred)) tv_bndrs) $ \ tvs -> -- The _AT variant is needed here; see Note [CoAxBranch type variables] in GHC.Core.Coercion.Axiom bindIfaceIds cv_bndrs $ \ cvs -> do { tc_lhs <- tcIfaceAppArgs lhs ; tc_rhs <- tcIfaceType rhs ; eta_tvs <- bindIfaceTyVars eta_tv_bndrs return ; this_mod <- getIfModule ; let loc = mkGeneralSrcSpan (fsLit "module " `appendFS` moduleNameFS (moduleName this_mod)) br = CoAxBranch { cab_loc = loc , cab_tvs = binderVars tvs , cab_eta_tvs = eta_tvs , cab_cvs = cvs , cab_lhs = tc_lhs , cab_roles = roles , cab_rhs = tc_rhs , cab_incomps = map (prev_branches `getNth`) incomps } ; return (prev_branches ++ [br]) } tcIfaceDataCons :: Name -> TyCon -> [TyConBinder] -> IfaceConDecls -> IfL AlgTyConRhs tcIfaceDataCons tycon_name tycon tc_tybinders if_cons = case if_cons of IfAbstractTyCon -> return AbstractTyCon IfDataTyCon cons -> do { data_cons <- mapM tc_con_decl cons ; return (mkDataTyConRhs data_cons) } IfNewTyCon con -> do { data_con <- tc_con_decl con ; mkNewTyConRhs tycon_name tycon data_con } where univ_tvs :: [TyVar] univ_tvs = binderVars tc_tybinders tag_map :: NameEnv ConTag tag_map = mkTyConTagMap tycon tc_con_decl (IfCon { ifConInfix = is_infix, ifConExTCvs = ex_bndrs, ifConUserTvBinders = user_bndrs, ifConName = dc_name, ifConCtxt = ctxt, ifConEqSpec = spec, ifConArgTys = args, ifConFields = lbl_names, ifConStricts = if_stricts, ifConSrcStricts = if_src_stricts}) = -- Universally-quantified tyvars are shared with -- parent TyCon, and are already in scope bindIfaceBndrs ex_bndrs $ \ ex_tvs -> do { traceIf (text "Start interface-file tc_con_decl" <+> ppr dc_name) -- By this point, we have bound every universal and existential -- tyvar. Because of the dcUserTyVarBinders invariant -- (see Note [DataCon user type variable binders]), *every* tyvar in -- ifConUserTvBinders has a matching counterpart somewhere in the -- bound universals/existentials. As a result, calling tcIfaceTyVar -- below is always guaranteed to succeed. ; user_tv_bndrs <- mapM (\(Bndr bd vis) -> case bd of IfaceIdBndr (_, name, _) -> Bndr <$> tcIfaceLclId name <*> pure vis IfaceTvBndr (name, _) -> Bndr <$> tcIfaceTyVar name <*> pure vis) user_bndrs -- Read the context and argument types, but lazily for two reasons -- (a) to avoid looking tugging on a recursive use of -- the type itself, which is knot-tied -- (b) to avoid faulting in the component types unless -- they are really needed ; ~(eq_spec, theta, arg_tys, stricts) <- forkM (mk_doc dc_name) $ do { eq_spec <- tcIfaceEqSpec spec ; theta <- tcIfaceCtxt ctxt -- This fixes #13710. The enclosing lazy thunk gets -- forced when typechecking record wildcard pattern -- matching (it's not completely clear why this -- tuple is needed), which causes trouble if one of -- the argument types was recursively defined. -- See also Note [Tying the knot] ; arg_tys <- forkM (mk_doc dc_name <+> text "arg_tys") $ mapM (\(w, ty) -> mkScaled <$> tcIfaceType w <*> tcIfaceType ty) args ; stricts <- mapM tc_strict if_stricts -- The IfBang field can mention -- the type itself; hence inside forkM ; return (eq_spec, theta, arg_tys, stricts) } -- Remember, tycon is the representation tycon ; let orig_res_ty = mkFamilyTyConApp tycon (substTyCoVars (mkTvSubstPrs (map eqSpecPair eq_spec)) (binderVars tc_tybinders)) ; prom_rep_name <- newTyConRepName dc_name ; con <- buildDataCon (pprPanic "tcIfaceDataCons: FamInstEnvs" (ppr dc_name)) dc_name is_infix prom_rep_name (map src_strict if_src_stricts) (Just stricts) -- Pass the HsImplBangs (i.e. final -- decisions) to buildDataCon; it'll use -- these to guide the construction of a -- worker. -- See Note [Bangs on imported data constructors] in GHC.Types.Id.Make lbl_names univ_tvs ex_tvs user_tv_bndrs eq_spec theta arg_tys orig_res_ty tycon tag_map ; traceIf (text "Done interface-file tc_con_decl" <+> ppr dc_name) ; return con } mk_doc con_name = text "Constructor" <+> ppr con_name tc_strict :: IfaceBang -> IfL HsImplBang tc_strict IfNoBang = return (HsLazy) tc_strict IfStrict = return (HsStrict) tc_strict IfUnpack = return (HsUnpack Nothing) tc_strict (IfUnpackCo if_co) = do { co <- tcIfaceCo if_co ; return (HsUnpack (Just co)) } src_strict :: IfaceSrcBang -> HsSrcBang src_strict (IfSrcBang unpk bang) = HsSrcBang NoSourceText unpk bang tcIfaceEqSpec :: IfaceEqSpec -> IfL [EqSpec] tcIfaceEqSpec spec = mapM do_item spec where do_item (occ, if_ty) = do { tv <- tcIfaceTyVar occ ; ty <- tcIfaceType if_ty ; return (mkEqSpec tv ty) } {- Note [Synonym kind loop] ~~~~~~~~~~~~~~~~~~~~~~~~ Notice that we eagerly grab the *kind* from the interface file, but build a forkM thunk for the *rhs* (and family stuff). To see why, consider this (#2412) M.hs: module M where { import X; data T = MkT S } X.hs: module X where { import {-# SOURCE #-} M; type S = T } M.hs-boot: module M where { data T } When kind-checking M.hs we need S's kind. But we do not want to find S's kind from (typeKind S-rhs), because we don't want to look at S-rhs yet! Since S is imported from X.hi, S gets just one chance to be defined, and we must not do that until we've finished with M.T. Solution: record S's kind in the interface file; now we can safely look at it. ************************************************************************ * * Instances * * ************************************************************************ -} tcIfaceInst :: IfaceClsInst -> IfL ClsInst tcIfaceInst (IfaceClsInst { ifDFun = dfun_name, ifOFlag = oflag , ifInstCls = cls, ifInstTys = mb_tcs , ifInstOrph = orph }) = do { dfun <- forkM (text "Dict fun" <+> ppr dfun_name) $ fmap tyThingId (tcIfaceImplicit dfun_name) ; let mb_tcs' = map (fmap ifaceTyConName) mb_tcs ; return (mkImportedInstance cls mb_tcs' dfun_name dfun oflag orph) } tcIfaceFamInst :: IfaceFamInst -> IfL FamInst tcIfaceFamInst (IfaceFamInst { ifFamInstFam = fam, ifFamInstTys = mb_tcs , ifFamInstAxiom = axiom_name } ) = do { axiom' <- forkM (text "Axiom" <+> ppr axiom_name) $ tcIfaceCoAxiom axiom_name -- will panic if branched, but that's OK ; let axiom'' = toUnbranchedAxiom axiom' mb_tcs' = map (fmap ifaceTyConName) mb_tcs ; return (mkImportedFamInst fam mb_tcs' axiom'') } {- ************************************************************************ * * Rules * * ************************************************************************ We move a IfaceRule from eps_rules to eps_rule_base when all its LHS free vars are in the type environment. However, remember that typechecking a Rule may (as a side effect) augment the type envt, and so we may need to iterate the process. -} tcIfaceRules :: Bool -- True <=> ignore rules -> [IfaceRule] -> IfL [CoreRule] tcIfaceRules ignore_prags if_rules | ignore_prags = return [] | otherwise = mapM tcIfaceRule if_rules tcIfaceRule :: IfaceRule -> IfL CoreRule tcIfaceRule (IfaceRule {ifRuleName = name, ifActivation = act, ifRuleBndrs = bndrs, ifRuleHead = fn, ifRuleArgs = args, ifRuleRhs = rhs, ifRuleAuto = auto, ifRuleOrph = orph }) = do { ~(bndrs', args', rhs') <- -- Typecheck the payload lazily, in the hope it'll never be looked at forkM (text "Rule" <+> pprRuleName name) $ bindIfaceBndrs bndrs $ \ bndrs' -> do { args' <- mapM tcIfaceExpr args ; rhs' <- tcIfaceExpr rhs ; whenGOptM Opt_DoCoreLinting $ do { dflags <- getDynFlags ; (_, lcl_env) <- getEnvs ; let in_scope :: [Var] in_scope = ((nonDetEltsUFM $ if_tv_env lcl_env) ++ (nonDetEltsUFM $ if_id_env lcl_env) ++ bndrs' ++ exprsFreeIdsList args') ; case lintExpr dflags in_scope rhs' of Nothing -> return () Just errs -> liftIO $ displayLintResults dflags False doc (pprCoreExpr rhs') (emptyBag, errs) } ; return (bndrs', args', rhs') } ; let mb_tcs = map ifTopFreeName args ; this_mod <- getIfModule ; return (Rule { ru_name = name, ru_fn = fn, ru_act = act, ru_bndrs = bndrs', ru_args = args', ru_rhs = occurAnalyseExpr rhs', ru_rough = mb_tcs, ru_origin = this_mod, ru_orphan = orph, ru_auto = auto, ru_local = False }) } -- An imported RULE is never for a local Id -- or, even if it is (module loop, perhaps) -- we'll just leave it in the non-local set where -- This function *must* mirror exactly what Rules.roughTopNames does -- We could have stored the ru_rough field in the iface file -- but that would be redundant, I think. -- The only wrinkle is that we must not be deceived by -- type synonyms at the top of a type arg. Since -- we can't tell at this point, we are careful not -- to write them out in coreRuleToIfaceRule ifTopFreeName :: IfaceExpr -> Maybe Name ifTopFreeName (IfaceType (IfaceTyConApp tc _ )) = Just (ifaceTyConName tc) ifTopFreeName (IfaceType (IfaceTupleTy s _ ts)) = Just (tupleTyConName s (length (appArgsIfaceTypes ts))) ifTopFreeName (IfaceApp f _) = ifTopFreeName f ifTopFreeName (IfaceExt n) = Just n ifTopFreeName _ = Nothing doc = text "Unfolding of" <+> ppr name {- ************************************************************************ * * Annotations * * ************************************************************************ -} tcIfaceAnnotations :: [IfaceAnnotation] -> IfL [Annotation] tcIfaceAnnotations = mapM tcIfaceAnnotation tcIfaceAnnotation :: IfaceAnnotation -> IfL Annotation tcIfaceAnnotation (IfaceAnnotation target serialized) = do target' <- tcIfaceAnnTarget target return $ Annotation { ann_target = target', ann_value = serialized } tcIfaceAnnTarget :: IfaceAnnTarget -> IfL (AnnTarget Name) tcIfaceAnnTarget (NamedTarget occ) = NamedTarget <$> lookupIfaceTop occ tcIfaceAnnTarget (ModuleTarget mod) = return $ ModuleTarget mod {- ************************************************************************ * * Complete Match Pragmas * * ************************************************************************ -} tcIfaceCompleteMatches :: [IfaceCompleteMatch] -> IfL [CompleteMatch] tcIfaceCompleteMatches = mapM tcIfaceCompleteMatch tcIfaceCompleteMatch :: IfaceCompleteMatch -> IfL CompleteMatch tcIfaceCompleteMatch (IfaceCompleteMatch ms) = mkUniqDSet <$> mapM (forkM doc . tcIfaceConLike) ms where doc = text "COMPLETE sig" <+> ppr ms {- ************************************************************************ * * Types * * ************************************************************************ -} tcIfaceType :: IfaceType -> IfL Type tcIfaceType = go where go (IfaceTyVar n) = TyVarTy <$> tcIfaceTyVar n go (IfaceFreeTyVar n) = pprPanic "tcIfaceType:IfaceFreeTyVar" (ppr n) go (IfaceLitTy l) = LitTy <$> tcIfaceTyLit l go (IfaceFunTy flag w t1 t2) = FunTy flag <$> tcIfaceType w <*> go t1 <*> go t2 go (IfaceTupleTy s i tks) = tcIfaceTupleTy s i tks go (IfaceAppTy t ts) = do { t' <- go t ; ts' <- traverse go (appArgsIfaceTypes ts) ; pure (foldl' AppTy t' ts') } go (IfaceTyConApp tc tks) = do { tc' <- tcIfaceTyCon tc ; tks' <- mapM go (appArgsIfaceTypes tks) ; return (mkTyConApp tc' tks') } go (IfaceForAllTy bndr t) = bindIfaceForAllBndr bndr $ \ tv' vis -> ForAllTy (Bndr tv' vis) <$> go t go (IfaceCastTy ty co) = CastTy <$> go ty <*> tcIfaceCo co go (IfaceCoercionTy co) = CoercionTy <$> tcIfaceCo co tcIfaceTupleTy :: TupleSort -> PromotionFlag -> IfaceAppArgs -> IfL Type tcIfaceTupleTy sort is_promoted args = do { args' <- tcIfaceAppArgs args ; let arity = length args' ; base_tc <- tcTupleTyCon True sort arity ; case is_promoted of NotPromoted -> return (mkTyConApp base_tc args') IsPromoted -> do { let tc = promoteDataCon (tyConSingleDataCon base_tc) kind_args = map typeKind args' ; return (mkTyConApp tc (kind_args ++ args')) } } -- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon tcTupleTyCon :: Bool -- True <=> typechecking a *type* (vs. an expr) -> TupleSort -> Arity -- the number of args. *not* the tuple arity. -> IfL TyCon tcTupleTyCon in_type sort arity = case sort of ConstraintTuple -> return (cTupleTyCon arity) BoxedTuple -> return (tupleTyCon Boxed arity) UnboxedTuple -> return (tupleTyCon Unboxed arity') where arity' | in_type = arity `div` 2 | otherwise = arity -- in expressions, we only have term args tcIfaceAppArgs :: IfaceAppArgs -> IfL [Type] tcIfaceAppArgs = mapM tcIfaceType . appArgsIfaceTypes ----------------------------------------- tcIfaceCtxt :: IfaceContext -> IfL ThetaType tcIfaceCtxt sts = mapM tcIfaceType sts ----------------------------------------- tcIfaceTyLit :: IfaceTyLit -> IfL TyLit tcIfaceTyLit (IfaceNumTyLit n) = return (NumTyLit n) tcIfaceTyLit (IfaceStrTyLit n) = return (StrTyLit n) {- %************************************************************************ %* * Coercions * * ************************************************************************ -} tcIfaceCo :: IfaceCoercion -> IfL Coercion tcIfaceCo = go where go_mco IfaceMRefl = pure MRefl go_mco (IfaceMCo co) = MCo <$> (go co) go (IfaceReflCo t) = Refl <$> tcIfaceType t go (IfaceGReflCo r t mco) = GRefl r <$> tcIfaceType t <*> go_mco mco go (IfaceFunCo r w c1 c2) = mkFunCo r <$> go w <*> go c1 <*> go c2 go (IfaceTyConAppCo r tc cs) = TyConAppCo r <$> tcIfaceTyCon tc <*> mapM go cs go (IfaceAppCo c1 c2) = AppCo <$> go c1 <*> go c2 go (IfaceForAllCo tv k c) = do { k' <- go k ; bindIfaceBndr tv $ \ tv' -> ForAllCo tv' k' <$> go c } go (IfaceCoVarCo n) = CoVarCo <$> go_var n go (IfaceAxiomInstCo n i cs) = AxiomInstCo <$> tcIfaceCoAxiom n <*> pure i <*> mapM go cs go (IfaceUnivCo p r t1 t2) = UnivCo <$> tcIfaceUnivCoProv p <*> pure r <*> tcIfaceType t1 <*> tcIfaceType t2 go (IfaceSymCo c) = SymCo <$> go c go (IfaceTransCo c1 c2) = TransCo <$> go c1 <*> go c2 go (IfaceInstCo c1 t2) = InstCo <$> go c1 <*> go t2 go (IfaceNthCo d c) = do { c' <- go c ; return $ mkNthCo (nthCoRole d c') d c' } go (IfaceLRCo lr c) = LRCo lr <$> go c go (IfaceKindCo c) = KindCo <$> go c go (IfaceSubCo c) = SubCo <$> go c go (IfaceAxiomRuleCo ax cos) = AxiomRuleCo <$> tcIfaceCoAxiomRule ax <*> mapM go cos go (IfaceFreeCoVar c) = pprPanic "tcIfaceCo:IfaceFreeCoVar" (ppr c) go (IfaceHoleCo c) = pprPanic "tcIfaceCo:IfaceHoleCo" (ppr c) go_var :: FastString -> IfL CoVar go_var = tcIfaceLclId tcIfaceUnivCoProv :: IfaceUnivCoProv -> IfL UnivCoProvenance tcIfaceUnivCoProv (IfacePhantomProv kco) = PhantomProv <$> tcIfaceCo kco tcIfaceUnivCoProv (IfaceProofIrrelProv kco) = ProofIrrelProv <$> tcIfaceCo kco tcIfaceUnivCoProv (IfacePluginProv str) = return $ PluginProv str {- ************************************************************************ * * Core * * ************************************************************************ -} tcIfaceExpr :: IfaceExpr -> IfL CoreExpr tcIfaceExpr (IfaceType ty) = Type <$> tcIfaceType ty tcIfaceExpr (IfaceCo co) = Coercion <$> tcIfaceCo co tcIfaceExpr (IfaceCast expr co) = Cast <$> tcIfaceExpr expr <*> tcIfaceCo co tcIfaceExpr (IfaceLcl name) = Var <$> tcIfaceLclId name tcIfaceExpr (IfaceExt gbl) = Var <$> tcIfaceExtId gbl tcIfaceExpr (IfaceLit lit) = do lit' <- tcIfaceLit lit return (Lit lit') tcIfaceExpr (IfaceFCall cc ty) = do ty' <- tcIfaceType ty u <- newUnique dflags <- getDynFlags return (Var (mkFCallId dflags u cc ty')) tcIfaceExpr (IfaceTuple sort args) = do { args' <- mapM tcIfaceExpr args ; tc <- tcTupleTyCon False sort arity ; let con_tys = map exprType args' some_con_args = map Type con_tys ++ args' con_args = case sort of UnboxedTuple -> map (Type . getRuntimeRep) con_tys ++ some_con_args _ -> some_con_args -- Put the missing type arguments back in con_id = dataConWorkId (tyConSingleDataCon tc) ; return (mkApps (Var con_id) con_args) } where arity = length args tcIfaceExpr (IfaceLam (bndr, os) body) = bindIfaceBndr bndr $ \bndr' -> Lam (tcIfaceOneShot os bndr') <$> tcIfaceExpr body where tcIfaceOneShot IfaceOneShot b = setOneShotLambda b tcIfaceOneShot _ b = b tcIfaceExpr (IfaceApp fun arg) = App <$> tcIfaceExpr fun <*> tcIfaceExpr arg tcIfaceExpr (IfaceECase scrut ty) = do { scrut' <- tcIfaceExpr scrut ; ty' <- tcIfaceType ty ; return (castBottomExpr scrut' ty') } tcIfaceExpr (IfaceCase scrut case_bndr alts) = do scrut' <- tcIfaceExpr scrut case_bndr_name <- newIfaceName (mkVarOccFS case_bndr) let scrut_ty = exprType scrut' case_mult = Many case_bndr' = mkLocalIdOrCoVar case_bndr_name case_mult scrut_ty -- "OrCoVar" since a coercion can be a scrutinee with -fdefer-type-errors -- (e.g. see test T15695). Ticket #17291 covers fixing this problem. tc_app = splitTyConApp scrut_ty -- NB: Won't always succeed (polymorphic case) -- but won't be demanded in those cases -- NB: not tcSplitTyConApp; we are looking at Core here -- look through non-rec newtypes to find the tycon that -- corresponds to the datacon in this case alternative extendIfaceIdEnv [case_bndr'] $ do alts' <- mapM (tcIfaceAlt scrut' case_mult tc_app) alts return (Case scrut' case_bndr' (coreAltsType alts') alts') tcIfaceExpr (IfaceLet (IfaceNonRec (IfLetBndr fs ty info ji) rhs) body) = do { name <- newIfaceName (mkVarOccFS fs) ; ty' <- tcIfaceType ty ; id_info <- tcIdInfo False {- Don't ignore prags; we are inside one! -} NotTopLevel name ty' info ; let id = mkLocalIdWithInfo name Many ty' id_info `asJoinId_maybe` tcJoinInfo ji ; rhs' <- tcIfaceExpr rhs ; body' <- extendIfaceIdEnv [id] (tcIfaceExpr body) ; return (Let (NonRec id rhs') body') } tcIfaceExpr (IfaceLet (IfaceRec pairs) body) = do { ids <- mapM tc_rec_bndr (map fst pairs) ; extendIfaceIdEnv ids $ do { pairs' <- zipWithM tc_pair pairs ids ; body' <- tcIfaceExpr body ; return (Let (Rec pairs') body') } } where tc_rec_bndr (IfLetBndr fs ty _ ji) = do { name <- newIfaceName (mkVarOccFS fs) ; ty' <- tcIfaceType ty ; return (mkLocalId name Many ty' `asJoinId_maybe` tcJoinInfo ji) } tc_pair (IfLetBndr _ _ info _, rhs) id = do { rhs' <- tcIfaceExpr rhs ; id_info <- tcIdInfo False {- Don't ignore prags; we are inside one! -} NotTopLevel (idName id) (idType id) info ; return (setIdInfo id id_info, rhs') } tcIfaceExpr (IfaceTick tickish expr) = do expr' <- tcIfaceExpr expr -- If debug flag is not set: Ignore source notes dbgLvl <- fmap debugLevel getDynFlags case tickish of IfaceSource{} | dbgLvl == 0 -> return expr' _otherwise -> do tickish' <- tcIfaceTickish tickish return (Tick tickish' expr') ------------------------- tcIfaceTickish :: IfaceTickish -> IfM lcl (Tickish Id) tcIfaceTickish (IfaceHpcTick modl ix) = return (HpcTick modl ix) tcIfaceTickish (IfaceSCC cc tick push) = return (ProfNote cc tick push) tcIfaceTickish (IfaceSource src name) = return (SourceNote src name) ------------------------- tcIfaceLit :: Literal -> IfL Literal tcIfaceLit lit = return lit ------------------------- tcIfaceAlt :: CoreExpr -> Mult -> (TyCon, [Type]) -> (IfaceConAlt, [FastString], IfaceExpr) -> IfL (AltCon, [TyVar], CoreExpr) tcIfaceAlt _ _ _ (IfaceDefault, names, rhs) = ASSERT( null names ) do rhs' <- tcIfaceExpr rhs return (DEFAULT, [], rhs') tcIfaceAlt _ _ _ (IfaceLitAlt lit, names, rhs) = ASSERT( null names ) do lit' <- tcIfaceLit lit rhs' <- tcIfaceExpr rhs return (LitAlt lit', [], rhs') -- A case alternative is made quite a bit more complicated -- by the fact that we omit type annotations because we can -- work them out. True enough, but its not that easy! tcIfaceAlt scrut mult (tycon, inst_tys) (IfaceDataAlt data_occ, arg_strs, rhs) = do { con <- tcIfaceDataCon data_occ ; when (debugIsOn && not (con `elem` tyConDataCons tycon)) (failIfM (ppr scrut $$ ppr con $$ ppr tycon $$ ppr (tyConDataCons tycon))) ; tcIfaceDataAlt mult con inst_tys arg_strs rhs } tcIfaceDataAlt :: Mult -> DataCon -> [Type] -> [FastString] -> IfaceExpr -> IfL (AltCon, [TyVar], CoreExpr) tcIfaceDataAlt mult con inst_tys arg_strs rhs = do { us <- newUniqueSupply ; let uniqs = uniqsFromSupply us ; let (ex_tvs, arg_ids) = dataConRepFSInstPat arg_strs uniqs mult con inst_tys ; rhs' <- extendIfaceEnvs ex_tvs $ extendIfaceIdEnv arg_ids $ tcIfaceExpr rhs ; return (DataAlt con, ex_tvs ++ arg_ids, rhs') } {- ************************************************************************ * * IdInfo * * ************************************************************************ -} tcIdDetails :: Type -> IfaceIdDetails -> IfL IdDetails tcIdDetails _ IfVanillaId = return VanillaId tcIdDetails ty IfDFunId = return (DFunId (isNewTyCon (classTyCon cls))) where (_, _, cls, _) = tcSplitDFunTy ty tcIdDetails _ (IfRecSelId tc naughty) = do { tc' <- either (fmap RecSelData . tcIfaceTyCon) (fmap (RecSelPatSyn . tyThingPatSyn) . tcIfaceDecl False) tc ; return (RecSelId { sel_tycon = tc', sel_naughty = naughty }) } where tyThingPatSyn (AConLike (PatSynCon ps)) = ps tyThingPatSyn _ = panic "tcIdDetails: expecting patsyn" tcIdInfo :: Bool -> TopLevelFlag -> Name -> Type -> IfaceIdInfo -> IfL IdInfo tcIdInfo ignore_prags toplvl name ty info = do lcl_env <- getLclEnv -- Set the CgInfo to something sensible but uninformative before -- we start; default assumption is that it has CAFs let init_info = if if_boot lcl_env == IsBoot then vanillaIdInfo `setUnfoldingInfo` BootUnfolding else vanillaIdInfo foldlM tcPrag init_info (needed_prags info) where needed_prags :: [IfaceInfoItem] -> [IfaceInfoItem] needed_prags items | not ignore_prags = items | otherwise = filter need_prag items need_prag :: IfaceInfoItem -> Bool -- Always read in compulsory unfoldings -- See Note [Always expose compulsory unfoldings] in GHC.Iface.Tidy need_prag (HsUnfold _ (IfCompulsory {})) = True need_prag _ = False tcPrag :: IdInfo -> IfaceInfoItem -> IfL IdInfo tcPrag info HsNoCafRefs = return (info `setCafInfo` NoCafRefs) tcPrag info (HsArity arity) = return (info `setArityInfo` arity) tcPrag info (HsStrictness str) = return (info `setStrictnessInfo` str) tcPrag info (HsCpr cpr) = return (info `setCprInfo` cpr) tcPrag info (HsInline prag) = return (info `setInlinePragInfo` prag) tcPrag info HsLevity = return (info `setNeverLevPoly` ty) tcPrag info (HsLFInfo lf_info) = do lf_info <- tcLFInfo lf_info return (info `setLFInfo` lf_info) -- The next two are lazy, so they don't transitively suck stuff in tcPrag info (HsUnfold lb if_unf) = do { unf <- tcUnfolding toplvl name ty info if_unf ; let info1 | lb = info `setOccInfo` strongLoopBreaker | otherwise = info ; return (info1 `setUnfoldingInfo` unf) } tcJoinInfo :: IfaceJoinInfo -> Maybe JoinArity tcJoinInfo (IfaceJoinPoint ar) = Just ar tcJoinInfo IfaceNotJoinPoint = Nothing tcLFInfo :: IfaceLFInfo -> IfL LambdaFormInfo tcLFInfo lfi = case lfi of IfLFReEntrant rep_arity -> -- LFReEntrant closures in interface files are guaranteed to -- -- - Be top-level, as only top-level closures are exported. -- - Have no free variables, as only non-top-level closures have free -- variables -- - Don't have ArgDescrs, as ArgDescr is used when generating code for -- the closure -- -- These invariants are checked when generating LFInfos in toIfaceLFInfo. return (LFReEntrant TopLevel rep_arity True ArgUnknown) IfLFThunk updatable mb_fun -> -- LFThunk closure in interface files are guaranteed to -- -- - Be top-level -- - No have free variables -- -- These invariants are checked when generating LFInfos in toIfaceLFInfo. return (LFThunk TopLevel True updatable NonStandardThunk mb_fun) IfLFUnlifted -> return LFUnlifted IfLFCon con_name -> LFCon <$!> tcIfaceDataCon con_name IfLFUnknown fun_flag -> return (LFUnknown fun_flag) tcUnfolding :: TopLevelFlag -> Name -> Type -> IdInfo -> IfaceUnfolding -> IfL Unfolding tcUnfolding toplvl name _ info (IfCoreUnfold stable if_expr) = do { uf_opts <- unfoldingOpts <$> getDynFlags ; mb_expr <- tcPragExpr False toplvl name if_expr ; let unf_src | stable = InlineStable | otherwise = InlineRhs ; return $ case mb_expr of Nothing -> NoUnfolding Just expr -> mkFinalUnfolding uf_opts unf_src strict_sig expr } where -- Strictness should occur before unfolding! strict_sig = strictnessInfo info tcUnfolding toplvl name _ _ (IfCompulsory if_expr) = do { mb_expr <- tcPragExpr True toplvl name if_expr ; return (case mb_expr of Nothing -> NoUnfolding Just expr -> mkCompulsoryUnfolding' expr) } tcUnfolding toplvl name _ _ (IfInlineRule arity unsat_ok boring_ok if_expr) = do { mb_expr <- tcPragExpr False toplvl name if_expr ; return (case mb_expr of Nothing -> NoUnfolding Just expr -> mkCoreUnfolding InlineStable True expr guidance )} where guidance = UnfWhen { ug_arity = arity, ug_unsat_ok = unsat_ok, ug_boring_ok = boring_ok } tcUnfolding _toplvl name dfun_ty _ (IfDFunUnfold bs ops) = bindIfaceBndrs bs $ \ bs' -> do { mb_ops1 <- forkM_maybe doc $ mapM tcIfaceExpr ops ; return (case mb_ops1 of Nothing -> noUnfolding Just ops1 -> mkDFunUnfolding bs' (classDataCon cls) ops1) } where doc = text "Class ops for dfun" <+> ppr name (_, _, cls, _) = tcSplitDFunTy dfun_ty {- For unfoldings we try to do the job lazily, so that we never type check an unfolding that isn't going to be looked at. -} tcPragExpr :: Bool -- Is this unfolding compulsory? -- See Note [Checking for levity polymorphism] in GHC.Core.Lint -> TopLevelFlag -> Name -> IfaceExpr -> IfL (Maybe CoreExpr) tcPragExpr is_compulsory toplvl name expr = forkM_maybe doc $ do core_expr' <- tcIfaceExpr expr -- Check for type consistency in the unfolding -- See Note [Linting Unfoldings from Interfaces] when (isTopLevel toplvl) $ whenGOptM Opt_DoCoreLinting $ do in_scope <- get_in_scope dflags <- getDynFlags case lintUnfolding is_compulsory dflags noSrcLoc in_scope core_expr' of Nothing -> return () Just errs -> liftIO $ displayLintResults dflags False doc (pprCoreExpr core_expr') (emptyBag, errs) return core_expr' where doc = ppWhen is_compulsory (text "Compulsory") <+> text "Unfolding of" <+> ppr name get_in_scope :: IfL VarSet -- Totally disgusting; but just for linting get_in_scope = do { (gbl_env, lcl_env) <- getEnvs ; rec_ids <- case if_rec_types gbl_env of Nothing -> return [] Just (_, get_env) -> do { type_env <- setLclEnv () get_env ; return (typeEnvIds type_env) } ; return (bindingsVars (if_tv_env lcl_env) `unionVarSet` bindingsVars (if_id_env lcl_env) `unionVarSet` mkVarSet rec_ids) } bindingsVars :: FastStringEnv Var -> VarSet bindingsVars ufm = mkVarSet $ nonDetEltsUFM ufm -- It's OK to use nonDetEltsUFM here because we immediately forget -- the ordering by creating a set tcIfaceOneShot :: IfaceOneShot -> OneShotInfo tcIfaceOneShot IfaceNoOneShot = NoOneShotInfo tcIfaceOneShot IfaceOneShot = OneShotLam {- ************************************************************************ * * Getting from Names to TyThings * * ************************************************************************ -} tcIfaceGlobal :: Name -> IfL TyThing tcIfaceGlobal name | Just thing <- wiredInNameTyThing_maybe name -- Wired-in things include TyCons, DataCons, and Ids -- Even though we are in an interface file, we want to make -- sure the instances and RULES of this thing (particularly TyCon) are loaded -- Imagine: f :: Double -> Double = do { ifCheckWiredInThing thing; return thing } | otherwise = do { env <- getGblEnv ; case if_rec_types env of { -- Note [Tying the knot] Just (mod, get_type_env) | nameIsLocalOrFrom mod name -> do -- It's defined in the module being compiled { type_env <- setLclEnv () get_type_env -- yuk ; case lookupNameEnv type_env name of Just thing -> return thing -- See Note [Knot-tying fallback on boot] Nothing -> via_external } ; _ -> via_external }} where via_external = do { hsc_env <- getTopEnv ; mb_thing <- liftIO (lookupType hsc_env name) ; case mb_thing of { Just thing -> return thing ; Nothing -> do { mb_thing <- importDecl name -- It's imported; go get it ; case mb_thing of Failed err -> failIfM err Succeeded thing -> return thing }}} -- Note [Tying the knot] -- ~~~~~~~~~~~~~~~~~~~~~ -- The if_rec_types field is used when we are compiling M.hs, which indirectly -- imports Foo.hi, which mentions M.T Then we look up M.T in M's type -- environment, which is splatted into if_rec_types after we've built M's type -- envt. -- -- This is a dark and complicated part of GHC type checking, with a lot -- of moving parts. Interested readers should also look at: -- -- * Note [Knot-tying typecheckIface] -- * Note [DFun knot-tying] -- * Note [hsc_type_env_var hack] -- * Note [Knot-tying fallback on boot] -- -- There is also a wiki page on the subject, see: -- -- https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/tying-the-knot -- Note [Knot-tying fallback on boot] -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- Suppose that you are typechecking A.hs, which transitively imports, -- via B.hs, A.hs-boot. When we poke on B.hs and discover that it -- has a reference to a type T from A, what TyThing should we wire -- it up with? Clearly, if we have already typechecked T and -- added it into the type environment, we should go ahead and use that -- type. But what if we haven't typechecked it yet? -- -- For the longest time, GHC adopted the policy that this was -- *an error condition*; that you MUST NEVER poke on B.hs's reference -- to a T defined in A.hs until A.hs has gotten around to kind-checking -- T and adding it to the env. However, actually ensuring this is the -- case has proven to be a bug farm, because it's really difficult to -- actually ensure this never happens. The problem was especially poignant -- with type family consistency checks, which eagerly happen before any -- typechecking takes place. -- -- Today, we take a different strategy: if we ever try to access -- an entity from A which doesn't exist, we just fall back on the -- definition of A from the hs-boot file. This is complicated in -- its own way: it means that you may end up with a mix of A.hs and -- A.hs-boot TyThings during the course of typechecking. We don't -- think (and have not observed) any cases where this would cause -- problems, but the hypothetical situation one might worry about -- is something along these lines in Core: -- -- case x of -- A -> e1 -- B -> e2 -- -- If, when typechecking this, we find x :: T, and the T we are hooked -- up with is the abstract one from the hs-boot file, rather than the -- one defined in this module with constructors A and B. But it's hard -- to see how this could happen, especially because the reference to -- the constructor (A and B) means that GHC will always typecheck -- this expression *after* typechecking T. tcIfaceTyCon :: IfaceTyCon -> IfL TyCon tcIfaceTyCon (IfaceTyCon name info) = do { thing <- tcIfaceGlobal name ; return $ case ifaceTyConIsPromoted info of NotPromoted -> tyThingTyCon thing IsPromoted -> promoteDataCon $ tyThingDataCon thing } tcIfaceCoAxiom :: Name -> IfL (CoAxiom Branched) tcIfaceCoAxiom name = do { thing <- tcIfaceImplicit name ; return (tyThingCoAxiom thing) } tcIfaceCoAxiomRule :: IfLclName -> IfL CoAxiomRule -- Unlike CoAxioms, which arise form user 'type instance' declarations, -- there are a fixed set of CoAxiomRules, -- currently enumerated in typeNatCoAxiomRules tcIfaceCoAxiomRule n = case lookupUFM typeNatCoAxiomRules n of Just ax -> return ax _ -> pprPanic "tcIfaceCoAxiomRule" (ppr n) tcIfaceDataCon :: Name -> IfL DataCon tcIfaceDataCon name = do { thing <- tcIfaceGlobal name ; case thing of AConLike (RealDataCon dc) -> return dc _ -> pprPanic "tcIfaceDataCon" (ppr name$$ ppr thing) } tcIfaceConLike :: Name -> IfL ConLike tcIfaceConLike name = do { thing <- tcIfaceGlobal name ; case thing of AConLike cl -> return cl _ -> pprPanic "tcIfaceConLike" (ppr name$$ ppr thing) } tcIfaceExtId :: Name -> IfL Id tcIfaceExtId name = do { thing <- tcIfaceGlobal name ; case thing of AnId id -> return id _ -> pprPanic "tcIfaceExtId" (ppr name$$ ppr thing) } -- See Note [Resolving never-exported Names] in GHC.IfaceToCore tcIfaceImplicit :: Name -> IfL TyThing tcIfaceImplicit n = do lcl_env <- getLclEnv case if_implicits_env lcl_env of Nothing -> tcIfaceGlobal n Just tenv -> case lookupTypeEnv tenv n of Nothing -> pprPanic "tcIfaceInst" (ppr n $$ ppr tenv) Just tything -> return tything {- ************************************************************************ * * Bindings * * ************************************************************************ -} bindIfaceId :: IfaceIdBndr -> (Id -> IfL a) -> IfL a bindIfaceId (w, fs, ty) thing_inside = do { name <- newIfaceName (mkVarOccFS fs) ; ty' <- tcIfaceType ty ; w' <- tcIfaceType w ; let id = mkLocalIdOrCoVar name w' ty' -- We should not have "OrCoVar" here, this is a bug (#17545) ; extendIfaceIdEnv [id] (thing_inside id) } bindIfaceIds :: [IfaceIdBndr] -> ([Id] -> IfL a) -> IfL a bindIfaceIds [] thing_inside = thing_inside [] bindIfaceIds (b:bs) thing_inside = bindIfaceId b $ \b' -> bindIfaceIds bs $ \bs' -> thing_inside (b':bs') bindIfaceBndr :: IfaceBndr -> (CoreBndr -> IfL a) -> IfL a bindIfaceBndr (IfaceIdBndr bndr) thing_inside = bindIfaceId bndr thing_inside bindIfaceBndr (IfaceTvBndr bndr) thing_inside = bindIfaceTyVar bndr thing_inside bindIfaceBndrs :: [IfaceBndr] -> ([CoreBndr] -> IfL a) -> IfL a bindIfaceBndrs [] thing_inside = thing_inside [] bindIfaceBndrs (b:bs) thing_inside = bindIfaceBndr b $ \ b' -> bindIfaceBndrs bs $ \ bs' -> thing_inside (b':bs') ----------------------- bindIfaceForAllBndrs :: [VarBndr IfaceBndr vis] -> ([VarBndr TyCoVar vis] -> IfL a) -> IfL a bindIfaceForAllBndrs [] thing_inside = thing_inside [] bindIfaceForAllBndrs (bndr:bndrs) thing_inside = bindIfaceForAllBndr bndr $ \tv vis -> bindIfaceForAllBndrs bndrs $ \bndrs' -> thing_inside (Bndr tv vis : bndrs') bindIfaceForAllBndr :: (VarBndr IfaceBndr vis) -> (TyCoVar -> vis -> IfL a) -> IfL a bindIfaceForAllBndr (Bndr (IfaceTvBndr tv) vis) thing_inside = bindIfaceTyVar tv $ \tv' -> thing_inside tv' vis bindIfaceForAllBndr (Bndr (IfaceIdBndr tv) vis) thing_inside = bindIfaceId tv $ \tv' -> thing_inside tv' vis bindIfaceTyVar :: IfaceTvBndr -> (TyVar -> IfL a) -> IfL a bindIfaceTyVar (occ,kind) thing_inside = do { name <- newIfaceName (mkTyVarOccFS occ) ; tyvar <- mk_iface_tyvar name kind ; extendIfaceTyVarEnv [tyvar] (thing_inside tyvar) } bindIfaceTyVars :: [IfaceTvBndr] -> ([TyVar] -> IfL a) -> IfL a bindIfaceTyVars [] thing_inside = thing_inside [] bindIfaceTyVars (bndr:bndrs) thing_inside = bindIfaceTyVar bndr $ \tv -> bindIfaceTyVars bndrs $ \tvs -> thing_inside (tv : tvs) mk_iface_tyvar :: Name -> IfaceKind -> IfL TyVar mk_iface_tyvar name ifKind = do { kind <- tcIfaceType ifKind ; return (Var.mkTyVar name kind) } bindIfaceTyConBinders :: [IfaceTyConBinder] -> ([TyConBinder] -> IfL a) -> IfL a bindIfaceTyConBinders [] thing_inside = thing_inside [] bindIfaceTyConBinders (b:bs) thing_inside = bindIfaceTyConBinderX bindIfaceBndr b $ \ b' -> bindIfaceTyConBinders bs $ \ bs' -> thing_inside (b':bs') bindIfaceTyConBinders_AT :: [IfaceTyConBinder] -> ([TyConBinder] -> IfL a) -> IfL a -- Used for type variable in nested associated data/type declarations -- where some of the type variables are already in scope -- class C a where { data T a b } -- Here 'a' is in scope when we look at the 'data T' bindIfaceTyConBinders_AT [] thing_inside = thing_inside [] bindIfaceTyConBinders_AT (b : bs) thing_inside = bindIfaceTyConBinderX bind_tv b $ \b' -> bindIfaceTyConBinders_AT bs $ \bs' -> thing_inside (b':bs') where bind_tv tv thing = do { mb_tv <- lookupIfaceVar tv ; case mb_tv of Just b' -> thing b' Nothing -> bindIfaceBndr tv thing } bindIfaceTyConBinderX :: (IfaceBndr -> (TyCoVar -> IfL a) -> IfL a) -> IfaceTyConBinder -> (TyConBinder -> IfL a) -> IfL a bindIfaceTyConBinderX bind_tv (Bndr tv vis) thing_inside = bind_tv tv $ \tv' -> thing_inside (Bndr tv' vis)