{-# LANGUAGE CPP #-} {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow] {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} {- % (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} module GHC.Tc.Gen.App ( tcApp , tcInferSigma , tcValArg , tcExprPrag ) where import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcCheckPolyExprNC ) import GHC.Builtin.Types (multiplicityTy) import GHC.Tc.Gen.Head import GHC.Hs import GHC.Tc.Utils.Monad import GHC.Tc.Utils.Unify import GHC.Tc.Utils.Instantiate import GHC.Tc.Instance.Family ( tcGetFamInstEnvs, tcLookupDataFamInst_maybe ) import GHC.Tc.Gen.HsType import GHC.Tc.Utils.TcMType import GHC.Tc.Types.Origin import GHC.Tc.Utils.TcType as TcType import GHC.Core.TyCon import GHC.Core.TyCo.Rep import GHC.Core.TyCo.Ppr import GHC.Core.TyCo.Subst (substTyWithInScope) import GHC.Core.TyCo.FVs( shallowTyCoVarsOfType ) import GHC.Core.Type import GHC.Tc.Types.Evidence import GHC.Types.Var.Set import GHC.Builtin.PrimOps( tagToEnumKey ) import GHC.Builtin.Names import GHC.Driver.Session import GHC.Types.SrcLoc import GHC.Types.Var.Env ( emptyTidyEnv, mkInScopeSet ) import GHC.Data.Maybe import GHC.Utils.Misc import GHC.Utils.Outputable as Outputable import GHC.Utils.Panic import qualified GHC.LanguageExtensions as LangExt import Control.Monad import Data.Function #include "HsVersions.h" import GHC.Prelude {- ********************************************************************* * * Quick Look overview * * ********************************************************************* -} {- Note [Quick Look] ~~~~~~~~~~~~~~~~~~~~ The implementation of Quick Look closely follows the QL paper A quick look at impredicativity, Serrano et al, ICFP 2020 https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/ All the moving parts are in this module, GHC.Tc.Gen.App, so named because it deal with n-ary application. The main workhorse is tcApp. Some notes relative to the paper * The "instantiation variables" of the paper are ordinary unification variables. We keep track of which variables are instantiation variables by keeping a set Delta of instantiation variables. * When we learn what an instantiation variable must be, we simply unify it with that type; this is done in qlUnify, which is the function mgu_ql(t1,t2) of the paper. This may fill in a (mutable) instantiation variable with a polytype. * When QL is done, we don't need to turn the un-filled-in instantiation variables into unification variables -- they already /are/ unification varibles! See also Note [Instantiation variables are short lived]. * We cleverly avoid the quadratic cost of QL, alluded to in the paper. See Note [Quick Look at value arguments] Note [Instantiation variables are short lived] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ By the time QL is done, all filled-in occurrences of instantiation variables have been zonked away (see "Crucial step" in tcValArgs), and so the constraint /generator/ never subsequently sees a meta-type variable filled in with a polytype -- a meta type variable stands (only) for a monotype. See Section 4.3 "Applications and instantiation" of the paper. However, the constraint /solver/ can see a meta-type-variable filled in with a polytype (#18987). Suppose f :: forall a. Dict a => [a] -> [a] xs :: [forall b. b->b] and consider the call (f xs). QL will * Instantiate f, with a := kappa, where kappa is an instantiation variable * Emit a constraint (Dict kappa), via instantiateSigma, called from tcInstFun * Do QL on the argument, to discover kappa := forall b. b->b But by the time the third step has happened, the constraint has been emitted into the monad. The constraint solver will later find it, and rewrite it to (Dict (forall b. b->b)). That's fine -- the constraint solver does no implicit instantiation (which is what makes it so tricky to have foralls hiding inside unification variables), so there is no difficulty with allowing those filled-in kappa's to persist. (We could find them and zonk them away, but that would cost code and execution time, for no purpose.) Since the constraint solver does not do implicit instantiation (as the constraint generator does), the fact that a unification variable might stand for a polytype does not matter. -} {- ********************************************************************* * * tcInferSigma * * ********************************************************************* -} tcInferSigma :: Bool -> LHsExpr GhcRn -> TcM TcSigmaType -- Used only to implement :type; see GHC.Tc.Module.tcRnExpr -- True <=> instantiate -- return a rho-type -- False <=> don't instantiate -- return a sigma-type tcInferSigma inst (L loc rn_expr) | (rn_fun, rn_args, _) <- splitHsApps rn_expr = addExprCtxt rn_expr $ setSrcSpan loc $ do { do_ql <- wantQuickLook rn_fun ; (tc_fun, fun_sigma) <- tcInferAppHead rn_fun rn_args Nothing ; (_delta, inst_args, app_res_sigma) <- tcInstFun do_ql inst rn_fun fun_sigma rn_args ; _tc_args <- tcValArgs do_ql tc_fun inst_args ; return app_res_sigma } {- ********************************************************************* * * Typechecking n-ary applications * * ********************************************************************* -} {- Note [Application chains and heads] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Quick Look treats application chains specially. What is an "application chain"? See Fig 2, of the QL paper: "A quick look at impredicativity" (ICFP'20). Here's the syntax: app :: head | app expr -- HsApp: ordinary application | app @type -- HsTypeApp: VTA | expr `head` expr -- OpApp: infix applications | ( app ) -- HsPar: parens | {-# PRAGMA #-} app -- HsPragE: pragmas head ::= f -- HsVar: variables | fld -- HsRecFld: record field selectors | (expr :: ty) -- ExprWithTySig: expr with user type sig | other_expr -- Other expressions When tcExpr sees something that starts an application chain (namely, any of the constructors in 'app' or 'head'), it invokes tcApp to typecheck it: see Note [tcApp: typechecking applications]. However, for HsPar and HsPragE, there is no tcWrapResult (which would instantiate types, bypassing Quick Look), so nothing is gained by using the application chain route, and we can just recurse to tcExpr. A "head" has three special cases (for which we can infer a polytype using tcInferAppHead_maybe); otherwise is just any old expression (for which we can infer a rho-type (via tcInfer). There is no special treatment for HsUnboundVar, HsOverLit etc, because we can't get a polytype from them. Left and right sections (e.g. (x +) and (+ x)) are not yet supported. Probably left sections (x +) would be esay to add, since x is the first arg of (+); but right sections are not so easy. For symmetry reasons I've left both unchanged, in GHC.Tc.Gen.Expr. It may not be immediately obvious why ExprWithTySig (e::ty) should be dealt with by tcApp, even when it is not applied to anything. Consider f :: [forall a. a->a] -> Int ...(f (undefined :: forall b. b))... Clearly this should work! But it will /only/ work because if we instantiate that (forall b. b) impredicatively! And that only happens in tcApp. Note [tcApp: typechecking applications] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tcApp implements the APP-Downarrow/Uparrow rule of Fig 3, plus the modification in Fig 5, of the QL paper: "A quick look at impredicativity" (ICFP'20). It treats application chains (f e1 @ty e2) specially: * So we can report errors like "in the third arument of a call of f" * So we can do Visible Type Application (VTA), for which we must not eagerly instantiate the function part of the application. * So that we can do Quick Look impredicativity. tcApp works like this: 1. Use splitHsApps, which peels off HsApp, HsTypeApp, HsPrag, HsPar returning the function in the corner and the arguments splitHsApps can deal with infix as well as prefix application, and returns a Rebuilder to re-assemble the the application after typechecking. The "list of arguments" is [HsExprArg], described in Note [HsExprArg]. in GHC.Tc.Gen.Head 2. Use tcInferAppHead to infer the type of the function, as an (uninstantiated) TcSigmaType There are special cases for HsVar, HsRecFld, and ExprWithTySig Otherwise, delegate back to tcExpr, which infers an (instantiated) TcRhoType 3. Use tcInstFun to instantiate the function, Quick-Looking as we go. This implements the |-inst judgement in Fig 4, plus the modification in Fig 5, of the QL paper: "A quick look at impredicativity" (ICFP'20). In tcInstFun we take a quick look at value arguments, using quickLookArg. See Note [Quick Look at value arguments]. 4. Use quickLookResultType to take a quick look at the result type, when in checking mode. This is the shaded part of APP-Downarrow in Fig 5. 5. Use tcValArgs to typecheck the value arguments 6. After a gruesome special case for tagToEnum, rebuild the result. Some cases that /won't/ work: 1. Consider this (which uses visible type application): (let { f :: forall a. a -> a; f x = x } in f) @Int Since 'let' is not among the special cases for tcInferAppHead, we'll delegate back to tcExpr, which will instantiate f's type and the type application to @Int will fail. Too bad! -} tcApp :: HsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc) -- See Note [tcApp: typechecking applications] tcApp rn_expr exp_res_ty | (rn_fun, rn_args, rebuild) <- splitHsApps rn_expr = do { (tc_fun, fun_sigma) <- tcInferAppHead rn_fun rn_args (checkingExpType_maybe exp_res_ty) -- Instantiate ; do_ql <- wantQuickLook rn_fun ; (delta, inst_args, app_res_rho) <- tcInstFun do_ql True rn_fun fun_sigma rn_args -- Quick look at result ; quickLookResultType do_ql delta app_res_rho exp_res_ty ; whenDOptM Opt_D_dump_tc_trace $ do { inst_args <- mapM zonkArg inst_args -- Only when tracing ; traceTc "tcApp" (vcat [ text "rn_fun" <+> ppr rn_fun , text "inst_args" <+> brackets (pprWithCommas pprHsExprArgTc inst_args) , text "do_ql: " <+> ppr do_ql , text "fun_sigma: " <+> ppr fun_sigma , text "delta: " <+> ppr delta , text "app_res_rho:" <+> ppr app_res_rho , text "exp_res_ty:" <+> ppr exp_res_ty , text "rn_expr:" <+> ppr rn_expr ]) } -- Typecheck the value arguments ; tc_args <- tcValArgs do_ql tc_fun inst_args -- Zonk the result type, to ensure that we substitute out -- any filled-in instantiation variable before calling tcWrapResultMono -- In the Check case, this isn't really necessary, because tcWrapResultMono -- just drops to tcUnify; but in the Infer case a filled-in instantiation -- variable might perhaps escape into the constraint generator. The safe -- thing to do is to any instantaition variables away. -- See Note [Instantiation variables are short lived] ; app_res_rho <- zonkQuickLook do_ql app_res_rho -- Special case for tagToEnum# ; if isTagToEnum rn_fun then tcTagToEnum rn_expr tc_fun tc_args app_res_rho exp_res_ty else do { -- Reconstruct ; let tc_expr = rebuild tc_fun tc_args -- Wrap the result ; addFunResCtxt tc_fun tc_args app_res_rho exp_res_ty $ tcWrapResultMono rn_expr tc_expr app_res_rho exp_res_ty } } -------------------- wantQuickLook :: HsExpr GhcRn -> TcM Bool -- GHC switches on impredicativity all the time for ($) wantQuickLook (HsVar _ f) | unLoc f `hasKey` dollarIdKey = return True wantQuickLook _ = xoptM LangExt.ImpredicativeTypes zonkQuickLook :: Bool -> TcType -> TcM TcType -- After all Quick Look unifications are done, zonk to ensure that all -- instantiation variables are substituted away -- -- So far as the paper is concerned, this step applies -- the poly-substitution Theta, learned by QL, so that we -- "see" the polymorphism in that type -- -- In implementation terms this ensures that no unification variable -- linger on that have been filled in with a polytype zonkQuickLook do_ql ty | do_ql = zonkTcType ty | otherwise = return ty -- zonkArg is used *only* during debug-tracing, to make it easier to -- see what is going on. For that reason, it is not a full zonk: add -- more if you need it. zonkArg :: HsExprArg 'TcpInst -> TcM (HsExprArg 'TcpInst) zonkArg eva@(EValArg { eva_arg_ty = Scaled m ty }) = do { ty' <- zonkTcType ty ; return (eva { eva_arg_ty = Scaled m ty' }) } zonkArg arg = return arg ---------------- tcValArgs :: Bool -- Quick-look on? -> HsExpr GhcTc -- The function (for error messages) -> [HsExprArg 'TcpInst] -- Actual argument -> TcM [HsExprArg 'TcpTc] -- Resulting argument tcValArgs do_ql fun args = go 1 args where go _ [] = return [] go n (arg:args) = do { (n',arg') <- tc_arg n arg ; args' <- go n' args ; return (arg' : args') } tc_arg :: Int -> HsExprArg 'TcpInst -> TcM (Int, HsExprArg 'TcpTc) tc_arg n (EPar l) = return (n, EPar l) tc_arg n (EPrag l p) = return (n, EPrag l (tcExprPrag p)) tc_arg n (EWrap wrap) = return (n, EWrap wrap) tc_arg n (ETypeArg l hs_ty ty) = return (n+1, ETypeArg l hs_ty ty) tc_arg n eva@(EValArg { eva_arg = arg, eva_arg_ty = Scaled mult arg_ty }) = do { -- Crucial step: expose QL results before checking arg_ty -- So far as the paper is concerned, this step applies -- the poly-substitution Theta, learned by QL, so that we -- "see" the polymorphism in that argument type. E.g. -- (:) e ids, where ids :: [forall a. a->a] -- (:) :: forall p. p->[p]->[p] -- Then Theta = [p :-> forall a. a->a], and we want -- to check 'e' with expected type (forall a. a->a) -- See Note [Instantiation variables are short lived] arg_ty <- zonkQuickLook do_ql arg_ty -- Now check the argument ; arg' <- addErrCtxt (funAppCtxt fun (eValArgExpr arg) n) $ tcScalingUsage mult $ do { traceTc "tcEValArg" $ vcat [ ppr n <+> text "of" <+> ppr fun , text "arg type:" <+> ppr arg_ty , text "arg:" <+> ppr arg ] ; tcEValArg arg arg_ty } ; return (n+1, eva { eva_arg = ValArg arg' , eva_arg_ty = Scaled mult arg_ty }) } tcEValArg :: EValArg 'TcpInst -> TcSigmaType -> TcM (LHsExpr GhcTc) -- Typecheck one value argument of a function call tcEValArg (ValArg arg) exp_arg_sigma = tcCheckPolyExprNC arg exp_arg_sigma tcEValArg (ValArgQL { va_expr = L loc _, va_fun = fun, va_args = args , va_ty = app_res_rho, va_rebuild = rebuild }) exp_arg_sigma = setSrcSpan loc $ do { traceTc "tcEValArg {" (vcat [ ppr fun <+> ppr args ]) ; tc_args <- tcValArgs True fun args ; co <- unifyType Nothing app_res_rho exp_arg_sigma ; traceTc "tcEValArg }" empty ; return (L loc $ mkHsWrapCo co $ rebuild fun tc_args) } ---------------- tcValArg :: HsExpr GhcRn -- The function (for error messages) -> LHsExpr GhcRn -- Actual argument -> Scaled TcSigmaType -- expected arg type -> Int -- # of argument -> TcM (LHsExpr GhcTc) -- Resulting argument -- tcValArg is called only from Gen.Expr, dealing with left and right sections tcValArg fun arg (Scaled mult arg_ty) arg_no = addErrCtxt (funAppCtxt fun arg arg_no) $ tcScalingUsage mult $ do { traceTc "tcValArg" $ vcat [ ppr arg_no <+> text "of" <+> ppr fun , text "arg type:" <+> ppr arg_ty , text "arg:" <+> ppr arg ] ; tcCheckPolyExprNC arg arg_ty } {- ********************************************************************* * * Instantiating the call * * ********************************************************************* -} type Delta = TcTyVarSet -- Set of instantiation variables, -- written \kappa in the QL paper -- Just a set of ordinary unification variables, -- but ones that QL may fill in with polytypes tcInstFun :: Bool -- True <=> Do quick-look -> Bool -- False <=> Instantiate only /inferred/ variables at the end -- so may return a sigma-typex -- True <=> Instantiate all type variables at the end: -- return a rho-type -- The /only/ call site that passes in False is the one -- in tcInferSigma, which is used only to implement :type -- Otherwise we do eager instantiation; in Fig 5 of the paper -- |-inst returns a rho-type -> HsExpr GhcRn -> TcSigmaType -> [HsExprArg 'TcpRn] -> TcM ( Delta , [HsExprArg 'TcpInst] , TcSigmaType ) -- This function implements the |-inst judgement in Fig 4, plus the -- modification in Fig 5, of the QL paper: -- "A quick look at impredicativity" (ICFP'20). tcInstFun do_ql inst_final rn_fun fun_sigma rn_args = do { traceTc "tcInstFun" (ppr rn_fun $$ ppr rn_args $$ text "do_ql" <+> ppr do_ql) ; go emptyVarSet [] [] fun_sigma rn_args } where fun_orig = exprCtOrigin rn_fun herald = sep [ text "The function" <+> quotes (ppr rn_fun) , text "is applied to"] -- Count value args only when complaining about a function -- applied to too many value args -- See Note [Herald for matchExpectedFunTys] in GHC.Tc.Utils.Unify. n_val_args = count isHsValArg rn_args fun_is_out_of_scope -- See Note [VTA for out-of-scope functions] = case rn_fun of HsUnboundVar {} -> True _ -> False inst_all :: ArgFlag -> Bool inst_all (Invisible {}) = True inst_all Required = False inst_inferred :: ArgFlag -> Bool inst_inferred (Invisible InferredSpec) = True inst_inferred (Invisible SpecifiedSpec) = False inst_inferred Required = False inst_fun :: [HsExprArg 'TcpRn] -> ArgFlag -> Bool inst_fun [] | inst_final = inst_all | otherwise = inst_inferred inst_fun (EValArg {} : _) = inst_all inst_fun _ = inst_inferred ----------- go, go1 :: Delta -> [HsExprArg 'TcpInst] -- Accumulator, reversed -> [Scaled TcSigmaType] -- Value args to which applied so far -> TcSigmaType -> [HsExprArg 'TcpRn] -> TcM (Delta, [HsExprArg 'TcpInst], TcSigmaType) -- go: If fun_ty=kappa, look it up in Theta go delta acc so_far fun_ty args | Just kappa <- tcGetTyVar_maybe fun_ty , kappa `elemVarSet` delta = do { cts <- readMetaTyVar kappa ; case cts of Indirect fun_ty' -> go delta acc so_far fun_ty' args Flexi -> go1 delta acc so_far fun_ty args } | otherwise = go1 delta acc so_far fun_ty args -- go1: fun_ty is not filled-in instantiation variable -- ('go' dealt with that case) -- Rule IALL from Fig 4 of the QL paper go1 delta acc so_far fun_ty args | (tvs, body1) <- tcSplitSomeForAllTyVars (inst_fun args) fun_ty , (theta, body2) <- tcSplitPhiTy body1 , not (null tvs && null theta) = do { (inst_tvs, wrap, fun_rho) <- setSrcSpanFromArgs rn_args $ instantiateSigma fun_orig tvs theta body2 -- setSrcSpanFromArgs: important for the class constraints -- that may be emitted from instantiating fun_sigma ; go (delta `extendVarSetList` inst_tvs) (addArgWrap wrap acc) so_far fun_rho args } -- Going around again means we deal easily with -- nested forall a. Eq a => forall b. Show b => blah -- Rule IRESULT from Fig 4 of the QL paper go1 delta acc _ fun_ty [] = do { traceTc "tcInstFun:ret" (ppr fun_ty) ; return (delta, reverse acc, fun_ty) } go1 delta acc so_far fun_ty (EPar sp : args) = go1 delta (EPar sp : acc) so_far fun_ty args go1 delta acc so_far fun_ty (EPrag sp prag : args) = go1 delta (EPrag sp prag : acc) so_far fun_ty args -- Rule ITYARG from Fig 4 of the QL paper go1 delta acc so_far fun_ty ( ETypeArg { eva_loc = loc, eva_hs_ty = hs_ty } : rest_args ) | fun_is_out_of_scope -- See Note [VTA for out-of-scope functions] = go delta acc so_far fun_ty rest_args | otherwise = do { (ty_arg, inst_ty) <- tcVTA fun_ty hs_ty ; let arg' = ETypeArg { eva_loc = loc, eva_hs_ty = hs_ty, eva_ty = ty_arg } ; go delta (arg' : acc) so_far inst_ty rest_args } -- Rule IVAR from Fig 4 of the QL paper: go1 delta acc so_far fun_ty args@(EValArg {} : _) | Just kappa <- tcGetTyVar_maybe fun_ty , kappa `elemVarSet` delta = -- Function type was of form f :: forall a b. t1 -> t2 -> b -- with 'b', one of the quantified type variables, in the corner -- but the call applies it to three or more value args. -- Suppose b is instantiated by kappa. Then we want to make fresh -- instantiation variables nu1, nu2, and set kappa := nu1 -> nu2 -- -- In principle what is happening here is not unlike matchActualFunTysRho -- but there are many small differences: -- - We know that the function type in unfilled meta-tyvar -- matchActualFunTysRho is much more general, has a loop, etc. -- - We must be sure to actually update the variable right now, -- not defer in any way, because this is a QL instantiation variable. -- - We need the freshly allocated unification variables, to extend -- delta with. -- It's easier just to do the job directly here. do { let valArgsCount = countLeadingValArgs args ; arg_nus <- replicateM valArgsCount newOpenFlexiTyVar -- We need variables for multiplicity (#18731) -- Otherwise, 'undefined x' wouldn't be linear in x ; mults <- replicateM valArgsCount (newFlexiTyVarTy multiplicityTy) ; res_nu <- newOpenFlexiTyVar ; kind_co <- unifyKind Nothing liftedTypeKind (tyVarKind kappa) ; let delta' = delta `extendVarSetList` (res_nu:arg_nus) arg_tys = mkTyVarTys arg_nus res_ty = mkTyVarTy res_nu fun_ty' = mkVisFunTys (zipWithEqual "tcInstFun" mkScaled mults arg_tys) res_ty co_wrap = mkWpCastN (mkTcGReflLeftCo Nominal fun_ty' kind_co) acc' = addArgWrap co_wrap acc -- Suppose kappa :: kk -- Then fun_ty :: kk, fun_ty' :: Type, kind_co :: Type ~ kk -- co_wrap :: (fun_ty' |> kind_co) ~ fun_ty' ; writeMetaTyVar kappa (mkCastTy fun_ty' kind_co) -- kappa is uninstantiated ('go' already checked that) ; go delta' acc' so_far fun_ty' args } -- Rule IARG from Fig 4 of the QL paper: go1 delta acc so_far fun_ty (eva@(EValArg { eva_arg = ValArg arg }) : rest_args) = do { (wrap, arg_ty, res_ty) <- matchActualFunTySigma herald (Just (ppr rn_fun)) (n_val_args, so_far) fun_ty ; let arg_no = 1 + count isVisibleArg acc -- We could cache this in a pair with acc; but -- it's only evaluated if there's a type error ; (delta', arg') <- if do_ql then addErrCtxt (funAppCtxt rn_fun arg arg_no) $ -- Context needed for constraints -- generated by calls in arg quickLookArg delta arg arg_ty else return (delta, ValArg arg) ; let acc' = eva { eva_arg = arg', eva_arg_ty = arg_ty } : addArgWrap wrap acc ; go delta' acc' (arg_ty:so_far) res_ty rest_args } {- ********************************************************************* * * Visible type application * * ********************************************************************* -} tcVTA :: TcType -- Function type -> LHsWcType GhcRn -- Argument type -> TcM (TcType, TcType) -- Deal with a visible type application -- The function type has already had its Inferred binders instantiated tcVTA fun_ty hs_ty | Just (tvb, inner_ty) <- tcSplitForAllTyVarBinder_maybe fun_ty , binderArgFlag tvb == Specified -- It really can't be Inferred, because we've just -- instantiated those. But, oddly, it might just be Required. -- See Note [Required quantifiers in the type of a term] = do { let tv = binderVar tvb kind = tyVarKind tv ; ty_arg <- tcHsTypeApp hs_ty kind ; inner_ty <- zonkTcType inner_ty -- See Note [Visible type application zonk] ; let in_scope = mkInScopeSet (tyCoVarsOfTypes [fun_ty, ty_arg]) insted_ty = substTyWithInScope in_scope [tv] [ty_arg] inner_ty -- NB: tv and ty_arg have the same kind, so this -- substitution is kind-respecting ; traceTc "VTA" (vcat [ppr tv, debugPprType kind , debugPprType ty_arg , debugPprType (tcTypeKind ty_arg) , debugPprType inner_ty , debugPprType insted_ty ]) ; return (ty_arg, insted_ty) } | otherwise = do { (_, fun_ty) <- zonkTidyTcType emptyTidyEnv fun_ty ; failWith $ text "Cannot apply expression of type" <+> quotes (ppr fun_ty) $$ text "to a visible type argument" <+> quotes (ppr hs_ty) } {- Note [Required quantifiers in the type of a term] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider (#15859) data A k :: k -> Type -- A :: forall k -> k -> Type type KindOf (a :: k) = k -- KindOf :: forall k. k -> Type a = (undefined :: KindOf A) @Int With ImpredicativeTypes (thin ice, I know), we instantiate KindOf at type (forall k -> k -> Type), so KindOf A = forall k -> k -> Type whose first argument is Required We want to reject this type application to Int, but in earlier GHCs we had an ASSERT that Required could not occur here. The ice is thin; c.f. Note [No Required TyCoBinder in terms] in GHC.Core.TyCo.Rep. Note [VTA for out-of-scope functions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose 'wurble' is not in scope, and we have (wurble @Int @Bool True 'x') Then the renamer will make (HsUnboundVar "wurble) for 'wurble', and the typechecker will typecheck it with tcUnboundId, giving it a type 'alpha', and emitting a deferred Hole constraint, to be reported later. But then comes the visible type application. If we do nothing, we'll generate an immediate failure (in tc_app_err), saying that a function of type 'alpha' can't be applied to Bool. That's insane! And indeed users complain bitterly (#13834, #17150.) The right error is the Hole, which has /already/ been emitted by tcUnboundId. It later reports 'wurble' as out of scope, and tries to give its type. Fortunately in tcInstFun we still have access to the function, so we can check if it is a HsUnboundVar. We use this info to simply skip over any visible type arguments. We've already inferred the type of the function (in tcInferAppHead), so we'll /already/ have emitted a Hole constraint; failing preserves that constraint. We do /not/ want to fail altogether in this case (via failM) because that may abandon an entire instance decl, which (in the presence of -fdefer-type-errors) leads to leading to #17792. Downside; the typechecked term has lost its visible type arguments; we don't even kind-check them. But let's jump that bridge if we come to it. Meanwhile, let's not crash! Note [Visible type application zonk] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * Substitutions should be kind-preserving, so we need kind(tv) = kind(ty_arg). * tcHsTypeApp only guarantees that - ty_arg is zonked - kind(zonk(tv)) = kind(ty_arg) (checkExpectedKind zonks as it goes). So we must zonk inner_ty as well, to guarantee consistency between zonk(tv) and inner_ty. Otherwise we can build an ill-kinded type. An example was #14158, where we had: id :: forall k. forall (cat :: k -> k -> *). forall (a :: k). cat a a and we had the visible type application id @(->) * We instantiated k := kappa, yielding forall (cat :: kappa -> kappa -> *). forall (a :: kappa). cat a a * Then we called tcHsTypeApp (->) with expected kind (kappa -> kappa -> *). * That instantiated (->) as ((->) q1 q1), and unified kappa := q1, Here q1 :: RuntimeRep * Now we substitute cat :-> (->) q1 q1 :: TYPE q1 -> TYPE q1 -> * but we must first zonk the inner_ty to get forall (a :: TYPE q1). cat a a so that the result of substitution is well-kinded Failing to do so led to #14158. -} {- ********************************************************************* * * Quick Look * * ********************************************************************* -} {- Note [Quick Look at value arguments] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The function quickLookArg implements the "QL argument" judgement of the QL paper, in Fig 5 of "A quick look at impredicativity" (ICFP 2020), rather directly. Wrinkles: * We avoid zonking, so quickLookArg thereby sees the argument type /before/ the QL substitution Theta is applied to it. So we achieve argument-order independence for free (see 5.7 in the paper). * When we quick-look at an argument, we save the work done, by returning an EValArg with a ValArgQL inside it. (It started life with a ValArg inside.) The ValArgQL remembers all the work that QL did (notably, decomposing the argument and instantiating) so that tcValArgs does not need to repeat it. Rather neat, and remarkably easy. -} ---------------- quickLookArg :: Delta -> LHsExpr GhcRn -- Argument -> Scaled TcSigmaType -- Type expected by the function -> TcM (Delta, EValArg 'TcpInst) -- See Note [Quick Look at value arguments] -- -- The returned Delta is a superset of the one passed in -- with added instantiation variables from -- (a) the call itself -- (b) the arguments of the call quickLookArg delta larg (Scaled _ arg_ty) | isEmptyVarSet delta = skipQuickLook delta larg | otherwise = go arg_ty where guarded = isGuardedTy arg_ty -- NB: guardedness is computed based on the original, -- unzonked arg_ty, so we deliberately do not exploit -- guardedness that emerges a result of QL on earlier args go arg_ty | not (isRhoTy arg_ty) = skipQuickLook delta larg -- This top-level zonk step, which is the reason -- we need a local 'go' loop, is subtle -- See Section 9 of the QL paper | Just kappa <- tcGetTyVar_maybe arg_ty , kappa `elemVarSet` delta = do { info <- readMetaTyVar kappa ; case info of Indirect arg_ty' -> go arg_ty' Flexi -> quickLookArg1 guarded delta larg arg_ty } | otherwise = quickLookArg1 guarded delta larg arg_ty isGuardedTy :: TcType -> Bool isGuardedTy ty | Just (tc,_) <- tcSplitTyConApp_maybe ty = isGenerativeTyCon tc Nominal | Just {} <- tcSplitAppTy_maybe ty = True | otherwise = False quickLookArg1 :: Bool -> Delta -> LHsExpr GhcRn -> TcSigmaType -> TcM (Delta, EValArg 'TcpInst) quickLookArg1 guarded delta larg@(L loc arg) arg_ty = setSrcSpan loc $ do { let (rn_fun,rn_args,rebuild) = splitHsApps arg ; mb_fun_ty <- tcInferAppHead_maybe rn_fun rn_args (Just arg_ty) ; traceTc "quickLookArg 1" $ vcat [ text "arg:" <+> ppr arg , text "head:" <+> ppr rn_fun <+> dcolon <+> ppr mb_fun_ty , text "args:" <+> ppr rn_args ] ; case mb_fun_ty of { Nothing -> -- fun is too complicated skipQuickLook delta larg ; Just (fun', fun_sigma) -> do { let no_free_kappas = findNoQuantVars fun_sigma rn_args ; traceTc "quickLookArg 2" $ vcat [ text "no_free_kappas:" <+> ppr no_free_kappas , text "guarded:" <+> ppr guarded ] ; if not (guarded || no_free_kappas) then skipQuickLook delta larg else do { do_ql <- wantQuickLook rn_fun ; (delta_app, inst_args, app_res_rho) <- tcInstFun do_ql True rn_fun fun_sigma rn_args ; traceTc "quickLookArg" $ vcat [ text "arg:" <+> ppr arg , text "delta:" <+> ppr delta , text "delta_app:" <+> ppr delta_app , text "arg_ty:" <+> ppr arg_ty , text "app_res_rho:" <+> ppr app_res_rho ] -- Do quick-look unification -- NB: arg_ty may not be zonked, but that's ok ; let delta' = delta `unionVarSet` delta_app ; qlUnify delta' arg_ty app_res_rho ; let ql_arg = ValArgQL { va_expr = larg, va_fun = fun' , va_args = inst_args , va_ty = app_res_rho , va_rebuild = rebuild } ; return (delta', ql_arg) } } } } skipQuickLook :: Delta -> LHsExpr GhcRn -> TcM (Delta, EValArg 'TcpInst) skipQuickLook delta larg = return (delta, ValArg larg) ---------------- quickLookResultType :: Bool -> Delta -> TcRhoType -> ExpRhoType -> TcM () -- This function implements the shaded bit of rule APP-Downarrow in -- Fig 5 of the QL paper: "A quick look at impredicativity" (ICFP'20). quickLookResultType do_ql delta app_res_rho exp_res_ty | do_ql , not (isEmptyVarSet delta) -- Optimisation only , Just exp_rho <- checkingExpType_maybe exp_res_ty -- In checking mode only = qlUnify delta app_res_rho exp_rho | otherwise = return () --------------------- qlUnify :: Delta -> TcType -> TcType -> TcM () -- Unify ty1 with ty2, unifying only variables in delta qlUnify delta ty1 ty2 = do { traceTc "qlUnify" (ppr delta $$ ppr ty1 $$ ppr ty2) ; go (emptyVarSet,emptyVarSet) ty1 ty2 } where go :: (TyVarSet, TcTyVarSet) -> TcType -> TcType -> TcM () -- The TyVarSets give the variables bound by enclosing foralls -- for the corresponding type. Don't unify with these. go bvs (TyVarTy tv) ty2 | tv `elemVarSet` delta = go_kappa bvs tv ty2 go (bvs1, bvs2) ty1 (TyVarTy tv) | tv `elemVarSet` delta = go_kappa (bvs2,bvs1) tv ty1 go bvs (CastTy ty1 _) ty2 = go bvs ty1 ty2 go bvs ty1 (CastTy ty2 _) = go bvs ty1 ty2 go _ (TyConApp tc1 []) (TyConApp tc2 []) | tc1 == tc2 -- See GHC.Tc.Utils.Unify = return () -- Note [Expanding synonyms during unification] -- Now, and only now, expand synonyms go bvs rho1 rho2 | Just rho1 <- tcView rho1 = go bvs rho1 rho2 | Just rho2 <- tcView rho2 = go bvs rho1 rho2 go bvs (TyConApp tc1 tys1) (TyConApp tc2 tys2) | tc1 == tc2 , not (isTypeFamilyTyCon tc1) , tys1 `equalLength` tys2 = zipWithM_ (go bvs) tys1 tys2 -- Decompose (arg1 -> res1) ~ (arg2 -> res2) -- and (c1 => res1) ~ (c2 => res2) -- But for the latter we only learn instantiation info from t1~t2 -- We look at the multiplicity too, although the chances of getting -- impredicative instantiation info from there seems...remote. go bvs (FunTy { ft_af = af1, ft_arg = arg1, ft_res = res1, ft_mult = mult1 }) (FunTy { ft_af = af2, ft_arg = arg2, ft_res = res2, ft_mult = mult2 }) | af1 == af2 = do { when (af1 == VisArg) $ do { go bvs arg1 arg2; go bvs mult1 mult2 } ; go bvs res1 res2 } -- ToDo: c.f. Tc.Utils.unify.uType, -- which does not split FunTy here -- Also NB tcRepSplitAppTy here, which does not split (c => t) go bvs (AppTy t1a t1b) ty2 | Just (t2a, t2b) <- tcRepSplitAppTy_maybe ty2 = do { go bvs t1a t2a; go bvs t1b t2b } go bvs ty1 (AppTy t2a t2b) | Just (t1a, t1b) <- tcRepSplitAppTy_maybe ty1 = do { go bvs t1a t2a; go bvs t1b t2b } go (bvs1, bvs2) (ForAllTy bv1 ty1) (ForAllTy bv2 ty2) = go (bvs1',bvs2') ty1 ty2 where bvs1' = bvs1 `extendVarSet` binderVar bv1 bvs2' = bvs2 `extendVarSet` binderVar bv2 go _ _ _ = return () ---------------- go_kappa bvs kappa ty2 = ASSERT2( isMetaTyVar kappa, ppr kappa ) do { info <- readMetaTyVar kappa ; case info of Indirect ty1 -> go bvs ty1 ty2 Flexi -> do { ty2 <- zonkTcType ty2 ; go_flexi bvs kappa ty2 } } ---------------- go_flexi (_,bvs2) kappa ty2 -- ty2 is zonked | -- See Note [Actual unification in qlUnify] let ty2_tvs = shallowTyCoVarsOfType ty2 , not (ty2_tvs `intersectsVarSet` bvs2) -- Can't instantiate a delta-varto a forall-bound variable , Just ty2 <- occCheckExpand [kappa] ty2 -- Passes the occurs check = do { let ty2_kind = typeKind ty2 kappa_kind = tyVarKind kappa ; co <- unifyKind (Just (ppr ty2)) ty2_kind kappa_kind -- unifyKind: see Note [Actual unification in qlUnify] ; traceTc "qlUnify:update" $ vcat [ hang (ppr kappa <+> dcolon <+> ppr kappa_kind) 2 (text ":=" <+> ppr ty2 <+> dcolon <+> ppr ty2_kind) , text "co:" <+> ppr co ] ; writeMetaTyVar kappa (mkCastTy ty2 co) } | otherwise = return () -- Occurs-check or forall-bound varialbe {- Note [Actual unification in qlUnify] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In qlUnify, if we find (kappa ~ ty), we are going to update kappa := ty. That is the entire point of qlUnify! Wrinkles: * We must not unify with anything bound by an enclosing forall; e.g. (forall a. kappa -> Int) ~ forall a. a -> Int) That's tracked by the 'bvs' arg of 'go'. * We must not make an occurs-check; we use occCheckExpand for that. * checkTypeEq also checks for various other things, including - foralls, and predicate types (which we want to allow here) - type families (relates to a very specific and exotic performance question, that is unlikely to bite here) - blocking coercion holes After some thought we believe that none of these are relevant here * What if kappa and ty have different kinds? We solve that problem by calling unifyKind, producing a coercion perhaps emitting some deferred equality constraints. That is /different/ from the approach we use in the main constraint solver for herterogeneous equalities; see Note [Equalities with incompatible kinds] in Solver.Canonical Why different? Because: - We can't use qlUnify to solve the kind constraint because qlUnify won't unify ordinary (non-instantiation) unification variables. (It would have to worry about lots of things like untouchability if it did.) - qlUnify can't give up if the kinds look un-equal because that would mean that it might succeed some times (when the eager unifier has already unified those kinds) but not others -- order dependence. - We can't use the ordinary unifier/constraint solver instead, because it doesn't unify polykinds, and has all kinds of other magic. qlUnify is very focused. TL;DR Calling unifyKind seems like the lesser evil. -} {- ********************************************************************* * * Guardedness * * ********************************************************************* -} findNoQuantVars :: TcSigmaType -> [HsExprArg 'TcpRn] -> Bool -- True <=> there are no free quantified variables -- in the result of the call -- E.g. in the call (f e1 e2), if -- f :: forall a b. a -> b -> Int return True -- f :: forall a b. a -> b -> b return False (b is free) findNoQuantVars fun_ty args = go emptyVarSet fun_ty args where need_instantiation [] = True need_instantiation (EValArg {} : _) = True need_instantiation _ = False go :: TyVarSet -> TcSigmaType -> [HsExprArg 'TcpRn] -> Bool go bvs fun_ty args | need_instantiation args , (tvs, theta, rho) <- tcSplitSigmaTy fun_ty , not (null tvs && null theta) = go (bvs `extendVarSetList` tvs) rho args go bvs fun_ty [] = tyCoVarsOfType fun_ty `disjointVarSet` bvs go bvs fun_ty (EPar {} : args) = go bvs fun_ty args go bvs fun_ty (EPrag {} : args) = go bvs fun_ty args go bvs fun_ty args@(ETypeArg {} : rest_args) | (tvs, body1) <- tcSplitSomeForAllTyVars (== Inferred) fun_ty , (theta, body2) <- tcSplitPhiTy body1 , not (null tvs && null theta) = go (bvs `extendVarSetList` tvs) body2 args | Just (_tv, res_ty) <- tcSplitForAllTyVarBinder_maybe fun_ty = go bvs res_ty rest_args | otherwise = False -- E.g. head ids @Int go bvs fun_ty (EValArg {} : rest_args) | Just (_, res_ty) <- tcSplitFunTy_maybe fun_ty = go bvs res_ty rest_args | otherwise = False -- E.g. head id 'x' {- ********************************************************************* * * tagToEnum# * * ********************************************************************* -} {- Note [tagToEnum#] ~~~~~~~~~~~~~~~~~~~~ Nasty check to ensure that tagToEnum# is applied to a type that is an enumeration TyCon. Unification may refine the type later, but this check won't see that, alas. It's crude, because it relies on our knowing *now* that the type is ok, which in turn relies on the eager-unification part of the type checker pushing enough information here. In theory the Right Thing to do is to have a new form of constraint but I definitely cannot face that! And it works ok as-is. Here's are two cases that should fail f :: forall a. a f = tagToEnum# 0 -- Can't do tagToEnum# at a type variable g :: Int g = tagToEnum# 0 -- Int is not an enumeration When data type families are involved it's a bit more complicated. data family F a data instance F [Int] = A | B | C Then we want to generate something like tagToEnum# R:FListInt 3# |> co :: R:FListInt ~ F [Int] Usually that coercion is hidden inside the wrappers for constructors of F [Int] but here we have to do it explicitly. It's all grotesquely complicated. -} isTagToEnum :: HsExpr GhcRn -> Bool isTagToEnum (HsVar _ (L _ fun_id)) = fun_id `hasKey` tagToEnumKey isTagToEnum _ = False tcTagToEnum :: HsExpr GhcRn -> HsExpr GhcTc -> [HsExprArg 'TcpTc] -> TcRhoType -> ExpRhoType -> TcM (HsExpr GhcTc) -- tagToEnum# :: forall a. Int# -> a -- See Note [tagToEnum#] Urgh! tcTagToEnum expr fun args app_res_ty res_ty | null val_args = failWithTc (text "tagToEnum# must appear applied to one argument") | otherwise = do { res_ty <- readExpType res_ty ; ty' <- zonkTcType res_ty -- Check that the type is algebraic ; case tcSplitTyConApp_maybe ty' of { Nothing -> do { addErrTc (mk_error ty' doc1) ; vanilla_result } ; Just (tc, tc_args) -> do { -- Look through any type family ; fam_envs <- tcGetFamInstEnvs ; case tcLookupDataFamInst_maybe fam_envs tc tc_args of { Nothing -> do { check_enumeration ty' tc ; vanilla_result } ; Just (rep_tc, rep_args, coi) -> do { -- coi :: tc tc_args ~R rep_tc rep_args check_enumeration ty' rep_tc ; let rep_ty = mkTyConApp rep_tc rep_args fun' = mkHsWrap (WpTyApp rep_ty) fun expr' = rebuildPrefixApps fun' val_args df_wrap = mkWpCastR (mkTcSymCo coi) ; return (mkHsWrap df_wrap expr') }}}}} where val_args = dropWhile (not . isHsValArg) args vanilla_result = do { let expr' = rebuildPrefixApps fun args ; tcWrapResultMono expr expr' app_res_ty res_ty } check_enumeration ty' tc | isEnumerationTyCon tc = return () | otherwise = addErrTc (mk_error ty' doc2) doc1 = vcat [ text "Specify the type by giving a type signature" , text "e.g. (tagToEnum# x) :: Bool" ] doc2 = text "Result type must be an enumeration type" mk_error :: TcType -> SDoc -> SDoc mk_error ty what = hang (text "Bad call to tagToEnum#" <+> text "at type" <+> ppr ty) 2 what {- ********************************************************************* * * Pragmas on expressions * * ********************************************************************* -} tcExprPrag :: HsPragE GhcRn -> HsPragE GhcTc tcExprPrag (HsPragSCC x1 src ann) = HsPragSCC x1 src ann