{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} {-# LANGUAGE CPP #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE RecordWildCards #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} -- | Typecheck some @Matches@ module GHC.Tc.Gen.Match ( tcMatchesFun , tcGRHS , tcGRHSsPat , tcMatchesCase , tcMatchLambda , TcMatchCtxt(..) , TcStmtChecker , TcExprStmtChecker , TcCmdStmtChecker , tcStmts , tcStmtsAndThen , tcDoStmts , tcBody , tcDoStmt , tcGuardStmt ) where import GhcPrelude import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcSyntaxOp, tcInferRhoNC, tcInferRho , tcCheckId, tcMonoExpr, tcMonoExprNC, tcPolyExpr ) import GHC.Types.Basic (LexicalFixity(..)) import GHC.Hs import GHC.Tc.Utils.Monad import GHC.Tc.Utils.Env import GHC.Tc.Gen.Pat import GHC.Tc.Utils.TcMType import GHC.Tc.Utils.TcType import GHC.Tc.Gen.Bind import GHC.Tc.Utils.Unify import GHC.Tc.Types.Origin import GHC.Types.Name import TysWiredIn import GHC.Types.Id import GHC.Core.TyCon import TysPrim import GHC.Tc.Types.Evidence import Outputable import Util import GHC.Types.SrcLoc -- Create chunkified tuple tybes for monad comprehensions import GHC.Core.Make import Control.Monad import Control.Arrow ( second ) #include "HsVersions.h" {- ************************************************************************ * * \subsection{tcMatchesFun, tcMatchesCase} * * ************************************************************************ @tcMatchesFun@ typechecks a @[Match]@ list which occurs in a @FunMonoBind@. The second argument is the name of the function, which is used in error messages. It checks that all the equations have the same number of arguments before using @tcMatches@ to do the work. Note [Polymorphic expected type for tcMatchesFun] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tcMatchesFun may be given a *sigma* (polymorphic) type so it must be prepared to use tcSkolemise to skolemise it. See Note [sig_tau may be polymorphic] in GHC.Tc.Gen.Pat. -} tcMatchesFun :: Located Name -> MatchGroup GhcRn (LHsExpr GhcRn) -> ExpSigmaType -- Expected type of function -> TcM (HsWrapper, MatchGroup GhcTcId (LHsExpr GhcTcId)) -- Returns type of body tcMatchesFun fn@(L _ fun_name) matches exp_ty = do { -- Check that they all have the same no of arguments -- Location is in the monad, set the caller so that -- any inter-equation error messages get some vaguely -- sensible location. Note: we have to do this odd -- ann-grabbing, because we don't always have annotations in -- hand when we call tcMatchesFun... traceTc "tcMatchesFun" (ppr fun_name $$ ppr exp_ty) ; checkArgs fun_name matches ; (wrap_gen, (wrap_fun, group)) <- tcSkolemiseET (FunSigCtxt fun_name True) exp_ty $ \ exp_rho -> -- Note [Polymorphic expected type for tcMatchesFun] do { (matches', wrap_fun) <- matchExpectedFunTys herald arity exp_rho $ \ pat_tys rhs_ty -> tcMatches match_ctxt pat_tys rhs_ty matches ; return (wrap_fun, matches') } ; return (wrap_gen <.> wrap_fun, group) } where arity = matchGroupArity matches herald = text "The equation(s) for" <+> quotes (ppr fun_name) <+> text "have" what = FunRhs { mc_fun = fn, mc_fixity = Prefix, mc_strictness = strictness } match_ctxt = MC { mc_what = what, mc_body = tcBody } strictness | [L _ match] <- unLoc $ mg_alts matches , FunRhs{ mc_strictness = SrcStrict } <- m_ctxt match = SrcStrict | otherwise = NoSrcStrict {- @tcMatchesCase@ doesn't do the argument-count check because the parser guarantees that each equation has exactly one argument. -} tcMatchesCase :: (Outputable (body GhcRn)) => TcMatchCtxt body -- Case context -> TcSigmaType -- Type of scrutinee -> MatchGroup GhcRn (Located (body GhcRn)) -- The case alternatives -> ExpRhoType -- Type of whole case expressions -> TcM (MatchGroup GhcTcId (Located (body GhcTcId))) -- Translated alternatives -- wrapper goes from MatchGroup's ty to expected ty tcMatchesCase ctxt scrut_ty matches res_ty = tcMatches ctxt [mkCheckExpType scrut_ty] res_ty matches tcMatchLambda :: SDoc -- see Note [Herald for matchExpectedFunTys] in GHC.Tc.Utils.Unify -> TcMatchCtxt HsExpr -> MatchGroup GhcRn (LHsExpr GhcRn) -> ExpRhoType -- deeply skolemised -> TcM (MatchGroup GhcTcId (LHsExpr GhcTcId), HsWrapper) tcMatchLambda herald match_ctxt match res_ty = matchExpectedFunTys herald n_pats res_ty $ \ pat_tys rhs_ty -> tcMatches match_ctxt pat_tys rhs_ty match where n_pats | isEmptyMatchGroup match = 1 -- must be lambda-case | otherwise = matchGroupArity match -- @tcGRHSsPat@ typechecks @[GRHSs]@ that occur in a @PatMonoBind@. tcGRHSsPat :: GRHSs GhcRn (LHsExpr GhcRn) -> TcRhoType -> TcM (GRHSs GhcTcId (LHsExpr GhcTcId)) -- Used for pattern bindings tcGRHSsPat grhss res_ty = tcGRHSs match_ctxt grhss (mkCheckExpType res_ty) where match_ctxt = MC { mc_what = PatBindRhs, mc_body = tcBody } {- ************************************************************************ * * \subsection{tcMatch} * * ************************************************************************ Note [Case branches must never infer a non-tau type] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider case ... of ... -> \(x :: forall a. a -> a) -> x ... -> \y -> y Should that type-check? The problem is that, if we check the second branch first, then we'll get a type (b -> b) for the branches, which won't unify with the polytype in the first branch. If we check the first branch first, then everything is OK. This order-dependency is terrible. So we want only proper tau-types in branches (unless a sigma-type is pushed down). This is what expTypeToType ensures: it replaces an Infer with a fresh tau-type. An even trickier case looks like f x True = x undefined f x False = x () Here, we see that the arguments must also be non-Infer. Thus, we must use expTypeToType on the output of matchExpectedFunTys, not the input. But we make a special case for a one-branch case. This is so that f = \(x :: forall a. a -> a) -> x still gets assigned a polytype. -} -- | When the MatchGroup has multiple RHSs, convert an Infer ExpType in the -- expected type into TauTvs. -- See Note [Case branches must never infer a non-tau type] tauifyMultipleMatches :: [LMatch id body] -> [ExpType] -> TcM [ExpType] tauifyMultipleMatches group exp_tys | isSingletonMatchGroup group = return exp_tys | otherwise = mapM tauifyExpType exp_tys -- NB: In the empty-match case, this ensures we fill in the ExpType -- | Type-check a MatchGroup. tcMatches :: (Outputable (body GhcRn)) => TcMatchCtxt body -> [ExpSigmaType] -- Expected pattern types -> ExpRhoType -- Expected result-type of the Match. -> MatchGroup GhcRn (Located (body GhcRn)) -> TcM (MatchGroup GhcTcId (Located (body GhcTcId))) data TcMatchCtxt body -- c.f. TcStmtCtxt, also in this module = MC { mc_what :: HsMatchContext GhcRn, -- What kind of thing this is mc_body :: Located (body GhcRn) -- Type checker for a body of -- an alternative -> ExpRhoType -> TcM (Located (body GhcTcId)) } tcMatches ctxt pat_tys rhs_ty (MG { mg_alts = L l matches , mg_origin = origin }) = do { rhs_ty:pat_tys <- tauifyMultipleMatches matches (rhs_ty:pat_tys) -- See Note [Case branches must never infer a non-tau type] ; matches' <- mapM (tcMatch ctxt pat_tys rhs_ty) matches ; pat_tys <- mapM readExpType pat_tys ; rhs_ty <- readExpType rhs_ty ; return (MG { mg_alts = L l matches' , mg_ext = MatchGroupTc pat_tys rhs_ty , mg_origin = origin }) } tcMatches _ _ _ (XMatchGroup nec) = noExtCon nec ------------- tcMatch :: (Outputable (body GhcRn)) => TcMatchCtxt body -> [ExpSigmaType] -- Expected pattern types -> ExpRhoType -- Expected result-type of the Match. -> LMatch GhcRn (Located (body GhcRn)) -> TcM (LMatch GhcTcId (Located (body GhcTcId))) tcMatch ctxt pat_tys rhs_ty match = wrapLocM (tc_match ctxt pat_tys rhs_ty) match where tc_match ctxt pat_tys rhs_ty match@(Match { m_pats = pats, m_grhss = grhss }) = add_match_ctxt match $ do { (pats', grhss') <- tcPats (mc_what ctxt) pats pat_tys $ tcGRHSs ctxt grhss rhs_ty ; return (Match { m_ext = noExtField , m_ctxt = mc_what ctxt, m_pats = pats' , m_grhss = grhss' }) } tc_match _ _ _ (XMatch nec) = noExtCon nec -- For (\x -> e), tcExpr has already said "In the expression \x->e" -- so we don't want to add "In the lambda abstraction \x->e" add_match_ctxt match thing_inside = case mc_what ctxt of LambdaExpr -> thing_inside _ -> addErrCtxt (pprMatchInCtxt match) thing_inside ------------- tcGRHSs :: TcMatchCtxt body -> GRHSs GhcRn (Located (body GhcRn)) -> ExpRhoType -> TcM (GRHSs GhcTcId (Located (body GhcTcId))) -- Notice that we pass in the full res_ty, so that we get -- good inference from simple things like -- f = \(x::forall a.a->a) -> -- We used to force it to be a monotype when there was more than one guard -- but we don't need to do that any more tcGRHSs ctxt (GRHSs _ grhss (L l binds)) res_ty = do { (binds', grhss') <- tcLocalBinds binds $ mapM (wrapLocM (tcGRHS ctxt res_ty)) grhss ; return (GRHSs noExtField grhss' (L l binds')) } tcGRHSs _ (XGRHSs nec) _ = noExtCon nec ------------- tcGRHS :: TcMatchCtxt body -> ExpRhoType -> GRHS GhcRn (Located (body GhcRn)) -> TcM (GRHS GhcTcId (Located (body GhcTcId))) tcGRHS ctxt res_ty (GRHS _ guards rhs) = do { (guards', rhs') <- tcStmtsAndThen stmt_ctxt tcGuardStmt guards res_ty $ mc_body ctxt rhs ; return (GRHS noExtField guards' rhs') } where stmt_ctxt = PatGuard (mc_what ctxt) tcGRHS _ _ (XGRHS nec) = noExtCon nec {- ************************************************************************ * * \subsection{@tcDoStmts@ typechecks a {\em list} of do statements} * * ************************************************************************ -} tcDoStmts :: HsStmtContext GhcRn -> Located [LStmt GhcRn (LHsExpr GhcRn)] -> ExpRhoType -> TcM (HsExpr GhcTcId) -- Returns a HsDo tcDoStmts ListComp (L l stmts) res_ty = do { res_ty <- expTypeToType res_ty ; (co, elt_ty) <- matchExpectedListTy res_ty ; let list_ty = mkListTy elt_ty ; stmts' <- tcStmts ListComp (tcLcStmt listTyCon) stmts (mkCheckExpType elt_ty) ; return $ mkHsWrapCo co (HsDo list_ty ListComp (L l stmts')) } tcDoStmts DoExpr (L l stmts) res_ty = do { stmts' <- tcStmts DoExpr tcDoStmt stmts res_ty ; res_ty <- readExpType res_ty ; return (HsDo res_ty DoExpr (L l stmts')) } tcDoStmts MDoExpr (L l stmts) res_ty = do { stmts' <- tcStmts MDoExpr tcDoStmt stmts res_ty ; res_ty <- readExpType res_ty ; return (HsDo res_ty MDoExpr (L l stmts')) } tcDoStmts MonadComp (L l stmts) res_ty = do { stmts' <- tcStmts MonadComp tcMcStmt stmts res_ty ; res_ty <- readExpType res_ty ; return (HsDo res_ty MonadComp (L l stmts')) } tcDoStmts ctxt _ _ = pprPanic "tcDoStmts" (pprStmtContext ctxt) tcBody :: LHsExpr GhcRn -> ExpRhoType -> TcM (LHsExpr GhcTcId) tcBody body res_ty = do { traceTc "tcBody" (ppr res_ty) ; tcMonoExpr body res_ty } {- ************************************************************************ * * \subsection{tcStmts} * * ************************************************************************ -} type TcExprStmtChecker = TcStmtChecker HsExpr ExpRhoType type TcCmdStmtChecker = TcStmtChecker HsCmd TcRhoType type TcStmtChecker body rho_type = forall thing. HsStmtContext GhcRn -> Stmt GhcRn (Located (body GhcRn)) -> rho_type -- Result type for comprehension -> (rho_type -> TcM thing) -- Checker for what follows the stmt -> TcM (Stmt GhcTcId (Located (body GhcTcId)), thing) tcStmts :: (Outputable (body GhcRn)) => HsStmtContext GhcRn -> TcStmtChecker body rho_type -- NB: higher-rank type -> [LStmt GhcRn (Located (body GhcRn))] -> rho_type -> TcM [LStmt GhcTcId (Located (body GhcTcId))] tcStmts ctxt stmt_chk stmts res_ty = do { (stmts', _) <- tcStmtsAndThen ctxt stmt_chk stmts res_ty $ const (return ()) ; return stmts' } tcStmtsAndThen :: (Outputable (body GhcRn)) => HsStmtContext GhcRn -> TcStmtChecker body rho_type -- NB: higher-rank type -> [LStmt GhcRn (Located (body GhcRn))] -> rho_type -> (rho_type -> TcM thing) -> TcM ([LStmt GhcTcId (Located (body GhcTcId))], thing) -- Note the higher-rank type. stmt_chk is applied at different -- types in the equations for tcStmts tcStmtsAndThen _ _ [] res_ty thing_inside = do { thing <- thing_inside res_ty ; return ([], thing) } -- LetStmts are handled uniformly, regardless of context tcStmtsAndThen ctxt stmt_chk (L loc (LetStmt x (L l binds)) : stmts) res_ty thing_inside = do { (binds', (stmts',thing)) <- tcLocalBinds binds $ tcStmtsAndThen ctxt stmt_chk stmts res_ty thing_inside ; return (L loc (LetStmt x (L l binds')) : stmts', thing) } -- Don't set the error context for an ApplicativeStmt. It ought to be -- possible to do this with a popErrCtxt in the tcStmt case for -- ApplicativeStmt, but it did something strange and broke a test (ado002). tcStmtsAndThen ctxt stmt_chk (L loc stmt : stmts) res_ty thing_inside | ApplicativeStmt{} <- stmt = do { (stmt', (stmts', thing)) <- stmt_chk ctxt stmt res_ty $ \ res_ty' -> tcStmtsAndThen ctxt stmt_chk stmts res_ty' $ thing_inside ; return (L loc stmt' : stmts', thing) } -- For the vanilla case, handle the location-setting part | otherwise = do { (stmt', (stmts', thing)) <- setSrcSpan loc $ addErrCtxt (pprStmtInCtxt ctxt stmt) $ stmt_chk ctxt stmt res_ty $ \ res_ty' -> popErrCtxt $ tcStmtsAndThen ctxt stmt_chk stmts res_ty' $ thing_inside ; return (L loc stmt' : stmts', thing) } --------------------------------------------------- -- Pattern guards --------------------------------------------------- tcGuardStmt :: TcExprStmtChecker tcGuardStmt _ (BodyStmt _ guard _ _) res_ty thing_inside = do { guard' <- tcMonoExpr guard (mkCheckExpType boolTy) ; thing <- thing_inside res_ty ; return (BodyStmt boolTy guard' noSyntaxExpr noSyntaxExpr, thing) } tcGuardStmt ctxt (BindStmt _ pat rhs _ _) res_ty thing_inside = do { (rhs', rhs_ty) <- tcInferRhoNC rhs -- Stmt has a context already ; (pat', thing) <- tcPat_O (StmtCtxt ctxt) (lexprCtOrigin rhs) pat (mkCheckExpType rhs_ty) $ thing_inside res_ty ; return (mkTcBindStmt pat' rhs', thing) } tcGuardStmt _ stmt _ _ = pprPanic "tcGuardStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- List comprehensions -- (no rebindable syntax) --------------------------------------------------- -- Dealt with separately, rather than by tcMcStmt, because -- a) We have special desugaring rules for list comprehensions, -- which avoid creating intermediate lists. They in turn -- assume that the bind/return operations are the regular -- polymorphic ones, and in particular don't have any -- coercion matching stuff in them. It's hard to avoid the -- potential for non-trivial coercions in tcMcStmt tcLcStmt :: TyCon -- The list type constructor ([]) -> TcExprStmtChecker tcLcStmt _ _ (LastStmt x body noret _) elt_ty thing_inside = do { body' <- tcMonoExprNC body elt_ty ; thing <- thing_inside (panic "tcLcStmt: thing_inside") ; return (LastStmt x body' noret noSyntaxExpr, thing) } -- A generator, pat <- rhs tcLcStmt m_tc ctxt (BindStmt _ pat rhs _ _) elt_ty thing_inside = do { pat_ty <- newFlexiTyVarTy liftedTypeKind ; rhs' <- tcMonoExpr rhs (mkCheckExpType $ mkTyConApp m_tc [pat_ty]) ; (pat', thing) <- tcPat (StmtCtxt ctxt) pat (mkCheckExpType pat_ty) $ thing_inside elt_ty ; return (mkTcBindStmt pat' rhs', thing) } -- A boolean guard tcLcStmt _ _ (BodyStmt _ rhs _ _) elt_ty thing_inside = do { rhs' <- tcMonoExpr rhs (mkCheckExpType boolTy) ; thing <- thing_inside elt_ty ; return (BodyStmt boolTy rhs' noSyntaxExpr noSyntaxExpr, thing) } -- ParStmt: See notes with tcMcStmt tcLcStmt m_tc ctxt (ParStmt _ bndr_stmts_s _ _) elt_ty thing_inside = do { (pairs', thing) <- loop bndr_stmts_s ; return (ParStmt unitTy pairs' noExpr noSyntaxExpr, thing) } where -- loop :: [([LStmt GhcRn], [GhcRn])] -- -> TcM ([([LStmt GhcTcId], [GhcTcId])], thing) loop [] = do { thing <- thing_inside elt_ty ; return ([], thing) } -- matching in the branches loop (ParStmtBlock x stmts names _ : pairs) = do { (stmts', (ids, pairs', thing)) <- tcStmtsAndThen ctxt (tcLcStmt m_tc) stmts elt_ty $ \ _elt_ty' -> do { ids <- tcLookupLocalIds names ; (pairs', thing) <- loop pairs ; return (ids, pairs', thing) } ; return ( ParStmtBlock x stmts' ids noSyntaxExpr : pairs', thing ) } loop (XParStmtBlock nec:_) = noExtCon nec tcLcStmt m_tc ctxt (TransStmt { trS_form = form, trS_stmts = stmts , trS_bndrs = bindersMap , trS_by = by, trS_using = using }) elt_ty thing_inside = do { let (bndr_names, n_bndr_names) = unzip bindersMap unused_ty = pprPanic "tcLcStmt: inner ty" (ppr bindersMap) -- The inner 'stmts' lack a LastStmt, so the element type -- passed in to tcStmtsAndThen is never looked at ; (stmts', (bndr_ids, by')) <- tcStmtsAndThen (TransStmtCtxt ctxt) (tcLcStmt m_tc) stmts unused_ty $ \_ -> do { by' <- traverse tcInferRho by ; bndr_ids <- tcLookupLocalIds bndr_names ; return (bndr_ids, by') } ; let m_app ty = mkTyConApp m_tc [ty] --------------- Typecheck the 'using' function ------------- -- using :: ((a,b,c)->t) -> m (a,b,c) -> m (a,b,c)m (ThenForm) -- :: ((a,b,c)->t) -> m (a,b,c) -> m (m (a,b,c))) (GroupForm) -- n_app :: Type -> Type -- Wraps a 'ty' into '[ty]' for GroupForm ; let n_app = case form of ThenForm -> (\ty -> ty) _ -> m_app by_arrow :: Type -> Type -- Wraps 'ty' to '(a->t) -> ty' if the By is present by_arrow = case by' of Nothing -> \ty -> ty Just (_,e_ty) -> \ty -> (alphaTy `mkVisFunTy` e_ty) `mkVisFunTy` ty tup_ty = mkBigCoreVarTupTy bndr_ids poly_arg_ty = m_app alphaTy poly_res_ty = m_app (n_app alphaTy) using_poly_ty = mkInvForAllTy alphaTyVar $ by_arrow $ poly_arg_ty `mkVisFunTy` poly_res_ty ; using' <- tcPolyExpr using using_poly_ty ; let final_using = fmap (mkHsWrap (WpTyApp tup_ty)) using' -- 'stmts' returns a result of type (m1_ty tuple_ty), -- typically something like [(Int,Bool,Int)] -- We don't know what tuple_ty is yet, so we use a variable ; let mk_n_bndr :: Name -> TcId -> TcId mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name (n_app (idType bndr_id)) -- Ensure that every old binder of type `b` is linked up with its -- new binder which should have type `n b` -- See Note [GroupStmt binder map] in GHC.Hs.Expr n_bndr_ids = zipWith mk_n_bndr n_bndr_names bndr_ids bindersMap' = bndr_ids `zip` n_bndr_ids -- Type check the thing in the environment with -- these new binders and return the result ; thing <- tcExtendIdEnv n_bndr_ids (thing_inside elt_ty) ; return (TransStmt { trS_stmts = stmts', trS_bndrs = bindersMap' , trS_by = fmap fst by', trS_using = final_using , trS_ret = noSyntaxExpr , trS_bind = noSyntaxExpr , trS_fmap = noExpr , trS_ext = unitTy , trS_form = form }, thing) } tcLcStmt _ _ stmt _ _ = pprPanic "tcLcStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- Monad comprehensions -- (supports rebindable syntax) --------------------------------------------------- tcMcStmt :: TcExprStmtChecker tcMcStmt _ (LastStmt x body noret return_op) res_ty thing_inside = do { (body', return_op') <- tcSyntaxOp MCompOrigin return_op [SynRho] res_ty $ \ [a_ty] -> tcMonoExprNC body (mkCheckExpType a_ty) ; thing <- thing_inside (panic "tcMcStmt: thing_inside") ; return (LastStmt x body' noret return_op', thing) } -- Generators for monad comprehensions ( pat <- rhs ) -- -- [ body | q <- gen ] -> gen :: m a -- q :: a -- tcMcStmt ctxt (BindStmt _ pat rhs bind_op fail_op) res_ty thing_inside -- (>>=) :: rhs_ty -> (pat_ty -> new_res_ty) -> res_ty = do { ((rhs', pat', thing, new_res_ty), bind_op') <- tcSyntaxOp MCompOrigin bind_op [SynRho, SynFun SynAny SynRho] res_ty $ \ [rhs_ty, pat_ty, new_res_ty] -> do { rhs' <- tcMonoExprNC rhs (mkCheckExpType rhs_ty) ; (pat', thing) <- tcPat (StmtCtxt ctxt) pat (mkCheckExpType pat_ty) $ thing_inside (mkCheckExpType new_res_ty) ; return (rhs', pat', thing, new_res_ty) } -- If (but only if) the pattern can fail, typecheck the 'fail' operator ; fail_op' <- tcMonadFailOp (MCompPatOrigin pat) pat' fail_op new_res_ty ; return (BindStmt new_res_ty pat' rhs' bind_op' fail_op', thing) } -- Boolean expressions. -- -- [ body | stmts, expr ] -> expr :: m Bool -- tcMcStmt _ (BodyStmt _ rhs then_op guard_op) res_ty thing_inside = do { -- Deal with rebindable syntax: -- guard_op :: test_ty -> rhs_ty -- then_op :: rhs_ty -> new_res_ty -> res_ty -- Where test_ty is, for example, Bool ; ((thing, rhs', rhs_ty, guard_op'), then_op') <- tcSyntaxOp MCompOrigin then_op [SynRho, SynRho] res_ty $ \ [rhs_ty, new_res_ty] -> do { (rhs', guard_op') <- tcSyntaxOp MCompOrigin guard_op [SynAny] (mkCheckExpType rhs_ty) $ \ [test_ty] -> tcMonoExpr rhs (mkCheckExpType test_ty) ; thing <- thing_inside (mkCheckExpType new_res_ty) ; return (thing, rhs', rhs_ty, guard_op') } ; return (BodyStmt rhs_ty rhs' then_op' guard_op', thing) } -- Grouping statements -- -- [ body | stmts, then group by e using f ] -- -> e :: t -- f :: forall a. (a -> t) -> m a -> m (m a) -- [ body | stmts, then group using f ] -- -> f :: forall a. m a -> m (m a) -- We type [ body | (stmts, group by e using f), ... ] -- f [ (a,b,c) | stmts ] >>= \(a,b,c) -> ...body.... -- -- We type the functions as follows: -- f :: m1 (a,b,c) -> m2 (a,b,c) (ThenForm) -- :: m1 (a,b,c) -> m2 (n (a,b,c)) (GroupForm) -- (>>=) :: m2 (a,b,c) -> ((a,b,c) -> res) -> res (ThenForm) -- :: m2 (n (a,b,c)) -> (n (a,b,c) -> res) -> res (GroupForm) -- tcMcStmt ctxt (TransStmt { trS_stmts = stmts, trS_bndrs = bindersMap , trS_by = by, trS_using = using, trS_form = form , trS_ret = return_op, trS_bind = bind_op , trS_fmap = fmap_op }) res_ty thing_inside = do { m1_ty <- newFlexiTyVarTy typeToTypeKind ; m2_ty <- newFlexiTyVarTy typeToTypeKind ; tup_ty <- newFlexiTyVarTy liftedTypeKind ; by_e_ty <- newFlexiTyVarTy liftedTypeKind -- The type of the 'by' expression (if any) -- n_app :: Type -> Type -- Wraps a 'ty' into '(n ty)' for GroupForm ; n_app <- case form of ThenForm -> return (\ty -> ty) _ -> do { n_ty <- newFlexiTyVarTy typeToTypeKind ; return (n_ty `mkAppTy`) } ; let by_arrow :: Type -> Type -- (by_arrow res) produces ((alpha->e_ty) -> res) ('by' present) -- or res ('by' absent) by_arrow = case by of Nothing -> \res -> res Just {} -> \res -> (alphaTy `mkVisFunTy` by_e_ty) `mkVisFunTy` res poly_arg_ty = m1_ty `mkAppTy` alphaTy using_arg_ty = m1_ty `mkAppTy` tup_ty poly_res_ty = m2_ty `mkAppTy` n_app alphaTy using_res_ty = m2_ty `mkAppTy` n_app tup_ty using_poly_ty = mkInvForAllTy alphaTyVar $ by_arrow $ poly_arg_ty `mkVisFunTy` poly_res_ty -- 'stmts' returns a result of type (m1_ty tuple_ty), -- typically something like [(Int,Bool,Int)] -- We don't know what tuple_ty is yet, so we use a variable ; let (bndr_names, n_bndr_names) = unzip bindersMap ; (stmts', (bndr_ids, by', return_op')) <- tcStmtsAndThen (TransStmtCtxt ctxt) tcMcStmt stmts (mkCheckExpType using_arg_ty) $ \res_ty' -> do { by' <- case by of Nothing -> return Nothing Just e -> do { e' <- tcMonoExpr e (mkCheckExpType by_e_ty) ; return (Just e') } -- Find the Ids (and hence types) of all old binders ; bndr_ids <- tcLookupLocalIds bndr_names -- 'return' is only used for the binders, so we know its type. -- return :: (a,b,c,..) -> m (a,b,c,..) ; (_, return_op') <- tcSyntaxOp MCompOrigin return_op [synKnownType (mkBigCoreVarTupTy bndr_ids)] res_ty' $ \ _ -> return () ; return (bndr_ids, by', return_op') } --------------- Typecheck the 'bind' function ------------- -- (>>=) :: m2 (n (a,b,c)) -> ( n (a,b,c) -> new_res_ty ) -> res_ty ; new_res_ty <- newFlexiTyVarTy liftedTypeKind ; (_, bind_op') <- tcSyntaxOp MCompOrigin bind_op [ synKnownType using_res_ty , synKnownType (n_app tup_ty `mkVisFunTy` new_res_ty) ] res_ty $ \ _ -> return () --------------- Typecheck the 'fmap' function ------------- ; fmap_op' <- case form of ThenForm -> return noExpr _ -> fmap unLoc . tcPolyExpr (noLoc fmap_op) $ mkInvForAllTy alphaTyVar $ mkInvForAllTy betaTyVar $ (alphaTy `mkVisFunTy` betaTy) `mkVisFunTy` (n_app alphaTy) `mkVisFunTy` (n_app betaTy) --------------- Typecheck the 'using' function ------------- -- using :: ((a,b,c)->t) -> m1 (a,b,c) -> m2 (n (a,b,c)) ; using' <- tcPolyExpr using using_poly_ty ; let final_using = fmap (mkHsWrap (WpTyApp tup_ty)) using' --------------- Building the bindersMap ---------------- ; let mk_n_bndr :: Name -> TcId -> TcId mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name (n_app (idType bndr_id)) -- Ensure that every old binder of type `b` is linked up with its -- new binder which should have type `n b` -- See Note [GroupStmt binder map] in GHC.Hs.Expr n_bndr_ids = zipWith mk_n_bndr n_bndr_names bndr_ids bindersMap' = bndr_ids `zip` n_bndr_ids -- Type check the thing in the environment with -- these new binders and return the result ; thing <- tcExtendIdEnv n_bndr_ids $ thing_inside (mkCheckExpType new_res_ty) ; return (TransStmt { trS_stmts = stmts', trS_bndrs = bindersMap' , trS_by = by', trS_using = final_using , trS_ret = return_op', trS_bind = bind_op' , trS_ext = n_app tup_ty , trS_fmap = fmap_op', trS_form = form }, thing) } -- A parallel set of comprehensions -- [ (g x, h x) | ... ; let g v = ... -- | ... ; let h v = ... ] -- -- It's possible that g,h are overloaded, so we need to feed the LIE from the -- (g x, h x) up through both lots of bindings (so we get the bindLocalMethods). -- Similarly if we had an existential pattern match: -- -- data T = forall a. Show a => C a -- -- [ (show x, show y) | ... ; C x <- ... -- | ... ; C y <- ... ] -- -- Then we need the LIE from (show x, show y) to be simplified against -- the bindings for x and y. -- -- It's difficult to do this in parallel, so we rely on the renamer to -- ensure that g,h and x,y don't duplicate, and simply grow the environment. -- So the binders of the first parallel group will be in scope in the second -- group. But that's fine; there's no shadowing to worry about. -- -- Note: The `mzip` function will get typechecked via: -- -- ParStmt [st1::t1, st2::t2, st3::t3] -- -- mzip :: m st1 -- -> (m st2 -> m st3 -> m (st2, st3)) -- recursive call -- -> m (st1, (st2, st3)) -- tcMcStmt ctxt (ParStmt _ bndr_stmts_s mzip_op bind_op) res_ty thing_inside = do { m_ty <- newFlexiTyVarTy typeToTypeKind ; let mzip_ty = mkInvForAllTys [alphaTyVar, betaTyVar] $ (m_ty `mkAppTy` alphaTy) `mkVisFunTy` (m_ty `mkAppTy` betaTy) `mkVisFunTy` (m_ty `mkAppTy` mkBoxedTupleTy [alphaTy, betaTy]) ; mzip_op' <- unLoc `fmap` tcPolyExpr (noLoc mzip_op) mzip_ty -- type dummies since we don't know all binder types yet ; id_tys_s <- (mapM . mapM) (const (newFlexiTyVarTy liftedTypeKind)) [ names | ParStmtBlock _ _ names _ <- bndr_stmts_s ] -- Typecheck bind: ; let tup_tys = [ mkBigCoreTupTy id_tys | id_tys <- id_tys_s ] tuple_ty = mk_tuple_ty tup_tys ; (((blocks', thing), inner_res_ty), bind_op') <- tcSyntaxOp MCompOrigin bind_op [ synKnownType (m_ty `mkAppTy` tuple_ty) , SynFun (synKnownType tuple_ty) SynRho ] res_ty $ \ [inner_res_ty] -> do { stuff <- loop m_ty (mkCheckExpType inner_res_ty) tup_tys bndr_stmts_s ; return (stuff, inner_res_ty) } ; return (ParStmt inner_res_ty blocks' mzip_op' bind_op', thing) } where mk_tuple_ty tys = foldr1 (\tn tm -> mkBoxedTupleTy [tn, tm]) tys -- loop :: Type -- m_ty -- -> ExpRhoType -- inner_res_ty -- -> [TcType] -- tup_tys -- -> [ParStmtBlock Name] -- -> TcM ([([LStmt GhcTcId], [GhcTcId])], thing) loop _ inner_res_ty [] [] = do { thing <- thing_inside inner_res_ty ; return ([], thing) } -- matching in the branches loop m_ty inner_res_ty (tup_ty_in : tup_tys_in) (ParStmtBlock x stmts names return_op : pairs) = do { let m_tup_ty = m_ty `mkAppTy` tup_ty_in ; (stmts', (ids, return_op', pairs', thing)) <- tcStmtsAndThen ctxt tcMcStmt stmts (mkCheckExpType m_tup_ty) $ \m_tup_ty' -> do { ids <- tcLookupLocalIds names ; let tup_ty = mkBigCoreVarTupTy ids ; (_, return_op') <- tcSyntaxOp MCompOrigin return_op [synKnownType tup_ty] m_tup_ty' $ \ _ -> return () ; (pairs', thing) <- loop m_ty inner_res_ty tup_tys_in pairs ; return (ids, return_op', pairs', thing) } ; return (ParStmtBlock x stmts' ids return_op' : pairs', thing) } loop _ _ _ _ = panic "tcMcStmt.loop" tcMcStmt _ stmt _ _ = pprPanic "tcMcStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- Do-notation -- (supports rebindable syntax) --------------------------------------------------- tcDoStmt :: TcExprStmtChecker tcDoStmt _ (LastStmt x body noret _) res_ty thing_inside = do { body' <- tcMonoExprNC body res_ty ; thing <- thing_inside (panic "tcDoStmt: thing_inside") ; return (LastStmt x body' noret noSyntaxExpr, thing) } tcDoStmt ctxt (BindStmt _ pat rhs bind_op fail_op) res_ty thing_inside = do { -- Deal with rebindable syntax: -- (>>=) :: rhs_ty -> (pat_ty -> new_res_ty) -> res_ty -- This level of generality is needed for using do-notation -- in full generality; see #1537 ((rhs', pat', new_res_ty, thing), bind_op') <- tcSyntaxOp DoOrigin bind_op [SynRho, SynFun SynAny SynRho] res_ty $ \ [rhs_ty, pat_ty, new_res_ty] -> do { rhs' <- tcMonoExprNC rhs (mkCheckExpType rhs_ty) ; (pat', thing) <- tcPat (StmtCtxt ctxt) pat (mkCheckExpType pat_ty) $ thing_inside (mkCheckExpType new_res_ty) ; return (rhs', pat', new_res_ty, thing) } -- If (but only if) the pattern can fail, typecheck the 'fail' operator ; fail_op' <- tcMonadFailOp (DoPatOrigin pat) pat' fail_op new_res_ty ; return (BindStmt new_res_ty pat' rhs' bind_op' fail_op', thing) } tcDoStmt ctxt (ApplicativeStmt _ pairs mb_join) res_ty thing_inside = do { let tc_app_stmts ty = tcApplicativeStmts ctxt pairs ty $ thing_inside . mkCheckExpType ; ((pairs', body_ty, thing), mb_join') <- case mb_join of Nothing -> (, Nothing) <$> tc_app_stmts res_ty Just join_op -> second Just <$> (tcSyntaxOp DoOrigin join_op [SynRho] res_ty $ \ [rhs_ty] -> tc_app_stmts (mkCheckExpType rhs_ty)) ; return (ApplicativeStmt body_ty pairs' mb_join', thing) } tcDoStmt _ (BodyStmt _ rhs then_op _) res_ty thing_inside = do { -- Deal with rebindable syntax; -- (>>) :: rhs_ty -> new_res_ty -> res_ty ; ((rhs', rhs_ty, thing), then_op') <- tcSyntaxOp DoOrigin then_op [SynRho, SynRho] res_ty $ \ [rhs_ty, new_res_ty] -> do { rhs' <- tcMonoExprNC rhs (mkCheckExpType rhs_ty) ; thing <- thing_inside (mkCheckExpType new_res_ty) ; return (rhs', rhs_ty, thing) } ; return (BodyStmt rhs_ty rhs' then_op' noSyntaxExpr, thing) } tcDoStmt ctxt (RecStmt { recS_stmts = stmts, recS_later_ids = later_names , recS_rec_ids = rec_names, recS_ret_fn = ret_op , recS_mfix_fn = mfix_op, recS_bind_fn = bind_op }) res_ty thing_inside = do { let tup_names = rec_names ++ filterOut (`elem` rec_names) later_names ; tup_elt_tys <- newFlexiTyVarTys (length tup_names) liftedTypeKind ; let tup_ids = zipWith mkLocalId tup_names tup_elt_tys tup_ty = mkBigCoreTupTy tup_elt_tys ; tcExtendIdEnv tup_ids $ do { ((stmts', (ret_op', tup_rets)), stmts_ty) <- tcInferInst $ \ exp_ty -> tcStmtsAndThen ctxt tcDoStmt stmts exp_ty $ \ inner_res_ty -> do { tup_rets <- zipWithM tcCheckId tup_names (map mkCheckExpType tup_elt_tys) -- Unify the types of the "final" Ids (which may -- be polymorphic) with those of "knot-tied" Ids ; (_, ret_op') <- tcSyntaxOp DoOrigin ret_op [synKnownType tup_ty] inner_res_ty $ \_ -> return () ; return (ret_op', tup_rets) } ; ((_, mfix_op'), mfix_res_ty) <- tcInferInst $ \ exp_ty -> tcSyntaxOp DoOrigin mfix_op [synKnownType (mkVisFunTy tup_ty stmts_ty)] exp_ty $ \ _ -> return () ; ((thing, new_res_ty), bind_op') <- tcSyntaxOp DoOrigin bind_op [ synKnownType mfix_res_ty , synKnownType tup_ty `SynFun` SynRho ] res_ty $ \ [new_res_ty] -> do { thing <- thing_inside (mkCheckExpType new_res_ty) ; return (thing, new_res_ty) } ; let rec_ids = takeList rec_names tup_ids ; later_ids <- tcLookupLocalIds later_names ; traceTc "tcdo" $ vcat [ppr rec_ids <+> ppr (map idType rec_ids), ppr later_ids <+> ppr (map idType later_ids)] ; return (RecStmt { recS_stmts = stmts', recS_later_ids = later_ids , recS_rec_ids = rec_ids, recS_ret_fn = ret_op' , recS_mfix_fn = mfix_op', recS_bind_fn = bind_op' , recS_ext = RecStmtTc { recS_bind_ty = new_res_ty , recS_later_rets = [] , recS_rec_rets = tup_rets , recS_ret_ty = stmts_ty} }, thing) }} tcDoStmt _ stmt _ _ = pprPanic "tcDoStmt: unexpected Stmt" (ppr stmt) --------------------------------------------------- -- MonadFail Proposal warnings --------------------------------------------------- -- The idea behind issuing MonadFail warnings is that we add them whenever a -- failable pattern is encountered. However, instead of throwing a type error -- when the constraint cannot be satisfied, we only issue a warning in -- GHC.Tc.Errors.hs. tcMonadFailOp :: CtOrigin -> LPat GhcTcId -> SyntaxExpr GhcRn -- The fail op -> TcType -- Type of the whole do-expression -> TcRn (SyntaxExpr GhcTcId) -- Typechecked fail op -- Get a 'fail' operator expression, to use if the pattern -- match fails. If the pattern is irrefutatable, just return -- noSyntaxExpr; it won't be used tcMonadFailOp orig pat fail_op res_ty | isIrrefutableHsPat pat = return noSyntaxExpr | otherwise = snd <$> (tcSyntaxOp orig fail_op [synKnownType stringTy] (mkCheckExpType res_ty) $ \_ -> return ()) {- Note [Treat rebindable syntax first] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When typechecking do { bar; ... } :: IO () we want to typecheck 'bar' in the knowledge that it should be an IO thing, pushing info from the context into the RHS. To do this, we check the rebindable syntax first, and push that information into (tcMonoExprNC rhs). Otherwise the error shows up when checking the rebindable syntax, and the expected/inferred stuff is back to front (see #3613). Note [typechecking ApplicativeStmt] join ((\pat1 ... patn -> body) <$> e1 <*> ... <*> en) fresh type variables: pat_ty_1..pat_ty_n exp_ty_1..exp_ty_n t_1..t_(n-1) body :: body_ty (\pat1 ... patn -> body) :: pat_ty_1 -> ... -> pat_ty_n -> body_ty pat_i :: pat_ty_i e_i :: exp_ty_i <$> :: (pat_ty_1 -> ... -> pat_ty_n -> body_ty) -> exp_ty_1 -> t_1 <*>_i :: t_(i-1) -> exp_ty_i -> t_i join :: tn -> res_ty -} tcApplicativeStmts :: HsStmtContext GhcRn -> [(SyntaxExpr GhcRn, ApplicativeArg GhcRn)] -> ExpRhoType -- rhs_ty -> (TcRhoType -> TcM t) -- thing_inside -> TcM ([(SyntaxExpr GhcTcId, ApplicativeArg GhcTcId)], Type, t) tcApplicativeStmts ctxt pairs rhs_ty thing_inside = do { body_ty <- newFlexiTyVarTy liftedTypeKind ; let arity = length pairs ; ts <- replicateM (arity-1) $ newInferExpTypeInst ; exp_tys <- replicateM arity $ newFlexiTyVarTy liftedTypeKind ; pat_tys <- replicateM arity $ newFlexiTyVarTy liftedTypeKind ; let fun_ty = mkVisFunTys pat_tys body_ty -- NB. do the <$>,<*> operators first, we don't want type errors here -- i.e. goOps before goArgs -- See Note [Treat rebindable syntax first] ; let (ops, args) = unzip pairs ; ops' <- goOps fun_ty (zip3 ops (ts ++ [rhs_ty]) exp_tys) -- Typecheck each ApplicativeArg separately -- See Note [ApplicativeDo and constraints] ; args' <- mapM (goArg body_ty) (zip3 args pat_tys exp_tys) -- Bring into scope all the things bound by the args, -- and typecheck the thing_inside -- See Note [ApplicativeDo and constraints] ; res <- tcExtendIdEnv (concatMap get_arg_bndrs args') $ thing_inside body_ty ; return (zip ops' args', body_ty, res) } where goOps _ [] = return [] goOps t_left ((op,t_i,exp_ty) : ops) = do { (_, op') <- tcSyntaxOp DoOrigin op [synKnownType t_left, synKnownType exp_ty] t_i $ \ _ -> return () ; t_i <- readExpType t_i ; ops' <- goOps t_i ops ; return (op' : ops') } goArg :: Type -> (ApplicativeArg GhcRn, Type, Type) -> TcM (ApplicativeArg GhcTcId) goArg body_ty (ApplicativeArgOne { app_arg_pattern = pat , arg_expr = rhs , fail_operator = fail_op , .. }, pat_ty, exp_ty) = setSrcSpan (combineSrcSpans (getLoc pat) (getLoc rhs)) $ addErrCtxt (pprStmtInCtxt ctxt (mkBindStmt pat rhs)) $ do { rhs' <- tcMonoExprNC rhs (mkCheckExpType exp_ty) ; (pat', _) <- tcPat (StmtCtxt ctxt) pat (mkCheckExpType pat_ty) $ return () ; fail_op' <- tcMonadFailOp (DoPatOrigin pat) pat' fail_op body_ty ; return (ApplicativeArgOne { app_arg_pattern = pat' , arg_expr = rhs' , fail_operator = fail_op' , .. } ) } goArg _body_ty (ApplicativeArgMany x stmts ret pat, pat_ty, exp_ty) = do { (stmts', (ret',pat')) <- tcStmtsAndThen ctxt tcDoStmt stmts (mkCheckExpType exp_ty) $ \res_ty -> do { L _ ret' <- tcMonoExprNC (noLoc ret) res_ty ; (pat', _) <- tcPat (StmtCtxt ctxt) pat (mkCheckExpType pat_ty) $ return () ; return (ret', pat') } ; return (ApplicativeArgMany x stmts' ret' pat') } goArg _body_ty (XApplicativeArg nec, _, _) = noExtCon nec get_arg_bndrs :: ApplicativeArg GhcTcId -> [Id] get_arg_bndrs (ApplicativeArgOne { app_arg_pattern = pat }) = collectPatBinders pat get_arg_bndrs (ApplicativeArgMany { bv_pattern = pat }) = collectPatBinders pat get_arg_bndrs (XApplicativeArg nec) = noExtCon nec {- Note [ApplicativeDo and constraints] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ An applicative-do is supposed to take place in parallel, so constraints bound in one arm can't possibly be available in another (#13242). Our current rule is this (more details and discussion on the ticket). Consider ...stmts... ApplicativeStmts [arg1, arg2, ... argN] ...more stmts... where argi :: ApplicativeArg. Each 'argi' itself contains one or more Stmts. Now, we say that: * Constraints required by the argi can be solved from constraint bound by ...stmts... * Constraints and existentials bound by the argi are not available to solve constraints required either by argj (where i /= j), or by ...more stmts.... * Within the stmts of each 'argi' individually, however, constraints bound by earlier stmts can be used to solve later ones. To achieve this, we just typecheck each 'argi' separately, bring all the variables they bind into scope, and typecheck the thing_inside. ************************************************************************ * * \subsection{Errors and contexts} * * ************************************************************************ @sameNoOfArgs@ takes a @[RenamedMatch]@ and decides whether the same number of args are used in each equation. -} checkArgs :: Name -> MatchGroup GhcRn body -> TcM () checkArgs _ (MG { mg_alts = L _ [] }) = return () checkArgs fun (MG { mg_alts = L _ (match1:matches) }) | null bad_matches = return () | otherwise = failWithTc (vcat [ text "Equations for" <+> quotes (ppr fun) <+> text "have different numbers of arguments" , nest 2 (ppr (getLoc match1)) , nest 2 (ppr (getLoc (head bad_matches)))]) where n_args1 = args_in_match match1 bad_matches = [m | m <- matches, args_in_match m /= n_args1] args_in_match :: LMatch GhcRn body -> Int args_in_match (L _ (Match { m_pats = pats })) = length pats args_in_match (L _ (XMatch nec)) = noExtCon nec checkArgs _ (XMatchGroup nec) = noExtCon nec