{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE InstanceSigs #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} {-# OPTIONS_GHC -fno-warn-orphans #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 -} -- | Template Haskell splices module GHC.Tc.Gen.Splice( tcSpliceExpr, tcTypedBracket, tcUntypedBracket, -- runQuasiQuoteExpr, runQuasiQuotePat, -- runQuasiQuoteDecl, runQuasiQuoteType, runAnnotation, runMetaE, runMetaP, runMetaT, runMetaD, runQuasi, tcTopSpliceExpr, lookupThName_maybe, defaultRunMeta, runMeta', runRemoteModFinalizers, finishTH, runTopSplice ) where #include "HsVersions.h" import GHC.Prelude import GHC.Driver.Plugins import GHC.Driver.Main import GHC.Driver.Session import GHC.Driver.Env import GHC.Driver.Hooks import GHC.Hs import GHC.Tc.Utils.Monad import GHC.Tc.Utils.TcType import GHC.Tc.Gen.Expr import GHC.Tc.Utils.Unify import GHC.Tc.Utils.Env import GHC.Tc.Types.Origin import GHC.Tc.Types.Evidence import GHC.Tc.Utils.Zonk import GHC.Tc.Solver import GHC.Tc.Utils.TcMType import GHC.Tc.Gen.HsType import GHC.Tc.Instance.Family import GHC.Tc.Utils.Instantiate import GHC.Core.Multiplicity import GHC.Core.Coercion( etaExpandCoAxBranch ) import GHC.Core.Type as Type import GHC.Core.TyCo.Rep as TyCoRep import GHC.Core.FamInstEnv import GHC.Core.InstEnv as InstEnv import GHC.Builtin.Names.TH import GHC.Builtin.Names import GHC.Builtin.Types import GHC.ThToHs import GHC.HsToCore.Expr import GHC.HsToCore.Monad import GHC.IfaceToCore import GHC.Iface.Load import GHCi.Message import GHCi.RemoteTypes import GHC.Runtime.Interpreter import GHC.Runtime.Interpreter.Types import GHC.Rename.Splice( traceSplice, SpliceInfo(..)) import GHC.Rename.Expr import GHC.Rename.Env import GHC.Rename.Utils ( HsDocContext(..) ) import GHC.Rename.Fixity ( lookupFixityRn_help ) import GHC.Rename.HsType import GHC.Core.Class import GHC.Core.TyCon import GHC.Core.Coercion.Axiom import GHC.Core.PatSyn import GHC.Core.ConLike import GHC.Core.DataCon as DataCon import GHC.Types.SrcLoc import GHC.Types.Name.Env import GHC.Types.Name.Set import GHC.Types.Name.Reader import GHC.Types.Name.Occurrence as OccName import GHC.Types.Var import GHC.Types.Id import GHC.Types.Id.Info import GHC.Types.Unique import GHC.Types.Var.Set import GHC.Types.Meta import GHC.Types.Basic hiding( SuccessFlag(..) ) import GHC.Types.Fixity as Hs import GHC.Types.Annotations import GHC.Types.Name import GHC.Serialized import GHC.Unit.Finder import GHC.Unit.Module import GHC.Unit.Module.ModIface import GHC.Unit.Module.Deps import GHC.Utils.Error import GHC.Utils.Misc import GHC.Utils.Panic as Panic import GHC.Utils.Lexeme import GHC.Utils.Outputable import GHC.SysTools.FileCleanup ( newTempName, TempFileLifetime(..) ) import GHC.Data.Bag import GHC.Data.FastString import GHC.Data.Maybe( MaybeErr(..) ) import qualified GHC.Data.EnumSet as EnumSet import qualified Language.Haskell.TH as TH -- THSyntax gives access to internal functions and data types import qualified Language.Haskell.TH.Syntax as TH #if defined(HAVE_INTERNAL_INTERPRETER) -- Because GHC.Desugar might not be in the base library of the bootstrapping compiler import GHC.Desugar ( AnnotationWrapper(..) ) import Unsafe.Coerce ( unsafeCoerce ) #endif import Control.Monad import Control.Exception import Data.Binary import Data.Binary.Get import Data.List ( find ) import Data.Maybe import qualified Data.ByteString as B import qualified Data.ByteString.Lazy as LB import Data.Dynamic ( fromDynamic, toDyn ) import qualified Data.Map as Map import Data.Typeable ( typeOf, Typeable, TypeRep, typeRep ) import Data.Data (Data) import Data.Proxy ( Proxy (..) ) {- ************************************************************************ * * \subsection{Main interface + stubs for the non-GHCI case * * ************************************************************************ -} tcTypedBracket :: HsExpr GhcRn -> HsBracket GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc) tcUntypedBracket :: HsExpr GhcRn -> HsBracket GhcRn -> [PendingRnSplice] -> ExpRhoType -> TcM (HsExpr GhcTc) tcSpliceExpr :: HsSplice GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc) -- None of these functions add constraints to the LIE -- runQuasiQuoteExpr :: HsQuasiQuote RdrName -> RnM (LHsExpr RdrName) -- runQuasiQuotePat :: HsQuasiQuote RdrName -> RnM (LPat RdrName) -- runQuasiQuoteType :: HsQuasiQuote RdrName -> RnM (LHsType RdrName) -- runQuasiQuoteDecl :: HsQuasiQuote RdrName -> RnM [LHsDecl RdrName] runAnnotation :: CoreAnnTarget -> LHsExpr GhcRn -> TcM Annotation {- ************************************************************************ * * \subsection{Quoting an expression} * * ************************************************************************ -} -- See Note [How brackets and nested splices are handled] -- tcTypedBracket :: HsBracket Name -> TcRhoType -> TcM (HsExpr TcId) tcTypedBracket rn_expr brack@(TExpBr _ expr) res_ty = addErrCtxt (quotationCtxtDoc brack) $ do { cur_stage <- getStage ; ps_ref <- newMutVar [] ; lie_var <- getConstraintVar -- Any constraints arising from nested splices -- should get thrown into the constraint set -- from outside the bracket -- Make a new type variable for the type of the overall quote ; m_var <- mkTyVarTy <$> mkMetaTyVar -- Make sure the type variable satisfies Quote ; ev_var <- emitQuoteWanted m_var -- Bundle them together so they can be used in GHC.HsToCore.Quote for desugaring -- brackets. ; let wrapper = QuoteWrapper ev_var m_var -- Typecheck expr to make sure it is valid, -- Throw away the typechecked expression but return its type. -- We'll typecheck it again when we splice it in somewhere ; (_tc_expr, expr_ty) <- setStage (Brack cur_stage (TcPending ps_ref lie_var wrapper)) $ tcScalingUsage Many $ -- Scale by Many, TH lifting is currently nonlinear (#18465) tcInferRhoNC expr -- NC for no context; tcBracket does that ; let rep = getRuntimeRep expr_ty ; meta_ty <- tcTExpTy m_var expr_ty ; ps' <- readMutVar ps_ref ; texpco <- tcLookupId unsafeCodeCoerceName ; tcWrapResultO (Shouldn'tHappenOrigin "TExpBr") rn_expr (unLoc (mkHsApp (mkLHsWrap (applyQuoteWrapper wrapper) (nlHsTyApp texpco [rep, expr_ty])) (noLoc (HsTcBracketOut noExtField (Just wrapper) brack ps')))) meta_ty res_ty } tcTypedBracket _ other_brack _ = pprPanic "tcTypedBracket" (ppr other_brack) -- tcUntypedBracket :: HsBracket Name -> [PendingRnSplice] -> ExpRhoType -> TcM (HsExpr TcId) -- See Note [Typechecking Overloaded Quotes] tcUntypedBracket rn_expr brack ps res_ty = do { traceTc "tc_bracket untyped" (ppr brack $$ ppr ps) -- Create the type m Exp for expression bracket, m Type for a type -- bracket and so on. The brack_info is a Maybe because the -- VarBracket ('a) isn't overloaded, but also shouldn't contain any -- splices. ; (brack_info, expected_type) <- brackTy brack -- Match the expected type with the type of all the internal -- splices. They might have further constrained types and if they do -- we want to reflect that in the overall type of the bracket. ; ps' <- case quoteWrapperTyVarTy <$> brack_info of Just m_var -> mapM (tcPendingSplice m_var) ps Nothing -> ASSERT(null ps) return [] ; traceTc "tc_bracket done untyped" (ppr expected_type) -- Unify the overall type of the bracket with the expected result -- type ; tcWrapResultO BracketOrigin rn_expr (HsTcBracketOut noExtField brack_info brack ps') expected_type res_ty } -- | A type variable with kind * -> * named "m" mkMetaTyVar :: TcM TyVar mkMetaTyVar = newNamedFlexiTyVar (fsLit "m") (mkVisFunTyMany liftedTypeKind liftedTypeKind) -- | For a type 'm', emit the constraint 'Quote m'. emitQuoteWanted :: Type -> TcM EvVar emitQuoteWanted m_var = do quote_con <- tcLookupTyCon quoteClassName emitWantedEvVar BracketOrigin $ mkTyConApp quote_con [m_var] --------------- -- | Compute the expected type of a quotation, and also the QuoteWrapper in -- the case where it is an overloaded quotation. All quotation forms are -- overloaded aprt from Variable quotations ('foo) brackTy :: HsBracket GhcRn -> TcM (Maybe QuoteWrapper, Type) brackTy b = let mkTy n = do -- New polymorphic type variable for the bracket m_var <- mkTyVarTy <$> mkMetaTyVar -- Emit a Quote constraint for the bracket ev_var <- emitQuoteWanted m_var -- Construct the final expected type of the quote, for example -- m Exp or m Type final_ty <- mkAppTy m_var <$> tcMetaTy n -- Return the evidence variable and metavariable to be used during -- desugaring. let wrapper = QuoteWrapper ev_var m_var return (Just wrapper, final_ty) in case b of (VarBr {}) -> (Nothing,) <$> tcMetaTy nameTyConName -- Result type is Var (not Quote-monadic) (ExpBr {}) -> mkTy expTyConName -- Result type is m Exp (TypBr {}) -> mkTy typeTyConName -- Result type is m Type (DecBrG {}) -> mkTy decsTyConName -- Result type is m [Dec] (PatBr {}) -> mkTy patTyConName -- Result type is m Pat (DecBrL {}) -> panic "tcBrackTy: Unexpected DecBrL" (TExpBr {}) -> panic "tcUntypedBracket: Unexpected TExpBr" --------------- -- | Typechecking a pending splice from a untyped bracket tcPendingSplice :: TcType -- Metavariable for the expected overall type of the -- quotation. -> PendingRnSplice -> TcM PendingTcSplice tcPendingSplice m_var (PendingRnSplice flavour splice_name expr) -- See Note [Typechecking Overloaded Quotes] = do { meta_ty <- tcMetaTy meta_ty_name -- Expected type of splice, e.g. m Exp ; let expected_type = mkAppTy m_var meta_ty ; expr' <- tcScalingUsage Many $ tcCheckPolyExpr expr expected_type -- Scale by Many, TH lifting is currently nonlinear (#18465) ; return (PendingTcSplice splice_name expr') } where meta_ty_name = case flavour of UntypedExpSplice -> expTyConName UntypedPatSplice -> patTyConName UntypedTypeSplice -> typeTyConName UntypedDeclSplice -> decsTyConName --------------- -- Takes a m and tau and returns the type m (TExp tau) tcTExpTy :: TcType -> TcType -> TcM TcType tcTExpTy m_ty exp_ty = do { unless (isTauTy exp_ty) $ addErr (err_msg exp_ty) ; codeCon <- tcLookupTyCon codeTyConName ; let rep = getRuntimeRep exp_ty ; return (mkTyConApp codeCon [rep, m_ty, exp_ty]) } where err_msg ty = vcat [ text "Illegal polytype:" <+> ppr ty , text "The type of a Typed Template Haskell expression must" <+> text "not have any quantification." ] quotationCtxtDoc :: HsBracket GhcRn -> SDoc quotationCtxtDoc br_body = hang (text "In the Template Haskell quotation") 2 (ppr br_body) -- The whole of the rest of the file is the else-branch (ie stage2 only) {- Note [How top-level splices are handled] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Top-level splices (those not inside a [| .. |] quotation bracket) are handled very straightforwardly: 1. tcTopSpliceExpr: typecheck the body e of the splice $(e) 2. runMetaT: desugar, compile, run it, and convert result back to GHC.Hs syntax RdrName (of the appropriate flavour, eg HsType RdrName, HsExpr RdrName etc) 3. treat the result as if that's what you saw in the first place e.g for HsType, rename and kind-check for HsExpr, rename and type-check (The last step is different for decls, because they can *only* be top-level: we return the result of step 2.) Note [How brackets and nested splices are handled] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Nested splices (those inside a [| .. |] quotation bracket), are treated quite differently. Remember, there are two forms of bracket typed [|| e ||] and untyped [| e |] The life cycle of a typed bracket: * Starts as HsBracket * When renaming: * Set the ThStage to (Brack s RnPendingTyped) * Rename the body * Result is still a HsBracket * When typechecking: * Set the ThStage to (Brack s (TcPending ps_var lie_var)) * Typecheck the body, and throw away the elaborated result * Nested splices (which must be typed) are typechecked, and the results accumulated in ps_var; their constraints accumulate in lie_var * Result is a HsTcBracketOut rn_brack pending_splices where rn_brack is the incoming renamed bracket The life cycle of a un-typed bracket: * Starts as HsBracket * When renaming: * Set the ThStage to (Brack s (RnPendingUntyped ps_var)) * Rename the body * Nested splices (which must be untyped) are renamed, and the results accumulated in ps_var * Result is still (HsRnBracketOut rn_body pending_splices) * When typechecking a HsRnBracketOut * Typecheck the pending_splices individually * Ignore the body of the bracket; just check that the context expects a bracket of that type (e.g. a [p| pat |] bracket should be in a context needing a (Q Pat) * Result is a HsTcBracketOut rn_brack pending_splices where rn_brack is the incoming renamed bracket In both cases, desugaring happens like this: * HsTcBracketOut is desugared by GHC.HsToCore.Quote.dsBracket. It a) Extends the ds_meta environment with the PendingSplices attached to the bracket b) Converts the quoted (HsExpr Name) to a CoreExpr that, when run, will produce a suitable TH expression/type/decl. This is why we leave the *renamed* expression attached to the bracket: the quoted expression should not be decorated with all the goop added by the type checker * Each splice carries a unique Name, called a "splice point", thus ${n}(e). The name is initialised to an (Unqual "splice") when the splice is created; the renamer gives it a unique. * When GHC.HsToCore.Quote (used to desugar the body of the bracket) comes across a splice, it looks up the splice's Name, n, in the ds_meta envt, to find an (HsExpr Id) that should be substituted for the splice; it just desugars it to get a CoreExpr (GHC.HsToCore.Quote.repSplice). Example: Source: f = [| Just $(g 3) |] The [| |] part is a HsBracket Typechecked: f = [| Just ${s7}(g 3) |]{s7 = g Int 3} The [| |] part is a HsBracketOut, containing *renamed* (not typechecked) expression The "s7" is the "splice point"; the (g Int 3) part is a typechecked expression Desugared: f = do { s7 <- g Int 3 ; return (ConE "Data.Maybe.Just" s7) } Note [Template Haskell state diagram] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here are the ThStages, s, their corresponding level numbers (the result of (thLevel s)), and their state transitions. The top level of the program is stage Comp: Start here | V ----------- $ ------------ $ | Comp | ---------> | Splice | -----| | 1 | | 0 | <----| ----------- ------------ ^ | ^ | $ | | [||] $ | | [||] | v | v -------------- ---------------- | Brack Comp | | Brack Splice | | 2 | | 1 | -------------- ---------------- * Normal top-level declarations start in state Comp (which has level 1). Annotations start in state Splice, since they are treated very like a splice (only without a '$') * Code compiled in state Splice (and only such code) will be *run at compile time*, with the result replacing the splice * The original paper used level -1 instead of 0, etc. * The original paper did not allow a splice within a splice, but there is no reason not to. This is the $ transition in the top right. Note [Template Haskell levels] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * Imported things are impLevel (= 0) * However things at level 0 are not *necessarily* imported. eg $( \b -> ... ) here b is bound at level 0 * In GHCi, variables bound by a previous command are treated as impLevel, because we have bytecode for them. * Variables are bound at the "current level" * The current level starts off at outerLevel (= 1) * The level is decremented by splicing $(..) incremented by brackets [| |] incremented by name-quoting 'f * When a variable is used, checkWellStaged compares bind: binding level, and use: current level at usage site Generally bind > use Always error (bound later than used) [| \x -> $(f x) |] bind = use Always OK (bound same stage as used) [| \x -> $(f [| x |]) |] bind < use Inside brackets, it depends Inside splice, OK Inside neither, OK For (bind < use) inside brackets, there are three cases: - Imported things OK f = [| map |] - Top-level things OK g = [| f |] - Non-top-level Only if there is a liftable instance h = \(x:Int) -> [| x |] To track top-level-ness we use the ThBindEnv in TcLclEnv For example: f = ... g1 = $(map ...) is OK g2 = $(f ...) is not OK; because we haven't compiled f yet Note [Typechecking Overloaded Quotes] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The main function for typechecking untyped quotations is `tcUntypedBracket`. Consider an expression quote, `[| e |]`, its type is `forall m . Quote m => m Exp`. When we typecheck it we therefore create a template of a metavariable `m` applied to `Exp` and emit a constraint `Quote m`. All this is done in the `brackTy` function. `brackTy` also selects the correct contents type for the quotation (Exp, Type, Decs etc). The meta variable and the constraint evidence variable are returned together in a `QuoteWrapper` and then passed along to two further places during compilation: 1. Typechecking nested splices (immediately in tcPendingSplice) 2. Desugaring quotations (see GHC.HsToCore.Quote) `tcPendingSplice` takes the `m` type variable as an argument and checks each nested splice against this variable `m`. During this process the variable `m` can either be fixed to a specific value or further constrained by the nested splices. Once we have checked all the nested splices, the quote type is checked against the expected return type. The process is very simple and like typechecking a list where the quotation is like the container and the splices are the elements of the list which must have a specific type. After the typechecking process is completed, the evidence variable for `Quote m` and the type `m` is stored in a `QuoteWrapper` which is passed through the pipeline and used when desugaring quotations. Typechecking typed quotations is a similar idea but the `QuoteWrapper` is stored in the `PendingStuff` as the nested splices are gathered up in a different way to untyped splices. Untyped splices are found in the renamer but typed splices are not typechecked and extracted until during typechecking. -} -- | We only want to produce warnings for TH-splices if the user requests so. -- See Note [Warnings for TH splices]. getThSpliceOrigin :: TcM Origin getThSpliceOrigin = do warn <- goptM Opt_EnableThSpliceWarnings if warn then return FromSource else return Generated {- Note [Warnings for TH splices] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We only produce warnings for TH splices when the user requests so (-fenable-th-splice-warnings). There are multiple reasons: * It's not clear that the user that compiles a splice is the author of the code that produces the warning. Think of the situation where they just splice in code from a third-party library that produces incomplete pattern matches. In this scenario, the user isn't even able to fix that warning. * Gathering information for producing the warnings (pattern-match check warnings in particular) is costly. There's no point in doing so if the user is not interested in those warnings. That's why we store Origin flags in the Haskell AST. The functions from ThToHs take such a flag and depending on whether TH splice warnings were enabled or not, we pass FromSource (if the user requests warnings) or Generated (otherwise). This is implemented in getThSpliceOrigin. For correct pattern-match warnings it's crucial that we annotate the Origin consistently (#17270). In the future we could offer the Origin as part of the TH AST. That would enable us to give quotes from the current module get FromSource origin, and/or third library authors to tag certain parts of generated code as FromSource to enable warnings. That effort is tracked in #14838. -} {- ************************************************************************ * * \subsection{Splicing an expression} * * ************************************************************************ -} tcSpliceExpr splice@(HsTypedSplice _ _ name expr) res_ty = addErrCtxt (spliceCtxtDoc splice) $ setSrcSpan (getLoc expr) $ do { stage <- getStage ; case stage of Splice {} -> tcTopSplice expr res_ty Brack pop_stage pend -> tcNestedSplice pop_stage pend name expr res_ty RunSplice _ -> -- See Note [RunSplice ThLevel] in "GHC.Tc.Types". pprPanic ("tcSpliceExpr: attempted to typecheck a splice when " ++ "running another splice") (ppr splice) Comp -> tcTopSplice expr res_ty } tcSpliceExpr splice _ = pprPanic "tcSpliceExpr" (ppr splice) {- Note [Collecting modFinalizers in typed splices] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 'qAddModFinalizer' of the @Quasi TcM@ instance adds finalizers in the local environment (see Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice). Thus after executing the splice, we move the finalizers to the finalizer list in the global environment and set them to use the current local environment (with 'addModFinalizersWithLclEnv'). -} tcNestedSplice :: ThStage -> PendingStuff -> Name -> LHsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc) -- See Note [How brackets and nested splices are handled] -- A splice inside brackets tcNestedSplice pop_stage (TcPending ps_var lie_var q@(QuoteWrapper _ m_var)) splice_name expr res_ty = do { res_ty <- expTypeToType res_ty ; let rep = getRuntimeRep res_ty ; meta_exp_ty <- tcTExpTy m_var res_ty ; expr' <- setStage pop_stage $ setConstraintVar lie_var $ tcCheckMonoExpr expr meta_exp_ty ; untype_code <- tcLookupId unTypeCodeName ; let expr'' = mkHsApp (mkLHsWrap (applyQuoteWrapper q) (nlHsTyApp untype_code [rep, res_ty])) expr' ; ps <- readMutVar ps_var ; writeMutVar ps_var (PendingTcSplice splice_name expr'' : ps) -- The returned expression is ignored; it's in the pending splices -- But we still return a plausible expression -- (a) in case we print it in debug messages, and -- (b) because we test whether it is tagToEnum in Tc.Gen.Expr.tcApp ; return (HsSpliceE noExtField $ HsSpliced noExtField (ThModFinalizers []) $ HsSplicedExpr (unLoc expr'')) } tcNestedSplice _ _ splice_name _ _ = pprPanic "tcNestedSplice: rename stage found" (ppr splice_name) tcTopSplice :: LHsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc) tcTopSplice expr res_ty = do { -- Typecheck the expression, -- making sure it has type Q (T res_ty) res_ty <- expTypeToType res_ty ; q_type <- tcMetaTy qTyConName -- Top level splices must still be of type Q (TExp a) ; meta_exp_ty <- tcTExpTy q_type res_ty ; q_expr <- tcTopSpliceExpr Typed $ tcCheckMonoExpr expr meta_exp_ty ; lcl_env <- getLclEnv ; let delayed_splice = DelayedSplice lcl_env expr res_ty q_expr ; return (HsSpliceE noExtField (XSplice (HsSplicedT delayed_splice))) } -- This is called in the zonker -- See Note [Running typed splices in the zonker] runTopSplice :: DelayedSplice -> TcM (HsExpr GhcTc) runTopSplice (DelayedSplice lcl_env orig_expr res_ty q_expr) = setLclEnv lcl_env $ do { zonked_ty <- zonkTcType res_ty ; zonked_q_expr <- zonkTopLExpr q_expr -- See Note [Collecting modFinalizers in typed splices]. ; modfinalizers_ref <- newTcRef [] -- Run the expression ; expr2 <- setStage (RunSplice modfinalizers_ref) $ runMetaE zonked_q_expr ; mod_finalizers <- readTcRef modfinalizers_ref ; addModFinalizersWithLclEnv $ ThModFinalizers mod_finalizers -- We use orig_expr here and not q_expr when tracing as a call to -- unsafeTExpCoerce is added to the original expression by the -- typechecker when typed quotes are type checked. ; traceSplice (SpliceInfo { spliceDescription = "expression" , spliceIsDecl = False , spliceSource = Just orig_expr , spliceGenerated = ppr expr2 }) -- Rename and typecheck the spliced-in expression, -- making sure it has type res_ty -- These steps should never fail; this is a *typed* splice ; (res, wcs) <- captureConstraints $ addErrCtxt (spliceResultDoc zonked_q_expr) $ do { (exp3, _fvs) <- rnLExpr expr2 ; tcCheckMonoExpr exp3 zonked_ty } ; ev <- simplifyTop wcs ; return $ unLoc (mkHsDictLet (EvBinds ev) res) } {- ************************************************************************ * * \subsection{Error messages} * * ************************************************************************ -} spliceCtxtDoc :: HsSplice GhcRn -> SDoc spliceCtxtDoc splice = hang (text "In the Template Haskell splice") 2 (pprSplice splice) spliceResultDoc :: LHsExpr GhcTc -> SDoc spliceResultDoc expr = sep [ text "In the result of the splice:" , nest 2 (char '$' <> ppr expr) , text "To see what the splice expanded to, use -ddump-splices"] ------------------- tcTopSpliceExpr :: SpliceType -> TcM (LHsExpr GhcTc) -> TcM (LHsExpr GhcTc) -- Note [How top-level splices are handled] -- Type check an expression that is the body of a top-level splice -- (the caller will compile and run it) -- Note that set the level to Splice, regardless of the original level, -- before typechecking the expression. For example: -- f x = $( ...$(g 3) ... ) -- The recursive call to tcCheckPolyExpr will simply expand the -- inner escape before dealing with the outer one tcTopSpliceExpr isTypedSplice tc_action = checkNoErrs $ -- checkNoErrs: must not try to run the thing -- if the type checker fails! unsetGOptM Opt_DeferTypeErrors $ -- Don't defer type errors. Not only are we -- going to run this code, but we do an unsafe -- coerce, so we get a seg-fault if, say we -- splice a type into a place where an expression -- is expected (#7276) setStage (Splice isTypedSplice) $ do { -- Typecheck the expression (expr', wanted) <- captureConstraints tc_action ; const_binds <- simplifyTop wanted -- Zonk it and tie the knot of dictionary bindings ; return $ mkHsDictLet (EvBinds const_binds) expr' } {- ************************************************************************ * * Annotations * * ************************************************************************ -} runAnnotation target expr = do -- Find the classes we want instances for in order to call toAnnotationWrapper loc <- getSrcSpanM data_class <- tcLookupClass dataClassName to_annotation_wrapper_id <- tcLookupId toAnnotationWrapperName -- Check the instances we require live in another module (we want to execute it..) -- and check identifiers live in other modules using TH stage checks. tcSimplifyStagedExpr -- also resolves the LIE constraints to detect e.g. instance ambiguity zonked_wrapped_expr' <- zonkTopLExpr =<< tcTopSpliceExpr Untyped ( do { (expr', expr_ty) <- tcInferRhoNC expr -- We manually wrap the typechecked expression in a call to toAnnotationWrapper -- By instantiating the call >here< it gets registered in the -- LIE consulted by tcTopSpliceExpr -- and hence ensures the appropriate dictionary is bound by const_binds ; wrapper <- instCall AnnOrigin [expr_ty] [mkClassPred data_class [expr_ty]] ; let specialised_to_annotation_wrapper_expr = L loc (mkHsWrap wrapper (HsVar noExtField (L loc to_annotation_wrapper_id))) ; return (L loc (HsApp noExtField specialised_to_annotation_wrapper_expr expr')) }) -- Run the appropriately wrapped expression to get the value of -- the annotation and its dictionaries. The return value is of -- type AnnotationWrapper by construction, so this conversion is -- safe serialized <- runMetaAW zonked_wrapped_expr' return Annotation { ann_target = target, ann_value = serialized } convertAnnotationWrapper :: ForeignHValue -> TcM (Either MsgDoc Serialized) convertAnnotationWrapper fhv = do interp <- tcGetInterp case interp of ExternalInterp {} -> Right <$> runTH THAnnWrapper fhv #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> do annotation_wrapper <- liftIO $ wormhole InternalInterp fhv return $ Right $ case unsafeCoerce annotation_wrapper of AnnotationWrapper value | let serialized = toSerialized serializeWithData value -> -- Got the value and dictionaries: build the serialized value and -- call it a day. We ensure that we seq the entire serialized value -- in order that any errors in the user-written code for the -- annotation are exposed at this point. This is also why we are -- doing all this stuff inside the context of runMeta: it has the -- facilities to deal with user error in a meta-level expression seqSerialized serialized `seq` serialized -- | Force the contents of the Serialized value so weknow it doesn't contain any bottoms seqSerialized :: Serialized -> () seqSerialized (Serialized the_type bytes) = the_type `seq` bytes `seqList` () #endif {- ************************************************************************ * * \subsection{Running an expression} * * ************************************************************************ -} runQuasi :: TH.Q a -> TcM a runQuasi act = TH.runQ act runRemoteModFinalizers :: ThModFinalizers -> TcM () runRemoteModFinalizers (ThModFinalizers finRefs) = do let withForeignRefs [] f = f [] withForeignRefs (x : xs) f = withForeignRef x $ \r -> withForeignRefs xs $ \rs -> f (r : rs) interp <- tcGetInterp case interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> do qs <- liftIO (withForeignRefs finRefs $ mapM localRef) runQuasi $ sequence_ qs #endif ExternalInterp conf iserv -> withIServ_ conf iserv $ \i -> do tcg <- getGblEnv th_state <- readTcRef (tcg_th_remote_state tcg) case th_state of Nothing -> return () -- TH was not started, nothing to do Just fhv -> do liftIO $ withForeignRef fhv $ \st -> withForeignRefs finRefs $ \qrefs -> writeIServ i (putMessage (RunModFinalizers st qrefs)) () <- runRemoteTH i [] readQResult i runQResult :: (a -> String) -> (Origin -> SrcSpan -> a -> b) -> (ForeignHValue -> TcM a) -> SrcSpan -> ForeignHValue {- TH.Q a -} -> TcM b runQResult show_th f runQ expr_span hval = do { th_result <- runQ hval ; th_origin <- getThSpliceOrigin ; traceTc "Got TH result:" (text (show_th th_result)) ; return (f th_origin expr_span th_result) } ----------------- runMeta :: (MetaHook TcM -> LHsExpr GhcTc -> TcM hs_syn) -> LHsExpr GhcTc -> TcM hs_syn runMeta unwrap e = do { h <- getHooked runMetaHook defaultRunMeta ; unwrap h e } defaultRunMeta :: MetaHook TcM defaultRunMeta (MetaE r) = fmap r . runMeta' True ppr (runQResult TH.pprint convertToHsExpr runTHExp) defaultRunMeta (MetaP r) = fmap r . runMeta' True ppr (runQResult TH.pprint convertToPat runTHPat) defaultRunMeta (MetaT r) = fmap r . runMeta' True ppr (runQResult TH.pprint convertToHsType runTHType) defaultRunMeta (MetaD r) = fmap r . runMeta' True ppr (runQResult TH.pprint convertToHsDecls runTHDec) defaultRunMeta (MetaAW r) = fmap r . runMeta' False (const empty) (const convertAnnotationWrapper) -- We turn off showing the code in meta-level exceptions because doing so exposes -- the toAnnotationWrapper function that we slap around the user's code ---------------- runMetaAW :: LHsExpr GhcTc -- Of type AnnotationWrapper -> TcM Serialized runMetaAW = runMeta metaRequestAW runMetaE :: LHsExpr GhcTc -- Of type (Q Exp) -> TcM (LHsExpr GhcPs) runMetaE = runMeta metaRequestE runMetaP :: LHsExpr GhcTc -- Of type (Q Pat) -> TcM (LPat GhcPs) runMetaP = runMeta metaRequestP runMetaT :: LHsExpr GhcTc -- Of type (Q Type) -> TcM (LHsType GhcPs) runMetaT = runMeta metaRequestT runMetaD :: LHsExpr GhcTc -- Of type Q [Dec] -> TcM [LHsDecl GhcPs] runMetaD = runMeta metaRequestD --------------- runMeta' :: Bool -- Whether code should be printed in the exception message -> (hs_syn -> SDoc) -- how to print the code -> (SrcSpan -> ForeignHValue -> TcM (Either MsgDoc hs_syn)) -- How to run x -> LHsExpr GhcTc -- Of type x; typically x = Q TH.Exp, or -- something like that -> TcM hs_syn -- Of type t runMeta' show_code ppr_hs run_and_convert expr = do { traceTc "About to run" (ppr expr) ; recordThSpliceUse -- seems to be the best place to do this, -- we catch all kinds of splices and annotations. -- Check that we've had no errors of any sort so far. -- For example, if we found an error in an earlier defn f, but -- recovered giving it type f :: forall a.a, it'd be very dodgy -- to carry ont. Mind you, the staging restrictions mean we won't -- actually run f, but it still seems wrong. And, more concretely, -- see #5358 for an example that fell over when trying to -- reify a function with a "?" kind in it. (These don't occur -- in type-correct programs. ; failIfErrsM -- run plugins ; hsc_env <- getTopEnv ; expr' <- withPlugins hsc_env spliceRunAction expr -- Desugar ; ds_expr <- initDsTc (dsLExpr expr') -- Compile and link it; might fail if linking fails ; src_span <- getSrcSpanM ; traceTc "About to run (desugared)" (ppr ds_expr) ; either_hval <- tryM $ liftIO $ GHC.Driver.Main.hscCompileCoreExpr hsc_env src_span ds_expr ; case either_hval of { Left exn -> fail_with_exn "compile and link" exn ; Right hval -> do { -- Coerce it to Q t, and run it -- Running might fail if it throws an exception of any kind (hence tryAllM) -- including, say, a pattern-match exception in the code we are running -- -- We also do the TH -> HS syntax conversion inside the same -- exception-catching thing so that if there are any lurking -- exceptions in the data structure returned by hval, we'll -- encounter them inside the try -- -- See Note [Exceptions in TH] let expr_span = getLoc expr ; either_tval <- tryAllM $ setSrcSpan expr_span $ -- Set the span so that qLocation can -- see where this splice is do { mb_result <- run_and_convert expr_span hval ; case mb_result of Left err -> failWithTc err Right result -> do { traceTc "Got HsSyn result:" (ppr_hs result) ; return $! result } } ; case either_tval of Right v -> return v Left se -> case fromException se of Just IOEnvFailure -> failM -- Error already in Tc monad _ -> fail_with_exn "run" se -- Exception }}} where -- see Note [Concealed TH exceptions] fail_with_exn :: Exception e => String -> e -> TcM a fail_with_exn phase exn = do exn_msg <- liftIO $ Panic.safeShowException exn let msg = vcat [text "Exception when trying to" <+> text phase <+> text "compile-time code:", nest 2 (text exn_msg), if show_code then text "Code:" <+> ppr expr else empty] failWithTc msg {- Note [Running typed splices in the zonker] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ See #15471 for the full discussion. For many years typed splices were run immediately after they were type checked however, this is too early as it means to zonk some type variables before they can be unified with type variables in the surrounding context. For example, ``` module A where test_foo :: forall a . Q (TExp (a -> a)) test_foo = [|| id ||] module B where import A qux = $$(test_foo) ``` We would expect `qux` to have inferred type `forall a . a -> a` but if we run the splices too early the unified variables are zonked to `Any`. The inferred type is the unusable `Any -> Any`. To run the splice, we must compile `test_foo` all the way to byte code. But at the moment when the type checker is looking at the splice, test_foo has type `Q (TExp (alpha -> alpha))` and we certainly can't compile code involving unification variables! We could default `alpha` to `Any` but then we infer `qux :: Any -> Any` which definitely is not what we want. Moreover, if we had qux = [$$(test_foo), (\x -> x +1::Int)] then `alpha` would have to be `Int`. Conclusion: we must defer taking decisions about `alpha` until the typechecker is done; and *then* we can run the splice. It's fine to do it later, because we know it'll produce type-correct code. Deferring running the splice until later, in the zonker, means that the unification variables propagate upwards from the splice into the surrounding context and are unified correctly. This is implemented by storing the arguments we need for running the splice in a `DelayedSplice`. In the zonker, the arguments are passed to `GHC.Tc.Gen.Splice.runTopSplice` and the expression inserted into the AST as normal. Note [Exceptions in TH] ~~~~~~~~~~~~~~~~~~~~~~~ Suppose we have something like this $( f 4 ) where f :: Int -> Q [Dec] f n | n>3 = fail "Too many declarations" | otherwise = ... The 'fail' is a user-generated failure, and should be displayed as a perfectly ordinary compiler error message, not a panic or anything like that. Here's how it's processed: * 'fail' is the monad fail. The monad instance for Q in TH.Syntax effectively transforms (fail s) to qReport True s >> fail where 'qReport' comes from the Quasi class and fail from its monad superclass. * The TcM monad is an instance of Quasi (see GHC.Tc.Gen.Splice), and it implements (qReport True s) by using addErr to add an error message to the bag of errors. The 'fail' in TcM raises an IOEnvFailure exception * 'qReport' forces the message to ensure any exception hidden in unevaluated thunk doesn't get into the bag of errors. Otherwise the following splice will trigger panic (#8987): $(fail undefined) See also Note [Concealed TH exceptions] * So, when running a splice, we catch all exceptions; then for - an IOEnvFailure exception, we assume the error is already in the error-bag (above) - other errors, we add an error to the bag and then fail Note [Concealed TH exceptions] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When displaying the error message contained in an exception originated from TH code, we need to make sure that the error message itself does not contain an exception. For example, when executing the following splice: $( error ("foo " ++ error "bar") ) the message for the outer exception is a thunk which will throw the inner exception when evaluated. For this reason, we display the message of a TH exception using the 'safeShowException' function, which recursively catches any exception thrown when showing an error message. To call runQ in the Tc monad, we need to make TcM an instance of Quasi: -} instance TH.Quasi TcM where qNewName s = do { u <- newUnique ; let i = toInteger (getKey u) ; return (TH.mkNameU s i) } -- 'msg' is forced to ensure exceptions don't escape, -- see Note [Exceptions in TH] qReport True msg = seqList msg $ addErr (text msg) qReport False msg = seqList msg $ addWarn NoReason (text msg) qLocation = do { m <- getModule ; l <- getSrcSpanM ; r <- case l of UnhelpfulSpan _ -> pprPanic "qLocation: Unhelpful location" (ppr l) RealSrcSpan s _ -> return s ; return (TH.Loc { TH.loc_filename = unpackFS (srcSpanFile r) , TH.loc_module = moduleNameString (moduleName m) , TH.loc_package = unitString (moduleUnit m) , TH.loc_start = (srcSpanStartLine r, srcSpanStartCol r) , TH.loc_end = (srcSpanEndLine r, srcSpanEndCol r) }) } qLookupName = lookupName qReify = reify qReifyFixity nm = lookupThName nm >>= reifyFixity qReifyType = reifyTypeOfThing qReifyInstances = reifyInstances qReifyRoles = reifyRoles qReifyAnnotations = reifyAnnotations qReifyModule = reifyModule qReifyConStrictness nm = do { nm' <- lookupThName nm ; dc <- tcLookupDataCon nm' ; let bangs = dataConImplBangs dc ; return (map reifyDecidedStrictness bangs) } -- For qRecover, discard error messages if -- the recovery action is chosen. Otherwise -- we'll only fail higher up. qRecover recover main = tryTcDiscardingErrs recover main qAddDependentFile fp = do ref <- fmap tcg_dependent_files getGblEnv dep_files <- readTcRef ref writeTcRef ref (fp:dep_files) qAddTempFile suffix = do dflags <- getDynFlags liftIO $ newTempName dflags TFL_GhcSession suffix qAddTopDecls thds = do l <- getSrcSpanM th_origin <- getThSpliceOrigin let either_hval = convertToHsDecls th_origin l thds ds <- case either_hval of Left exn -> failWithTc $ hang (text "Error in a declaration passed to addTopDecls:") 2 exn Right ds -> return ds mapM_ (checkTopDecl . unLoc) ds th_topdecls_var <- fmap tcg_th_topdecls getGblEnv updTcRef th_topdecls_var (\topds -> ds ++ topds) where checkTopDecl :: HsDecl GhcPs -> TcM () checkTopDecl (ValD _ binds) = mapM_ bindName (collectHsBindBinders binds) checkTopDecl (SigD _ _) = return () checkTopDecl (AnnD _ _) = return () checkTopDecl (ForD _ (ForeignImport { fd_name = L _ name })) = bindName name checkTopDecl _ = addErr $ text "Only function, value, annotation, and foreign import declarations may be added with addTopDecl" bindName :: RdrName -> TcM () bindName (Exact n) = do { th_topnames_var <- fmap tcg_th_topnames getGblEnv ; updTcRef th_topnames_var (\ns -> extendNameSet ns n) } bindName name = addErr $ hang (text "The binder" <+> quotes (ppr name) <+> ptext (sLit "is not a NameU.")) 2 (text "Probable cause: you used mkName instead of newName to generate a binding.") qAddForeignFilePath lang fp = do var <- fmap tcg_th_foreign_files getGblEnv updTcRef var ((lang, fp) :) qAddModFinalizer fin = do r <- liftIO $ mkRemoteRef fin fref <- liftIO $ mkForeignRef r (freeRemoteRef r) addModFinalizerRef fref qAddCorePlugin plugin = do hsc_env <- getTopEnv r <- liftIO $ findHomeModule hsc_env (mkModuleName plugin) let err = hang (text "addCorePlugin: invalid plugin module " <+> text (show plugin) ) 2 (text "Plugins in the current package can't be specified.") case r of Found {} -> addErr err FoundMultiple {} -> addErr err _ -> return () th_coreplugins_var <- tcg_th_coreplugins <$> getGblEnv updTcRef th_coreplugins_var (plugin:) qGetQ :: forall a. Typeable a => TcM (Maybe a) qGetQ = do th_state_var <- fmap tcg_th_state getGblEnv th_state <- readTcRef th_state_var -- See #10596 for why we use a scoped type variable here. return (Map.lookup (typeRep (Proxy :: Proxy a)) th_state >>= fromDynamic) qPutQ x = do th_state_var <- fmap tcg_th_state getGblEnv updTcRef th_state_var (\m -> Map.insert (typeOf x) (toDyn x) m) qIsExtEnabled = xoptM qExtsEnabled = EnumSet.toList . extensionFlags . hsc_dflags <$> getTopEnv -- | Adds a mod finalizer reference to the local environment. addModFinalizerRef :: ForeignRef (TH.Q ()) -> TcM () addModFinalizerRef finRef = do th_stage <- getStage case th_stage of RunSplice th_modfinalizers_var -> updTcRef th_modfinalizers_var (finRef :) -- This case happens only if a splice is executed and the caller does -- not set the 'ThStage' to 'RunSplice' to collect finalizers. -- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice. _ -> pprPanic "addModFinalizer was called when no finalizers were collected" (ppr th_stage) -- | Releases the external interpreter state. finishTH :: TcM () finishTH = do hsc_env <- getTopEnv case hsc_interp hsc_env of Nothing -> pure () #if defined(HAVE_INTERNAL_INTERPRETER) Just InternalInterp -> pure () #endif Just (ExternalInterp {}) -> do tcg <- getGblEnv writeTcRef (tcg_th_remote_state tcg) Nothing runTHExp :: ForeignHValue -> TcM TH.Exp runTHExp = runTH THExp runTHPat :: ForeignHValue -> TcM TH.Pat runTHPat = runTH THPat runTHType :: ForeignHValue -> TcM TH.Type runTHType = runTH THType runTHDec :: ForeignHValue -> TcM [TH.Dec] runTHDec = runTH THDec runTH :: Binary a => THResultType -> ForeignHValue -> TcM a runTH ty fhv = do interp <- tcGetInterp case interp of #if defined(HAVE_INTERNAL_INTERPRETER) InternalInterp -> do -- Run it in the local TcM hv <- liftIO $ wormhole InternalInterp fhv r <- runQuasi (unsafeCoerce hv :: TH.Q a) return r #endif ExternalInterp conf iserv -> -- Run it on the server. For an overview of how TH works with -- Remote GHCi, see Note [Remote Template Haskell] in -- libraries/ghci/GHCi/TH.hs. withIServ_ conf iserv $ \i -> do rstate <- getTHState i loc <- TH.qLocation liftIO $ withForeignRef rstate $ \state_hv -> withForeignRef fhv $ \q_hv -> writeIServ i (putMessage (RunTH state_hv q_hv ty (Just loc))) runRemoteTH i [] bs <- readQResult i return $! runGet get (LB.fromStrict bs) -- | communicate with a remotely-running TH computation until it finishes. -- See Note [Remote Template Haskell] in libraries/ghci/GHCi/TH.hs. runRemoteTH :: IServInstance -> [Messages] -- saved from nested calls to qRecover -> TcM () runRemoteTH iserv recovers = do THMsg msg <- liftIO $ readIServ iserv getTHMessage case msg of RunTHDone -> return () StartRecover -> do -- Note [TH recover with -fexternal-interpreter] v <- getErrsVar msgs <- readTcRef v writeTcRef v emptyMessages runRemoteTH iserv (msgs : recovers) EndRecover caught_error -> do let (prev_msgs@(prev_warns,prev_errs), rest) = case recovers of [] -> panic "EndRecover" a : b -> (a,b) v <- getErrsVar (warn_msgs,_) <- readTcRef v -- keep the warnings only if there were no errors writeTcRef v $ if caught_error then prev_msgs else (prev_warns `unionBags` warn_msgs, prev_errs) runRemoteTH iserv rest _other -> do r <- handleTHMessage msg liftIO $ writeIServ iserv (put r) runRemoteTH iserv recovers -- | Read a value of type QResult from the iserv readQResult :: Binary a => IServInstance -> TcM a readQResult i = do qr <- liftIO $ readIServ i get case qr of QDone a -> return a QException str -> liftIO $ throwIO (ErrorCall str) QFail str -> fail str {- Note [TH recover with -fexternal-interpreter] Recover is slightly tricky to implement. The meaning of "recover a b" is - Do a - If it finished with no errors, then keep the warnings it generated - If it failed, discard any messages it generated, and do b Note that "failed" here can mean either (1) threw an exception (failTc) (2) generated an error message (addErrTcM) The messages are managed by GHC in the TcM monad, whereas the exception-handling is done in the ghc-iserv process, so we have to coordinate between the two. On the server: - emit a StartRecover message - run "a; FailIfErrs" inside a try - emit an (EndRecover x) message, where x = True if "a; FailIfErrs" failed - if "a; FailIfErrs" failed, run "b" Back in GHC, when we receive: FailIfErrrs failTc if there are any error messages (= failIfErrsM) StartRecover save the current messages and start with an empty set. EndRecover caught_error Restore the previous messages, and merge in the new messages if caught_error is false. -} -- | Retrieve (or create, if it hasn't been created already), the -- remote TH state. The TH state is a remote reference to an IORef -- QState living on the server, and we have to pass this to each RunTH -- call we make. -- -- The TH state is stored in tcg_th_remote_state in the TcGblEnv. -- getTHState :: IServInstance -> TcM (ForeignRef (IORef QState)) getTHState i = do tcg <- getGblEnv th_state <- readTcRef (tcg_th_remote_state tcg) case th_state of Just rhv -> return rhv Nothing -> do hsc_env <- getTopEnv fhv <- liftIO $ mkFinalizedHValue hsc_env =<< iservCall i StartTH writeTcRef (tcg_th_remote_state tcg) (Just fhv) return fhv wrapTHResult :: TcM a -> TcM (THResult a) wrapTHResult tcm = do e <- tryM tcm -- only catch 'fail', treat everything else as catastrophic case e of Left e -> return (THException (show e)) Right a -> return (THComplete a) handleTHMessage :: THMessage a -> TcM a handleTHMessage msg = case msg of NewName a -> wrapTHResult $ TH.qNewName a Report b str -> wrapTHResult $ TH.qReport b str LookupName b str -> wrapTHResult $ TH.qLookupName b str Reify n -> wrapTHResult $ TH.qReify n ReifyFixity n -> wrapTHResult $ TH.qReifyFixity n ReifyType n -> wrapTHResult $ TH.qReifyType n ReifyInstances n ts -> wrapTHResult $ TH.qReifyInstances n ts ReifyRoles n -> wrapTHResult $ TH.qReifyRoles n ReifyAnnotations lookup tyrep -> wrapTHResult $ (map B.pack <$> getAnnotationsByTypeRep lookup tyrep) ReifyModule m -> wrapTHResult $ TH.qReifyModule m ReifyConStrictness nm -> wrapTHResult $ TH.qReifyConStrictness nm AddDependentFile f -> wrapTHResult $ TH.qAddDependentFile f AddTempFile s -> wrapTHResult $ TH.qAddTempFile s AddModFinalizer r -> do hsc_env <- getTopEnv wrapTHResult $ liftIO (mkFinalizedHValue hsc_env r) >>= addModFinalizerRef AddCorePlugin str -> wrapTHResult $ TH.qAddCorePlugin str AddTopDecls decs -> wrapTHResult $ TH.qAddTopDecls decs AddForeignFilePath lang str -> wrapTHResult $ TH.qAddForeignFilePath lang str IsExtEnabled ext -> wrapTHResult $ TH.qIsExtEnabled ext ExtsEnabled -> wrapTHResult $ TH.qExtsEnabled FailIfErrs -> wrapTHResult failIfErrsM _ -> panic ("handleTHMessage: unexpected message " ++ show msg) getAnnotationsByTypeRep :: TH.AnnLookup -> TypeRep -> TcM [[Word8]] getAnnotationsByTypeRep th_name tyrep = do { name <- lookupThAnnLookup th_name ; topEnv <- getTopEnv ; epsHptAnns <- liftIO $ prepareAnnotations topEnv Nothing ; tcg <- getGblEnv ; let selectedEpsHptAnns = findAnnsByTypeRep epsHptAnns name tyrep ; let selectedTcgAnns = findAnnsByTypeRep (tcg_ann_env tcg) name tyrep ; return (selectedEpsHptAnns ++ selectedTcgAnns) } {- ************************************************************************ * * Instance Testing * * ************************************************************************ -} reifyInstances :: TH.Name -> [TH.Type] -> TcM [TH.Dec] reifyInstances th_nm th_tys = addErrCtxt (text "In the argument of reifyInstances:" <+> ppr_th th_nm <+> sep (map ppr_th th_tys)) $ do { loc <- getSrcSpanM ; th_origin <- getThSpliceOrigin ; rdr_ty <- cvt th_origin loc (mkThAppTs (TH.ConT th_nm) th_tys) -- #9262 says to bring vars into scope, like in HsForAllTy case -- of rnHsTyKi ; let tv_rdrs = extractHsTyRdrTyVars rdr_ty -- Rename to HsType Name ; ((tv_names, rn_ty), _fvs) <- checkNoErrs $ -- If there are out-of-scope Names here, then we -- must error before proceeding to typecheck the -- renamed type, as that will result in GHC -- internal errors (#13837). rnImplicitTvOccs Nothing tv_rdrs $ \ tv_names -> do { (rn_ty, fvs) <- rnLHsType doc rdr_ty ; return ((tv_names, rn_ty), fvs) } ; (tclvl, wanted, (tvs, ty)) <- pushLevelAndSolveEqualitiesX "reifyInstances" $ bindImplicitTKBndrs_Skol tv_names $ tcInferLHsType rn_ty ; tvs <- zonkAndScopedSort tvs -- Avoid error cascade if there are unsolved ; reportUnsolvedEqualities ReifySkol tvs tclvl wanted ; ty <- zonkTcTypeToType ty -- Substitute out the meta type variables -- In particular, the type might have kind -- variables inside it (#7477) ; traceTc "reifyInstances" (ppr ty $$ ppr (tcTypeKind ty)) ; case splitTyConApp_maybe ty of -- This expands any type synonyms Just (tc, tys) -- See #7910 | Just cls <- tyConClass_maybe tc -> do { inst_envs <- tcGetInstEnvs ; let (matches, unifies, _) = lookupInstEnv False inst_envs cls tys ; traceTc "reifyInstances1" (ppr matches) ; reifyClassInstances cls (map fst matches ++ unifies) } | isOpenFamilyTyCon tc -> do { inst_envs <- tcGetFamInstEnvs ; let matches = lookupFamInstEnv inst_envs tc tys ; traceTc "reifyInstances2" (ppr matches) ; reifyFamilyInstances tc (map fim_instance matches) } _ -> bale_out (hang (text "reifyInstances:" <+> quotes (ppr ty)) 2 (text "is not a class constraint or type family application")) } where doc = ClassInstanceCtx bale_out msg = failWithTc msg cvt :: Origin -> SrcSpan -> TH.Type -> TcM (LHsType GhcPs) cvt origin loc th_ty = case convertToHsType origin loc th_ty of Left msg -> failWithTc msg Right ty -> return ty {- ************************************************************************ * * Reification * * ************************************************************************ -} lookupName :: Bool -- True <=> type namespace -- False <=> value namespace -> String -> TcM (Maybe TH.Name) lookupName is_type_name s = do { lcl_env <- getLocalRdrEnv ; case lookupLocalRdrEnv lcl_env rdr_name of Just n -> return (Just (reifyName n)) Nothing -> do { mb_nm <- lookupGlobalOccRn_maybe rdr_name ; return (fmap reifyName mb_nm) } } where th_name = TH.mkName s -- Parses M.x into a base of 'x' and a module of 'M' occ_fs :: FastString occ_fs = mkFastString (TH.nameBase th_name) occ :: OccName occ | is_type_name = if isLexVarSym occ_fs || isLexCon occ_fs then mkTcOccFS occ_fs else mkTyVarOccFS occ_fs | otherwise = if isLexCon occ_fs then mkDataOccFS occ_fs else mkVarOccFS occ_fs rdr_name = case TH.nameModule th_name of Nothing -> mkRdrUnqual occ Just mod -> mkRdrQual (mkModuleName mod) occ getThing :: TH.Name -> TcM TcTyThing getThing th_name = do { name <- lookupThName th_name ; traceIf (text "reify" <+> text (show th_name) <+> brackets (ppr_ns th_name) <+> ppr name) ; tcLookupTh name } -- ToDo: this tcLookup could fail, which would give a -- rather unhelpful error message where ppr_ns (TH.Name _ (TH.NameG TH.DataName _pkg _mod)) = text "data" ppr_ns (TH.Name _ (TH.NameG TH.TcClsName _pkg _mod)) = text "tc" ppr_ns (TH.Name _ (TH.NameG TH.VarName _pkg _mod)) = text "var" ppr_ns _ = panic "reify/ppr_ns" reify :: TH.Name -> TcM TH.Info reify th_name = do { traceTc "reify 1" (text (TH.showName th_name)) ; thing <- getThing th_name ; traceTc "reify 2" (ppr thing) ; reifyThing thing } lookupThName :: TH.Name -> TcM Name lookupThName th_name = do mb_name <- lookupThName_maybe th_name case mb_name of Nothing -> failWithTc (notInScope th_name) Just name -> return name lookupThName_maybe :: TH.Name -> TcM (Maybe Name) lookupThName_maybe th_name = do { names <- mapMaybeM lookup (thRdrNameGuesses th_name) -- Pick the first that works -- E.g. reify (mkName "A") will pick the class A in preference to the data constructor A ; return (listToMaybe names) } where lookup rdr_name = do { -- Repeat much of lookupOccRn, because we want -- to report errors in a TH-relevant way ; rdr_env <- getLocalRdrEnv ; case lookupLocalRdrEnv rdr_env rdr_name of Just name -> return (Just name) Nothing -> lookupGlobalOccRn_maybe rdr_name } tcLookupTh :: Name -> TcM TcTyThing -- This is a specialised version of GHC.Tc.Utils.Env.tcLookup; specialised mainly in that -- it gives a reify-related error message on failure, whereas in the normal -- tcLookup, failure is a bug. tcLookupTh name = do { (gbl_env, lcl_env) <- getEnvs ; case lookupNameEnv (tcl_env lcl_env) name of { Just thing -> return thing; Nothing -> case lookupNameEnv (tcg_type_env gbl_env) name of { Just thing -> return (AGlobal thing); Nothing -> -- EZY: I don't think this choice matters, no TH in signatures! if nameIsLocalOrFrom (tcg_semantic_mod gbl_env) name then -- It's defined in this module failWithTc (notInEnv name) else do { mb_thing <- tcLookupImported_maybe name ; case mb_thing of Succeeded thing -> return (AGlobal thing) Failed msg -> failWithTc msg }}}} notInScope :: TH.Name -> SDoc notInScope th_name = quotes (text (TH.pprint th_name)) <+> text "is not in scope at a reify" -- Ugh! Rather an indirect way to display the name notInEnv :: Name -> SDoc notInEnv name = quotes (ppr name) <+> text "is not in the type environment at a reify" ------------------------------ reifyRoles :: TH.Name -> TcM [TH.Role] reifyRoles th_name = do { thing <- getThing th_name ; case thing of AGlobal (ATyCon tc) -> return (map reify_role (tyConRoles tc)) _ -> failWithTc (text "No roles associated with" <+> (ppr thing)) } where reify_role Nominal = TH.NominalR reify_role Representational = TH.RepresentationalR reify_role Phantom = TH.PhantomR ------------------------------ reifyThing :: TcTyThing -> TcM TH.Info -- The only reason this is monadic is for error reporting, -- which in turn is mainly for the case when TH can't express -- some random GHC extension reifyThing (AGlobal (AnId id)) = do { ty <- reifyType (idType id) ; let v = reifyName id ; case idDetails id of ClassOpId cls -> return (TH.ClassOpI v ty (reifyName cls)) RecSelId{sel_tycon=RecSelData tc} -> return (TH.VarI (reifySelector id tc) ty Nothing) _ -> return (TH.VarI v ty Nothing) } reifyThing (AGlobal (ATyCon tc)) = reifyTyCon tc reifyThing (AGlobal (AConLike (RealDataCon dc))) = do { let name = dataConName dc ; ty <- reifyType (idType (dataConWrapId dc)) ; return (TH.DataConI (reifyName name) ty (reifyName (dataConOrigTyCon dc))) } reifyThing (AGlobal (AConLike (PatSynCon ps))) = do { let name = reifyName ps ; ty <- reifyPatSynType (patSynSigBndr ps) ; return (TH.PatSynI name ty) } reifyThing (ATcId {tct_id = id}) = do { ty1 <- zonkTcType (idType id) -- Make use of all the info we have, even -- though it may be incomplete ; ty2 <- reifyType ty1 ; return (TH.VarI (reifyName id) ty2 Nothing) } reifyThing (ATyVar tv tv1) = do { ty1 <- zonkTcTyVar tv1 ; ty2 <- reifyType ty1 ; return (TH.TyVarI (reifyName tv) ty2) } reifyThing thing = pprPanic "reifyThing" (pprTcTyThingCategory thing) ------------------------------------------- reifyAxBranch :: TyCon -> CoAxBranch -> TcM TH.TySynEqn reifyAxBranch fam_tc (CoAxBranch { cab_tvs = tvs , cab_lhs = lhs , cab_rhs = rhs }) -- remove kind patterns (#8884) = do { tvs' <- reifyTyVarsToMaybe tvs ; let lhs_types_only = filterOutInvisibleTypes fam_tc lhs ; lhs' <- reifyTypes lhs_types_only ; annot_th_lhs <- zipWith3M annotThType (tyConArgsPolyKinded fam_tc) lhs_types_only lhs' ; let lhs_type = mkThAppTs (TH.ConT $ reifyName fam_tc) annot_th_lhs ; rhs' <- reifyType rhs ; return (TH.TySynEqn tvs' lhs_type rhs') } reifyTyCon :: TyCon -> TcM TH.Info reifyTyCon tc | Just cls <- tyConClass_maybe tc = reifyClass cls | isFunTyCon tc = return (TH.PrimTyConI (reifyName tc) 2 False) | isPrimTyCon tc = return (TH.PrimTyConI (reifyName tc) (length (tyConVisibleTyVars tc)) (isUnliftedTyCon tc)) | isTypeFamilyTyCon tc = do { let tvs = tyConTyVars tc res_kind = tyConResKind tc resVar = famTcResVar tc ; kind' <- reifyKind res_kind ; let (resultSig, injectivity) = case resVar of Nothing -> (TH.KindSig kind', Nothing) Just name -> let thName = reifyName name injAnnot = tyConInjectivityInfo tc sig = TH.TyVarSig (TH.KindedTV thName () kind') inj = case injAnnot of NotInjective -> Nothing Injective ms -> Just (TH.InjectivityAnn thName injRHS) where injRHS = map (reifyName . tyVarName) (filterByList ms tvs) in (sig, inj) ; tvs' <- reifyTyVars (tyConVisibleTyVars tc) ; let tfHead = TH.TypeFamilyHead (reifyName tc) tvs' resultSig injectivity ; if isOpenTypeFamilyTyCon tc then do { fam_envs <- tcGetFamInstEnvs ; instances <- reifyFamilyInstances tc (familyInstances fam_envs tc) ; return (TH.FamilyI (TH.OpenTypeFamilyD tfHead) instances) } else do { eqns <- case isClosedSynFamilyTyConWithAxiom_maybe tc of Just ax -> mapM (reifyAxBranch tc) $ fromBranches $ coAxiomBranches ax Nothing -> return [] ; return (TH.FamilyI (TH.ClosedTypeFamilyD tfHead eqns) []) } } | isDataFamilyTyCon tc = do { let res_kind = tyConResKind tc ; kind' <- fmap Just (reifyKind res_kind) ; tvs' <- reifyTyVars (tyConVisibleTyVars tc) ; fam_envs <- tcGetFamInstEnvs ; instances <- reifyFamilyInstances tc (familyInstances fam_envs tc) ; return (TH.FamilyI (TH.DataFamilyD (reifyName tc) tvs' kind') instances) } | Just (_, rhs) <- synTyConDefn_maybe tc -- Vanilla type synonym = do { rhs' <- reifyType rhs ; tvs' <- reifyTyVars (tyConVisibleTyVars tc) ; return (TH.TyConI (TH.TySynD (reifyName tc) tvs' rhs')) } | otherwise = do { cxt <- reifyCxt (tyConStupidTheta tc) ; let tvs = tyConTyVars tc dataCons = tyConDataCons tc isGadt = isGadtSyntaxTyCon tc ; cons <- mapM (reifyDataCon isGadt (mkTyVarTys tvs)) dataCons ; r_tvs <- reifyTyVars (tyConVisibleTyVars tc) ; let name = reifyName tc deriv = [] -- Don't know about deriving decl | isNewTyCon tc = TH.NewtypeD cxt name r_tvs Nothing (head cons) deriv | otherwise = TH.DataD cxt name r_tvs Nothing cons deriv ; return (TH.TyConI decl) } reifyDataCon :: Bool -> [Type] -> DataCon -> TcM TH.Con reifyDataCon isGadtDataCon tys dc = do { let -- used for H98 data constructors (ex_tvs, theta, arg_tys) = dataConInstSig dc tys -- used for GADTs data constructors g_user_tvs' = dataConUserTyVarBinders dc (g_univ_tvs, _, g_eq_spec, g_theta', g_arg_tys', g_res_ty') = dataConFullSig dc (srcUnpks, srcStricts) = mapAndUnzip reifySourceBang (dataConSrcBangs dc) dcdBangs = zipWith TH.Bang srcUnpks srcStricts fields = dataConFieldLabels dc name = reifyName dc -- Universal tvs present in eq_spec need to be filtered out, as -- they will not appear anywhere in the type. eq_spec_tvs = mkVarSet (map eqSpecTyVar g_eq_spec) ; (univ_subst, _) -- See Note [Freshen reified GADT constructors' universal tyvars] <- freshenTyVarBndrs $ filterOut (`elemVarSet` eq_spec_tvs) g_univ_tvs ; let (tvb_subst, g_user_tvs) = subst_tv_binders univ_subst g_user_tvs' g_theta = substTys tvb_subst g_theta' g_arg_tys = substTys tvb_subst (map scaledThing g_arg_tys') g_res_ty = substTy tvb_subst g_res_ty' ; r_arg_tys <- reifyTypes (if isGadtDataCon then g_arg_tys else arg_tys) ; main_con <- if | not (null fields) && not isGadtDataCon -> return $ TH.RecC name (zip3 (map reifyFieldLabel fields) dcdBangs r_arg_tys) | not (null fields) -> do { res_ty <- reifyType g_res_ty ; return $ TH.RecGadtC [name] (zip3 (map (reifyName . flSelector) fields) dcdBangs r_arg_tys) res_ty } -- We need to check not isGadtDataCon here because GADT -- constructors can be declared infix. -- See Note [Infix GADT constructors] in GHC.Tc.TyCl. | dataConIsInfix dc && not isGadtDataCon -> ASSERT( r_arg_tys `lengthIs` 2 ) do { let [r_a1, r_a2] = r_arg_tys [s1, s2] = dcdBangs ; return $ TH.InfixC (s1,r_a1) name (s2,r_a2) } | isGadtDataCon -> do { res_ty <- reifyType g_res_ty ; return $ TH.GadtC [name] (dcdBangs `zip` r_arg_tys) res_ty } | otherwise -> return $ TH.NormalC name (dcdBangs `zip` r_arg_tys) ; let (ex_tvs', theta') | isGadtDataCon = (g_user_tvs, g_theta) | otherwise = ASSERT( all isTyVar ex_tvs ) -- no covars for haskell syntax (map mk_specified ex_tvs, theta) ret_con | null ex_tvs' && null theta' = return main_con | otherwise = do { cxt <- reifyCxt theta' ; ex_tvs'' <- reifyTyVarBndrs ex_tvs' ; return (TH.ForallC ex_tvs'' cxt main_con) } ; ASSERT( r_arg_tys `equalLength` dcdBangs ) ret_con } where mk_specified tv = Bndr tv SpecifiedSpec subst_tv_binders subst tv_bndrs = let tvs = binderVars tv_bndrs flags = map binderArgFlag tv_bndrs (subst', tvs') = substTyVarBndrs subst tvs tv_bndrs' = map (\(tv,fl) -> Bndr tv fl) (zip tvs' flags) in (subst', tv_bndrs') {- Note [Freshen reified GADT constructors' universal tyvars] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose one were to reify this GADT: data a :~: b where Refl :: forall a b. (a ~ b) => a :~: b We ought to be careful here about the uniques we give to the occurrences of `a` and `b` in this definition. That is because in the original DataCon, all uses of `a` and `b` have the same unique, since `a` and `b` are both universally quantified type variables--that is, they are used in both the (:~:) tycon as well as in the constructor type signature. But when we turn the DataCon definition into the reified one, the `a` and `b` in the constructor type signature becomes differently scoped than the `a` and `b` in `data a :~: b`. While it wouldn't technically be *wrong* per se to re-use the same uniques for `a` and `b` across these two different scopes, it's somewhat annoying for end users of Template Haskell, since they wouldn't be able to rely on the assumption that all TH names have globally distinct uniques (#13885). For this reason, we freshen the universally quantified tyvars that go into the reified GADT constructor type signature to give them distinct uniques from their counterparts in the tycon. -} ------------------------------ reifyClass :: Class -> TcM TH.Info reifyClass cls = do { cxt <- reifyCxt theta ; inst_envs <- tcGetInstEnvs ; insts <- reifyClassInstances cls (InstEnv.classInstances inst_envs cls) ; assocTys <- concatMapM reifyAT ats ; ops <- concatMapM reify_op op_stuff ; tvs' <- reifyTyVars (tyConVisibleTyVars (classTyCon cls)) ; let dec = TH.ClassD cxt (reifyName cls) tvs' fds' (assocTys ++ ops) ; return (TH.ClassI dec insts) } where (_, fds, theta, _, ats, op_stuff) = classExtraBigSig cls fds' = map reifyFunDep fds reify_op (op, def_meth) = do { let (_, _, ty) = tcSplitMethodTy (idType op) -- Use tcSplitMethodTy to get rid of the extraneous class -- variables and predicates at the beginning of op's type -- (see #15551). ; ty' <- reifyType ty ; let nm' = reifyName op ; case def_meth of Just (_, GenericDM gdm_ty) -> do { gdm_ty' <- reifyType gdm_ty ; return [TH.SigD nm' ty', TH.DefaultSigD nm' gdm_ty'] } _ -> return [TH.SigD nm' ty'] } reifyAT :: ClassATItem -> TcM [TH.Dec] reifyAT (ATI tycon def) = do tycon' <- reifyTyCon tycon case tycon' of TH.FamilyI dec _ -> do let (tyName, tyArgs) = tfNames dec (dec :) <$> maybe (return []) (fmap (:[]) . reifyDefImpl tyName tyArgs . fst) def _ -> pprPanic "reifyAT" (text (show tycon')) reifyDefImpl :: TH.Name -> [TH.Name] -> Type -> TcM TH.Dec reifyDefImpl n args ty = TH.TySynInstD . TH.TySynEqn Nothing (mkThAppTs (TH.ConT n) (map TH.VarT args)) <$> reifyType ty tfNames :: TH.Dec -> (TH.Name, [TH.Name]) tfNames (TH.OpenTypeFamilyD (TH.TypeFamilyHead n args _ _)) = (n, map bndrName args) tfNames d = pprPanic "tfNames" (text (show d)) bndrName :: TH.TyVarBndr flag -> TH.Name bndrName (TH.PlainTV n _) = n bndrName (TH.KindedTV n _ _) = n ------------------------------ -- | Annotate (with TH.SigT) a type if the first parameter is True -- and if the type contains a free variable. -- This is used to annotate type patterns for poly-kinded tyvars in -- reifying class and type instances. -- See @Note [Reified instances and explicit kind signatures]@. annotThType :: Bool -- True <=> annotate -> TyCoRep.Type -> TH.Type -> TcM TH.Type -- tiny optimization: if the type is annotated, don't annotate again. annotThType _ _ th_ty@(TH.SigT {}) = return th_ty annotThType True ty th_ty | not $ isEmptyVarSet $ filterVarSet isTyVar $ tyCoVarsOfType ty = do { let ki = tcTypeKind ty ; th_ki <- reifyKind ki ; return (TH.SigT th_ty th_ki) } annotThType _ _ th_ty = return th_ty -- | For every argument type that a type constructor accepts, -- report whether or not the argument is poly-kinded. This is used to -- eventually feed into 'annotThType'. -- See @Note [Reified instances and explicit kind signatures]@. tyConArgsPolyKinded :: TyCon -> [Bool] tyConArgsPolyKinded tc = map (is_poly_ty . tyVarKind) tc_vis_tvs -- See "Wrinkle: Oversaturated data family instances" in -- @Note [Reified instances and explicit kind signatures]@ ++ map (is_poly_ty . tyCoBinderType) tc_res_kind_vis_bndrs -- (1) in Wrinkle ++ repeat True -- (2) in Wrinkle where is_poly_ty :: Type -> Bool is_poly_ty ty = not $ isEmptyVarSet $ filterVarSet isTyVar $ tyCoVarsOfType ty tc_vis_tvs :: [TyVar] tc_vis_tvs = tyConVisibleTyVars tc tc_res_kind_vis_bndrs :: [TyCoBinder] tc_res_kind_vis_bndrs = filter isVisibleBinder $ fst $ splitPiTys $ tyConResKind tc {- Note [Reified instances and explicit kind signatures] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Reified class instances and type family instances often include extra kind information to disambiguate instances. Here is one such example that illustrates this (#8953): type family Poly (a :: k) :: Type type instance Poly (x :: Bool) = Int type instance Poly (x :: Maybe k) = Double If you're not careful, reifying these instances might yield this: type instance Poly x = Int type instance Poly x = Double To avoid this, we go through some care to annotate things with extra kind information. Some functions which accomplish this feat include: * annotThType: This annotates a type with a kind signature if the type contains a free variable. * tyConArgsPolyKinded: This checks every argument that a type constructor can accept and reports if the type of the argument is poly-kinded. This information is ultimately fed into annotThType. ----- -- Wrinkle: Oversaturated data family instances ----- What constitutes an argument to a type constructor in the definition of tyConArgsPolyKinded? For most type constructors, it's simply the visible type variable binders (i.e., tyConVisibleTyVars). There is one corner case we must keep in mind, however: data family instances can appear oversaturated (#17296). For instance: data family Foo :: Type -> Type data instance Foo x data family Bar :: k data family Bar x For these sorts of data family instances, tyConVisibleTyVars isn't enough, as they won't give you the kinds of the oversaturated arguments. We must also consult: 1. The kinds of the arguments in the result kind (i.e., the tyConResKind). This will tell us, e.g., the kind of `x` in `Foo x` above. 2. If we go beyond the number of arguments in the result kind (like the `x` in `Bar x`), then we conservatively assume that the argument's kind is poly-kinded. ----- -- Wrinkle: data family instances with return kinds ----- Another squirrelly corner case is this: data family Foo (a :: k) data instance Foo :: Bool -> Type data instance Foo :: Char -> Type If you're not careful, reifying these instances might yield this: data instance Foo data instance Foo We can fix this ambiguity by reifying the instances' explicit return kinds. We should only do this if necessary (see Note [When does a tycon application need an explicit kind signature?] in GHC.Core.Type), but more importantly, we *only* do this if either of the following are true: 1. The data family instance has no constructors. 2. The data family instance is declared with GADT syntax. If neither of these are true, then reifying the return kind would yield something like this: data instance (Bar a :: Type) = MkBar a Which is not valid syntax. -} ------------------------------ reifyClassInstances :: Class -> [ClsInst] -> TcM [TH.Dec] reifyClassInstances cls insts = mapM (reifyClassInstance (tyConArgsPolyKinded (classTyCon cls))) insts reifyClassInstance :: [Bool] -- True <=> the corresponding tv is poly-kinded -- includes only *visible* tvs -> ClsInst -> TcM TH.Dec reifyClassInstance is_poly_tvs i = do { cxt <- reifyCxt theta ; let vis_types = filterOutInvisibleTypes cls_tc types ; thtypes <- reifyTypes vis_types ; annot_thtypes <- zipWith3M annotThType is_poly_tvs vis_types thtypes ; let head_ty = mkThAppTs (TH.ConT (reifyName cls)) annot_thtypes ; return $ (TH.InstanceD over cxt head_ty []) } where (_tvs, theta, cls, types) = tcSplitDFunTy (idType dfun) cls_tc = classTyCon cls dfun = instanceDFunId i over = case overlapMode (is_flag i) of NoOverlap _ -> Nothing Overlappable _ -> Just TH.Overlappable Overlapping _ -> Just TH.Overlapping Overlaps _ -> Just TH.Overlaps Incoherent _ -> Just TH.Incoherent ------------------------------ reifyFamilyInstances :: TyCon -> [FamInst] -> TcM [TH.Dec] reifyFamilyInstances fam_tc fam_insts = mapM (reifyFamilyInstance (tyConArgsPolyKinded fam_tc)) fam_insts reifyFamilyInstance :: [Bool] -- True <=> the corresponding tv is poly-kinded -- includes only *visible* tvs -> FamInst -> TcM TH.Dec reifyFamilyInstance is_poly_tvs (FamInst { fi_flavor = flavor , fi_axiom = ax , fi_fam = fam }) | let fam_tc = coAxiomTyCon ax branch = coAxiomSingleBranch ax , CoAxBranch { cab_tvs = tvs, cab_lhs = lhs, cab_rhs = rhs } <- branch = case flavor of SynFamilyInst -> -- remove kind patterns (#8884) do { th_tvs <- reifyTyVarsToMaybe tvs ; let lhs_types_only = filterOutInvisibleTypes fam_tc lhs ; th_lhs <- reifyTypes lhs_types_only ; annot_th_lhs <- zipWith3M annotThType is_poly_tvs lhs_types_only th_lhs ; let lhs_type = mkThAppTs (TH.ConT $ reifyName fam) annot_th_lhs ; th_rhs <- reifyType rhs ; return (TH.TySynInstD (TH.TySynEqn th_tvs lhs_type th_rhs)) } DataFamilyInst rep_tc -> do { let -- eta-expand lhs types, because sometimes data/newtype -- instances are eta-reduced; See #9692 -- See Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom (ee_tvs, ee_lhs, _) = etaExpandCoAxBranch branch fam' = reifyName fam dataCons = tyConDataCons rep_tc isGadt = isGadtSyntaxTyCon rep_tc ; th_tvs <- reifyTyVarsToMaybe ee_tvs ; cons <- mapM (reifyDataCon isGadt (mkTyVarTys ee_tvs)) dataCons ; let types_only = filterOutInvisibleTypes fam_tc ee_lhs ; th_tys <- reifyTypes types_only ; annot_th_tys <- zipWith3M annotThType is_poly_tvs types_only th_tys ; let lhs_type = mkThAppTs (TH.ConT fam') annot_th_tys ; mb_sig <- -- See "Wrinkle: data family instances with return kinds" in -- Note [Reified instances and explicit kind signatures] if (null cons || isGadtSyntaxTyCon rep_tc) && tyConAppNeedsKindSig False fam_tc (length ee_lhs) then do { let full_kind = tcTypeKind (mkTyConApp fam_tc ee_lhs) ; th_full_kind <- reifyKind full_kind ; pure $ Just th_full_kind } else pure Nothing ; return $ if isNewTyCon rep_tc then TH.NewtypeInstD [] th_tvs lhs_type mb_sig (head cons) [] else TH.DataInstD [] th_tvs lhs_type mb_sig cons [] } ------------------------------ reifyType :: TyCoRep.Type -> TcM TH.Type -- Monadic only because of failure reifyType ty | tcIsLiftedTypeKind ty = return TH.StarT -- Make sure to use tcIsLiftedTypeKind here, since we don't want to confuse it -- with Constraint (#14869). reifyType ty@(ForAllTy (Bndr _ argf) _) = reify_for_all argf ty reifyType (LitTy t) = do { r <- reifyTyLit t; return (TH.LitT r) } reifyType (TyVarTy tv) = return (TH.VarT (reifyName tv)) reifyType (TyConApp tc tys) = reify_tc_app tc tys -- Do not expand type synonyms here reifyType ty@(AppTy {}) = do let (ty_head, ty_args) = splitAppTys ty ty_head' <- reifyType ty_head ty_args' <- reifyTypes (filter_out_invisible_args ty_head ty_args) pure $ mkThAppTs ty_head' ty_args' where -- Make sure to filter out any invisible arguments. For instance, if you -- reify the following: -- -- newtype T (f :: forall a. a -> Type) = MkT (f Bool) -- -- Then you should receive back `f Bool`, not `f Type Bool`, since the -- `Type` argument is invisible (#15792). filter_out_invisible_args :: Type -> [Type] -> [Type] filter_out_invisible_args ty_head ty_args = filterByList (map isVisibleArgFlag $ appTyArgFlags ty_head ty_args) ty_args reifyType ty@(FunTy { ft_af = af, ft_mult = Many, ft_arg = t1, ft_res = t2 }) | InvisArg <- af = reify_for_all Inferred ty -- Types like ((?x::Int) => Char -> Char) | otherwise = do { [r1,r2] <- reifyTypes [t1,t2] ; return (TH.ArrowT `TH.AppT` r1 `TH.AppT` r2) } reifyType ty@(FunTy { ft_af = af, ft_mult = tm, ft_arg = t1, ft_res = t2 }) | InvisArg <- af = noTH (sLit "linear invisible argument") (ppr ty) | otherwise = do { [rm,r1,r2] <- reifyTypes [tm,t1,t2] ; return (TH.MulArrowT `TH.AppT` rm `TH.AppT` r1 `TH.AppT` r2) } reifyType (CastTy t _) = reifyType t -- Casts are ignored in TH reifyType ty@(CoercionTy {})= noTH (sLit "coercions in types") (ppr ty) reify_for_all :: TyCoRep.ArgFlag -> TyCoRep.Type -> TcM TH.Type -- Arg of reify_for_all is always ForAllTy or a predicate FunTy reify_for_all argf ty | isVisibleArgFlag argf = do let (req_bndrs, phi) = tcSplitForAllReqTVBinders ty tvbndrs' <- reifyTyVarBndrs req_bndrs phi' <- reifyType phi pure $ TH.ForallVisT tvbndrs' phi' | otherwise = do let (inv_bndrs, phi) = tcSplitForAllInvisTVBinders ty tvbndrs' <- reifyTyVarBndrs inv_bndrs let (cxt, tau) = tcSplitPhiTy phi cxt' <- reifyCxt cxt tau' <- reifyType tau pure $ TH.ForallT tvbndrs' cxt' tau' reifyTyLit :: TyCoRep.TyLit -> TcM TH.TyLit reifyTyLit (NumTyLit n) = return (TH.NumTyLit n) reifyTyLit (StrTyLit s) = return (TH.StrTyLit (unpackFS s)) reifyTypes :: [Type] -> TcM [TH.Type] reifyTypes = mapM reifyType reifyPatSynType :: ([InvisTVBinder], ThetaType, [InvisTVBinder], ThetaType, [Scaled Type], Type) -> TcM TH.Type -- reifies a pattern synonym's type and returns its *complete* type -- signature; see NOTE [Pattern synonym signatures and Template -- Haskell] reifyPatSynType (univTyVars, req, exTyVars, prov, argTys, resTy) = do { univTyVars' <- reifyTyVarBndrs univTyVars ; req' <- reifyCxt req ; exTyVars' <- reifyTyVarBndrs exTyVars ; prov' <- reifyCxt prov ; tau' <- reifyType (mkVisFunTys argTys resTy) ; return $ TH.ForallT univTyVars' req' $ TH.ForallT exTyVars' prov' tau' } reifyKind :: Kind -> TcM TH.Kind reifyKind = reifyType reifyCxt :: [PredType] -> TcM [TH.Pred] reifyCxt = mapM reifyType reifyFunDep :: ([TyVar], [TyVar]) -> TH.FunDep reifyFunDep (xs, ys) = TH.FunDep (map reifyName xs) (map reifyName ys) class ReifyFlag flag flag' | flag -> flag' where reifyFlag :: flag -> flag' instance ReifyFlag () () where reifyFlag () = () instance ReifyFlag Specificity TH.Specificity where reifyFlag SpecifiedSpec = TH.SpecifiedSpec reifyFlag InferredSpec = TH.InferredSpec reifyTyVars :: [TyVar] -> TcM [TH.TyVarBndr ()] reifyTyVars = reifyTyVarBndrs . map mk_bndr where mk_bndr tv = Bndr tv () reifyTyVarBndrs :: ReifyFlag flag flag' => [VarBndr TyVar flag] -> TcM [TH.TyVarBndr flag'] reifyTyVarBndrs = mapM reify_tvbndr where -- even if the kind is *, we need to include a kind annotation, -- in case a poly-kind would be inferred without the annotation. -- See #8953 or test th/T8953 reify_tvbndr (Bndr tv fl) = TH.KindedTV (reifyName tv) (reifyFlag fl) <$> reifyKind (tyVarKind tv) reifyTyVarsToMaybe :: [TyVar] -> TcM (Maybe [TH.TyVarBndr ()]) reifyTyVarsToMaybe [] = pure Nothing reifyTyVarsToMaybe tys = Just <$> reifyTyVars tys reify_tc_app :: TyCon -> [Type.Type] -> TcM TH.Type reify_tc_app tc tys = do { tys' <- reifyTypes (filterOutInvisibleTypes tc tys) ; maybe_sig_t (mkThAppTs r_tc tys') } where arity = tyConArity tc r_tc | isUnboxedSumTyCon tc = TH.UnboxedSumT (arity `div` 2) | isUnboxedTupleTyCon tc = TH.UnboxedTupleT (arity `div` 2) | isPromotedTupleTyCon tc = TH.PromotedTupleT (arity `div` 2) -- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon | isTupleTyCon tc = if isPromotedDataCon tc then TH.PromotedTupleT arity else TH.TupleT arity | tc `hasKey` constraintKindTyConKey = TH.ConstraintT | tc `hasKey` unrestrictedFunTyConKey = TH.ArrowT | tc `hasKey` listTyConKey = TH.ListT | tc `hasKey` nilDataConKey = TH.PromotedNilT | tc `hasKey` consDataConKey = TH.PromotedConsT | tc `hasKey` heqTyConKey = TH.EqualityT | tc `hasKey` eqPrimTyConKey = TH.EqualityT | tc `hasKey` eqReprPrimTyConKey = TH.ConT (reifyName coercibleTyCon) | isPromotedDataCon tc = TH.PromotedT (reifyName tc) | otherwise = TH.ConT (reifyName tc) -- See Note [When does a tycon application need an explicit kind -- signature?] in GHC.Core.TyCo.Rep maybe_sig_t th_type | tyConAppNeedsKindSig False -- We don't reify types using visible kind applications, so -- don't count specified binders as contributing towards -- injective positions in the kind of the tycon. tc (length tys) = do { let full_kind = tcTypeKind (mkTyConApp tc tys) ; th_full_kind <- reifyKind full_kind ; return (TH.SigT th_type th_full_kind) } | otherwise = return th_type ------------------------------ reifyName :: NamedThing n => n -> TH.Name reifyName thing | isExternalName name = mk_varg pkg_str mod_str occ_str | otherwise = TH.mkNameU occ_str (toInteger $ getKey (getUnique name)) -- Many of the things we reify have local bindings, and -- NameL's aren't supposed to appear in binding positions, so -- we use NameU. When/if we start to reify nested things, that -- have free variables, we may need to generate NameL's for them. where name = getName thing mod = ASSERT( isExternalName name ) nameModule name pkg_str = unitString (moduleUnit mod) mod_str = moduleNameString (moduleName mod) occ_str = occNameString occ occ = nameOccName name mk_varg | OccName.isDataOcc occ = TH.mkNameG_d | OccName.isVarOcc occ = TH.mkNameG_v | OccName.isTcOcc occ = TH.mkNameG_tc | otherwise = pprPanic "reifyName" (ppr name) -- See Note [Reifying field labels] reifyFieldLabel :: FieldLabel -> TH.Name reifyFieldLabel fl | flIsOverloaded fl = TH.Name (TH.mkOccName occ_str) (TH.NameQ (TH.mkModName mod_str)) | otherwise = TH.mkNameG_v pkg_str mod_str occ_str where name = flSelector fl mod = ASSERT( isExternalName name ) nameModule name pkg_str = unitString (moduleUnit mod) mod_str = moduleNameString (moduleName mod) occ_str = unpackFS (flLabel fl) reifySelector :: Id -> TyCon -> TH.Name reifySelector id tc = case find ((idName id ==) . flSelector) (tyConFieldLabels tc) of Just fl -> reifyFieldLabel fl Nothing -> pprPanic "reifySelector: missing field" (ppr id $$ ppr tc) ------------------------------ reifyFixity :: Name -> TcM (Maybe TH.Fixity) reifyFixity name = do { (found, fix) <- lookupFixityRn_help name ; return (if found then Just (conv_fix fix) else Nothing) } where conv_fix (Hs.Fixity _ i d) = TH.Fixity i (conv_dir d) conv_dir Hs.InfixR = TH.InfixR conv_dir Hs.InfixL = TH.InfixL conv_dir Hs.InfixN = TH.InfixN reifyUnpackedness :: DataCon.SrcUnpackedness -> TH.SourceUnpackedness reifyUnpackedness NoSrcUnpack = TH.NoSourceUnpackedness reifyUnpackedness SrcNoUnpack = TH.SourceNoUnpack reifyUnpackedness SrcUnpack = TH.SourceUnpack reifyStrictness :: DataCon.SrcStrictness -> TH.SourceStrictness reifyStrictness NoSrcStrict = TH.NoSourceStrictness reifyStrictness SrcStrict = TH.SourceStrict reifyStrictness SrcLazy = TH.SourceLazy reifySourceBang :: DataCon.HsSrcBang -> (TH.SourceUnpackedness, TH.SourceStrictness) reifySourceBang (HsSrcBang _ u s) = (reifyUnpackedness u, reifyStrictness s) reifyDecidedStrictness :: DataCon.HsImplBang -> TH.DecidedStrictness reifyDecidedStrictness HsLazy = TH.DecidedLazy reifyDecidedStrictness HsStrict = TH.DecidedStrict reifyDecidedStrictness HsUnpack{} = TH.DecidedUnpack reifyTypeOfThing :: TH.Name -> TcM TH.Type reifyTypeOfThing th_name = do thing <- getThing th_name case thing of AGlobal (AnId id) -> reifyType (idType id) AGlobal (ATyCon tc) -> reifyKind (tyConKind tc) AGlobal (AConLike (RealDataCon dc)) -> reifyType (idType (dataConWrapId dc)) AGlobal (AConLike (PatSynCon ps)) -> reifyPatSynType (patSynSigBndr ps) ATcId{tct_id = id} -> zonkTcType (idType id) >>= reifyType ATyVar _ tctv -> zonkTcTyVar tctv >>= reifyType -- Impossible cases, supposedly: AGlobal (ACoAxiom _) -> panic "reifyTypeOfThing: ACoAxiom" ATcTyCon _ -> panic "reifyTypeOfThing: ATcTyCon" APromotionErr _ -> panic "reifyTypeOfThing: APromotionErr" ------------------------------ lookupThAnnLookup :: TH.AnnLookup -> TcM CoreAnnTarget lookupThAnnLookup (TH.AnnLookupName th_nm) = fmap NamedTarget (lookupThName th_nm) lookupThAnnLookup (TH.AnnLookupModule (TH.Module pn mn)) = return $ ModuleTarget $ mkModule (stringToUnit $ TH.pkgString pn) (mkModuleName $ TH.modString mn) reifyAnnotations :: Data a => TH.AnnLookup -> TcM [a] reifyAnnotations th_name = do { name <- lookupThAnnLookup th_name ; topEnv <- getTopEnv ; epsHptAnns <- liftIO $ prepareAnnotations topEnv Nothing ; tcg <- getGblEnv ; let selectedEpsHptAnns = findAnns deserializeWithData epsHptAnns name ; let selectedTcgAnns = findAnns deserializeWithData (tcg_ann_env tcg) name ; return (selectedEpsHptAnns ++ selectedTcgAnns) } ------------------------------ modToTHMod :: Module -> TH.Module modToTHMod m = TH.Module (TH.PkgName $ unitString $ moduleUnit m) (TH.ModName $ moduleNameString $ moduleName m) reifyModule :: TH.Module -> TcM TH.ModuleInfo reifyModule (TH.Module (TH.PkgName pkgString) (TH.ModName mString)) = do this_mod <- getModule let reifMod = mkModule (stringToUnit pkgString) (mkModuleName mString) if (reifMod == this_mod) then reifyThisModule else reifyFromIface reifMod where reifyThisModule = do usages <- fmap (map modToTHMod . moduleEnvKeys . imp_mods) getImports return $ TH.ModuleInfo usages reifyFromIface reifMod = do iface <- loadInterfaceForModule (text "reifying module from TH for" <+> ppr reifMod) reifMod let usages = [modToTHMod m | usage <- mi_usages iface, Just m <- [usageToModule (moduleUnit reifMod) usage] ] return $ TH.ModuleInfo usages usageToModule :: Unit -> Usage -> Maybe Module usageToModule _ (UsageFile {}) = Nothing usageToModule this_pkg (UsageHomeModule { usg_mod_name = mn }) = Just $ mkModule this_pkg mn usageToModule _ (UsagePackageModule { usg_mod = m }) = Just m usageToModule _ (UsageMergedRequirement { usg_mod = m }) = Just m ------------------------------ mkThAppTs :: TH.Type -> [TH.Type] -> TH.Type mkThAppTs fun_ty arg_tys = foldl' TH.AppT fun_ty arg_tys noTH :: PtrString -> SDoc -> TcM a noTH s d = failWithTc (hsep [text "Can't represent" <+> ptext s <+> text "in Template Haskell:", nest 2 d]) ppr_th :: TH.Ppr a => a -> SDoc ppr_th x = text (TH.pprint x) {- Note [Reifying field labels] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When reifying a datatype declared with DuplicateRecordFields enabled, we want the reified names of the fields to be labels rather than selector functions. That is, we want (reify ''T) and (reify 'foo) to produce data T = MkT { foo :: Int } foo :: T -> Int rather than data T = MkT { $sel:foo:MkT :: Int } $sel:foo:MkT :: T -> Int because otherwise TH code that uses the field names as strings will silently do the wrong thing. Thus we use the field label (e.g. foo) as the OccName, rather than the selector (e.g. $sel:foo:MkT). Since the Orig name M.foo isn't in the environment, NameG can't be used to represent such fields. Instead, reifyFieldLabel uses NameQ. However, this means that extracting the field name from the output of reify, and trying to reify it again, may fail with an ambiguity error if there are multiple such fields defined in the module (see the test case overloadedrecflds/should_fail/T11103.hs). The "proper" fix requires changes to the TH AST to make it able to represent duplicate record fields. -} tcGetInterp :: TcM Interp tcGetInterp = do hsc_env <- getTopEnv case hsc_interp hsc_env of Nothing -> liftIO $ throwIO (InstallationError "Template haskell requires a target code interpreter") Just i -> pure i