{-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE BangPatterns #-} ----------------------------------------------------------------------------- -- -- Stg to C-- code generation -- -- (c) The University of Glasgow 2004-2006 -- ----------------------------------------------------------------------------- module GHC.StgToCmm ( codeGen ) where #include "HsVersions.h" import GHC.Prelude as Prelude import GHC.StgToCmm.Prof (initCostCentres, ldvEnter) import GHC.StgToCmm.Monad import GHC.StgToCmm.Env import GHC.StgToCmm.Bind import GHC.StgToCmm.DataCon import GHC.StgToCmm.Layout import GHC.StgToCmm.Utils import GHC.StgToCmm.Closure import GHC.StgToCmm.Hpc import GHC.StgToCmm.Ticky import GHC.StgToCmm.Types (ModuleLFInfos) import GHC.Cmm import GHC.Cmm.Utils import GHC.Cmm.CLabel import GHC.Stg.Syntax import GHC.Driver.Session import GHC.Utils.Error import GHC.Driver.Types import GHC.Types.CostCentre import GHC.Types.Id import GHC.Types.Id.Info import GHC.Types.RepType import GHC.Core.DataCon import GHC.Core.TyCon import GHC.Core.Multiplicity import GHC.Unit.Module import GHC.Utils.Outputable import GHC.Data.Stream import GHC.Types.Basic import GHC.Types.Var.Set ( isEmptyDVarSet ) import GHC.SysTools.FileCleanup import GHC.Types.Unique.FM import GHC.Types.Name.Env import GHC.Data.OrdList import GHC.Cmm.Graph import Data.IORef import Control.Monad (when,void) import GHC.Utils.Misc import System.IO.Unsafe import qualified Data.ByteString as BS codeGen :: DynFlags -> Module -> [TyCon] -> CollectedCCs -- (Local/global) cost-centres needing declaring/registering. -> [CgStgTopBinding] -- Bindings to convert -> HpcInfo -> Stream IO CmmGroup ModuleLFInfos -- Output as a stream, so codegen can -- be interleaved with output codeGen dflags this_mod data_tycons cost_centre_info stg_binds hpc_info = do { -- cg: run the code generator, and yield the resulting CmmGroup -- Using an IORef to store the state is a bit crude, but otherwise -- we would need to add a state monad layer. ; cgref <- liftIO $ newIORef =<< initC ; let cg :: FCode () -> Stream IO CmmGroup () cg fcode = do cmm <- liftIO . withTimingSilent dflags (text "STG -> Cmm") (`seq` ()) $ do st <- readIORef cgref let (a,st') = runC dflags this_mod st (getCmm fcode) -- NB. stub-out cgs_tops and cgs_stmts. This fixes -- a big space leak. DO NOT REMOVE! writeIORef cgref $! st'{ cgs_tops = nilOL, cgs_stmts = mkNop } return a yield cmm -- Note [codegen-split-init] the cmm_init block must come -- FIRST. This is because when -split-objs is on we need to -- combine this block with its initialisation routines; see -- Note [pipeline-split-init]. ; cg (mkModuleInit cost_centre_info this_mod hpc_info) ; mapM_ (cg . cgTopBinding dflags) stg_binds -- Put datatype_stuff after code_stuff, because the -- datatype closure table (for enumeration types) to -- (say) PrelBase_True_closure, which is defined in -- code_stuff ; let do_tycon tycon = do -- Generate a table of static closures for an -- enumeration type Note that the closure pointers are -- tagged. when (isEnumerationTyCon tycon) $ cg (cgEnumerationTyCon tycon) mapM_ (cg . cgDataCon) (tyConDataCons tycon) ; mapM_ do_tycon data_tycons ; cg_id_infos <- cgs_binds <$> liftIO (readIORef cgref) -- See Note [Conveying CAF-info and LFInfo between modules] in -- GHC.StgToCmm.Types ; let extractInfo info = (name, lf) where !name = idName (cg_id info) !lf = cg_lf info !generatedInfo | gopt Opt_OmitInterfacePragmas dflags = emptyNameEnv | otherwise = mkNameEnv (Prelude.map extractInfo (eltsUFM cg_id_infos)) ; return generatedInfo } --------------------------------------------------------------- -- Top-level bindings --------------------------------------------------------------- {- 'cgTopBinding' is only used for top-level bindings, since they need to be allocated statically (not in the heap) and need to be labelled. No unboxed bindings can happen at top level. In the code below, the static bindings are accumulated in the @MkCgState@, and transferred into the ``statics'' slot by @forkStatics@. This is so that we can write the top level processing in a compositional style, with the increasing static environment being plumbed as a state variable. -} cgTopBinding :: DynFlags -> CgStgTopBinding -> FCode () cgTopBinding dflags (StgTopLifted (StgNonRec id rhs)) = do { let (info, fcode) = cgTopRhs dflags NonRecursive id rhs ; fcode ; addBindC info } cgTopBinding dflags (StgTopLifted (StgRec pairs)) = do { let (bndrs, rhss) = unzip pairs ; let pairs' = zip bndrs rhss r = unzipWith (cgTopRhs dflags Recursive) pairs' (infos, fcodes) = unzip r ; addBindsC infos ; sequence_ fcodes } cgTopBinding dflags (StgTopStringLit id str) = do let label = mkBytesLabel (idName id) -- emit either a CmmString literal or dump the string in a file and emit a -- CmmFileEmbed literal. -- See Note [Embedding large binary blobs] in GHC.CmmToAsm.Ppr let isNCG = platformMisc_ghcWithNativeCodeGen $ platformMisc dflags isSmall = fromIntegral (BS.length str) <= binBlobThreshold dflags asString = binBlobThreshold dflags == 0 || isSmall (lit,decl) = if not isNCG || asString then mkByteStringCLit label str else mkFileEmbedLit label $ unsafePerformIO $ do bFile <- newTempName dflags TFL_CurrentModule ".dat" BS.writeFile bFile str return bFile emitDecl decl addBindC (litIdInfo dflags id mkLFStringLit lit) cgTopRhs :: DynFlags -> RecFlag -> Id -> CgStgRhs -> (CgIdInfo, FCode ()) -- The Id is passed along for setting up a binding... cgTopRhs dflags _rec bndr (StgRhsCon _cc con args) = cgTopRhsCon dflags bndr con (assertNonVoidStgArgs args) -- con args are always non-void, -- see Note [Post-unarisation invariants] in GHC.Stg.Unarise cgTopRhs dflags rec bndr (StgRhsClosure fvs cc upd_flag args body) = ASSERT(isEmptyDVarSet fvs) -- There should be no free variables cgTopRhsClosure dflags rec bndr cc upd_flag args body --------------------------------------------------------------- -- Module initialisation code --------------------------------------------------------------- mkModuleInit :: CollectedCCs -- cost centre info -> Module -> HpcInfo -> FCode () mkModuleInit cost_centre_info this_mod hpc_info = do { initHpc this_mod hpc_info ; initCostCentres cost_centre_info } --------------------------------------------------------------- -- Generating static stuff for algebraic data types --------------------------------------------------------------- cgEnumerationTyCon :: TyCon -> FCode () cgEnumerationTyCon tycon = do dflags <- getDynFlags emitRODataLits (mkLocalClosureTableLabel (tyConName tycon) NoCafRefs) [ CmmLabelOff (mkLocalClosureLabel (dataConName con) NoCafRefs) (tagForCon dflags con) | con <- tyConDataCons tycon] cgDataCon :: DataCon -> FCode () -- Generate the entry code, info tables, and (for niladic constructor) -- the static closure, for a constructor. cgDataCon data_con = do { dflags <- getDynFlags ; platform <- getPlatform ; let (tot_wds, -- #ptr_wds + #nonptr_wds ptr_wds) -- #ptr_wds = mkVirtConstrSizes dflags arg_reps nonptr_wds = tot_wds - ptr_wds dyn_info_tbl = mkDataConInfoTable dflags data_con False ptr_wds nonptr_wds -- We're generating info tables, so we don't know and care about -- what the actual arguments are. Using () here as the place holder. arg_reps :: [NonVoid PrimRep] arg_reps = [ NonVoid rep_ty | ty <- dataConRepArgTys data_con , rep_ty <- typePrimRep (scaledThing ty) , not (isVoidRep rep_ty) ] ; emitClosureAndInfoTable dyn_info_tbl NativeDirectCall [] $ -- NB: the closure pointer is assumed *untagged* on -- entry to a constructor. If the pointer is tagged, -- then we should not be entering it. This assumption -- is used in ldvEnter and when tagging the pointer to -- return it. -- NB 2: We don't set CC when entering data (WDP 94/06) do { tickyEnterDynCon ; ldvEnter (CmmReg nodeReg) ; tickyReturnOldCon (length arg_reps) ; void $ emitReturn [cmmOffsetB platform (CmmReg nodeReg) (tagForCon dflags data_con)] } -- The case continuation code expects a tagged pointer }