{-# LANGUAGE BangPatterns #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE ConstrainedClassMethods #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE ViewPatterns #-} {-# OPTIONS_GHC -Wno-incomplete-record-updates #-} {-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-} {- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 This module converts Template Haskell syntax into Hs syntax -} module GHC.ThToHs ( convertToHsExpr , convertToPat , convertToHsDecls , convertToHsType , thRdrNameGuesses ) where import GHC.Prelude import GHC.Hs as Hs import GHC.Builtin.Names import GHC.Types.Name.Reader import qualified GHC.Types.Name as Name import GHC.Unit.Module import GHC.Parser.PostProcess import GHC.Types.Name.Occurrence as OccName import GHC.Types.SrcLoc import GHC.Core.Type as Hs import qualified GHC.Core.Coercion as Coercion ( Role(..) ) import GHC.Builtin.Types import GHC.Types.Basic as Hs import GHC.Types.Fixity as Hs import GHC.Types.ForeignCall import GHC.Types.Unique import GHC.Types.SourceText import GHC.Utils.Error import GHC.Data.Bag import GHC.Utils.Lexeme import GHC.Utils.Misc import GHC.Data.FastString import GHC.Utils.Outputable as Outputable import GHC.Utils.Panic import GHC.Parser.Annotation import qualified Data.ByteString as BS import Control.Monad( unless, ap ) import Data.Maybe( catMaybes, isNothing ) import Language.Haskell.TH as TH hiding (sigP) import Language.Haskell.TH.Syntax as TH import Foreign.ForeignPtr import Foreign.Ptr import System.IO.Unsafe ------------------------------------------------------------------- -- The external interface convertToHsDecls :: Origin -> SrcSpan -> [TH.Dec] -> Either SDoc [LHsDecl GhcPs] convertToHsDecls origin loc ds = initCvt origin loc (fmap catMaybes (mapM cvt_dec ds)) where cvt_dec d = wrapMsg "declaration" d (cvtDec d) convertToHsExpr :: Origin -> SrcSpan -> TH.Exp -> Either SDoc (LHsExpr GhcPs) convertToHsExpr origin loc e = initCvt origin loc $ wrapMsg "expression" e $ cvtl e convertToPat :: Origin -> SrcSpan -> TH.Pat -> Either SDoc (LPat GhcPs) convertToPat origin loc p = initCvt origin loc $ wrapMsg "pattern" p $ cvtPat p convertToHsType :: Origin -> SrcSpan -> TH.Type -> Either SDoc (LHsType GhcPs) convertToHsType origin loc t = initCvt origin loc $ wrapMsg "type" t $ cvtType t ------------------------------------------------------------------- newtype CvtM a = CvtM { unCvtM :: Origin -> SrcSpan -> Either SDoc (SrcSpan, a) } deriving (Functor) -- Push down the Origin (that is configurable by -- -fenable-th-splice-warnings) and source location; -- Can fail, with a single error message -- NB: If the conversion succeeds with (Right x), there should -- be no exception values hiding in x -- Reason: so a (head []) in TH code doesn't subsequently -- make GHC crash when it tries to walk the generated tree -- Use the loc everywhere, for lack of anything better -- In particular, we want it on binding locations, so that variables bound in -- the spliced-in declarations get a location that at least relates to the splice point instance Applicative CvtM where pure x = CvtM $ \_ loc -> Right (loc,x) (<*>) = ap instance Monad CvtM where (CvtM m) >>= k = CvtM $ \origin loc -> case m origin loc of Left err -> Left err Right (loc',v) -> unCvtM (k v) origin loc' initCvt :: Origin -> SrcSpan -> CvtM a -> Either SDoc a initCvt origin loc (CvtM m) = fmap snd (m origin loc) force :: a -> CvtM () force a = a `seq` return () failWith :: SDoc -> CvtM a failWith m = CvtM (\_ _ -> Left m) getOrigin :: CvtM Origin getOrigin = CvtM (\origin loc -> Right (loc,origin)) getL :: CvtM SrcSpan getL = CvtM (\_ loc -> Right (loc,loc)) setL :: SrcSpan -> CvtM () setL loc = CvtM (\_ _ -> Right (loc, ())) returnL :: a -> CvtM (Located a) returnL x = CvtM (\_ loc -> Right (loc, L loc x)) returnJustL :: a -> CvtM (Maybe (Located a)) returnJustL = fmap Just . returnL wrapParL :: (Located a -> a) -> a -> CvtM a wrapParL add_par x = CvtM (\_ loc -> Right (loc, add_par (L loc x))) wrapMsg :: (Show a, TH.Ppr a) => String -> a -> CvtM b -> CvtM b -- E.g wrapMsg "declaration" dec thing wrapMsg what item (CvtM m) = CvtM $ \origin loc -> case m origin loc of Left err -> Left (err $$ msg) Right v -> Right v where -- Show the item in pretty syntax normally, -- but with all its constructors if you say -dppr-debug msg = hang (text "When splicing a TH" <+> text what <> colon) 2 (getPprDebug $ \case True -> text (show item) False -> text (pprint item)) wrapL :: CvtM a -> CvtM (Located a) wrapL (CvtM m) = CvtM $ \origin loc -> case m origin loc of Left err -> Left err Right (loc', v) -> Right (loc', L loc v) ------------------------------------------------------------------- cvtDecs :: [TH.Dec] -> CvtM [LHsDecl GhcPs] cvtDecs = fmap catMaybes . mapM cvtDec cvtDec :: TH.Dec -> CvtM (Maybe (LHsDecl GhcPs)) cvtDec (TH.ValD pat body ds) | TH.VarP s <- pat = do { s' <- vNameL s ; cl' <- cvtClause (mkPrefixFunRhs s') (Clause [] body ds) ; th_origin <- getOrigin ; returnJustL $ Hs.ValD noExtField $ mkFunBind th_origin s' [cl'] } | otherwise = do { pat' <- cvtPat pat ; body' <- cvtGuard body ; ds' <- cvtLocalDecs (text "a where clause") ds ; returnJustL $ Hs.ValD noExtField $ PatBind { pat_lhs = pat' , pat_rhs = GRHSs noExtField body' (noLoc ds') , pat_ext = noExtField , pat_ticks = ([],[]) } } cvtDec (TH.FunD nm cls) | null cls = failWith (text "Function binding for" <+> quotes (text (TH.pprint nm)) <+> text "has no equations") | otherwise = do { nm' <- vNameL nm ; cls' <- mapM (cvtClause (mkPrefixFunRhs nm')) cls ; th_origin <- getOrigin ; returnJustL $ Hs.ValD noExtField $ mkFunBind th_origin nm' cls' } cvtDec (TH.SigD nm typ) = do { nm' <- vNameL nm ; ty' <- cvtSigType typ ; returnJustL $ Hs.SigD noExtField (TypeSig noExtField [nm'] (mkHsWildCardBndrs ty')) } cvtDec (TH.KiSigD nm ki) = do { nm' <- tconNameL nm ; ki' <- cvtSigKind ki ; let sig' = StandaloneKindSig noExtField nm' ki' ; returnJustL $ Hs.KindSigD noExtField sig' } cvtDec (TH.InfixD fx nm) -- Fixity signatures are allowed for variables, constructors, and types -- the renamer automatically looks for types during renaming, even when -- the RdrName says it's a variable or a constructor. So, just assume -- it's a variable or constructor and proceed. = do { nm' <- vcNameL nm ; returnJustL (Hs.SigD noExtField (FixSig noExtField (FixitySig noExtField [nm'] (cvtFixity fx)))) } cvtDec (PragmaD prag) = cvtPragmaD prag cvtDec (TySynD tc tvs rhs) = do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs ; rhs' <- cvtType rhs ; returnJustL $ TyClD noExtField $ SynDecl { tcdSExt = noExtField, tcdLName = tc', tcdTyVars = tvs' , tcdFixity = Prefix , tcdRhs = rhs' } } cvtDec (DataD ctxt tc tvs ksig constrs derivs) = do { let isGadtCon (GadtC _ _ _) = True isGadtCon (RecGadtC _ _ _) = True isGadtCon (ForallC _ _ c) = isGadtCon c isGadtCon _ = False isGadtDecl = all isGadtCon constrs isH98Decl = all (not . isGadtCon) constrs ; unless (isGadtDecl || isH98Decl) (failWith (text "Cannot mix GADT constructors with Haskell 98" <+> text "constructors")) ; unless (isNothing ksig || isGadtDecl) (failWith (text "Kind signatures are only allowed on GADTs")) ; (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs ; ksig' <- cvtKind `traverse` ksig ; cons' <- mapM cvtConstr constrs ; derivs' <- cvtDerivs derivs ; let defn = HsDataDefn { dd_ext = noExtField , dd_ND = DataType, dd_cType = Nothing , dd_ctxt = Just ctxt' , dd_kindSig = ksig' , dd_cons = cons', dd_derivs = derivs' } ; returnJustL $ TyClD noExtField $ DataDecl { tcdDExt = noExtField , tcdLName = tc', tcdTyVars = tvs' , tcdFixity = Prefix , tcdDataDefn = defn } } cvtDec (NewtypeD ctxt tc tvs ksig constr derivs) = do { (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs ; ksig' <- cvtKind `traverse` ksig ; con' <- cvtConstr constr ; derivs' <- cvtDerivs derivs ; let defn = HsDataDefn { dd_ext = noExtField , dd_ND = NewType, dd_cType = Nothing , dd_ctxt = Just ctxt' , dd_kindSig = ksig' , dd_cons = [con'] , dd_derivs = derivs' } ; returnJustL $ TyClD noExtField $ DataDecl { tcdDExt = noExtField , tcdLName = tc', tcdTyVars = tvs' , tcdFixity = Prefix , tcdDataDefn = defn } } cvtDec (ClassD ctxt cl tvs fds decs) = do { (cxt', tc', tvs') <- cvt_tycl_hdr ctxt cl tvs ; fds' <- mapM cvt_fundep fds ; (binds', sigs', fams', at_defs', adts') <- cvt_ci_decs (text "a class declaration") decs ; unless (null adts') (failWith $ (text "Default data instance declarations" <+> text "are not allowed:") $$ (Outputable.ppr adts')) ; returnJustL $ TyClD noExtField $ ClassDecl { tcdCExt = NoLayoutInfo , tcdCtxt = Just cxt', tcdLName = tc', tcdTyVars = tvs' , tcdFixity = Prefix , tcdFDs = fds', tcdSigs = Hs.mkClassOpSigs sigs' , tcdMeths = binds' , tcdATs = fams', tcdATDefs = at_defs', tcdDocs = [] } -- no docs in TH ^^ } cvtDec (InstanceD o ctxt ty decs) = do { let doc = text "an instance declaration" ; (binds', sigs', fams', ats', adts') <- cvt_ci_decs doc decs ; unless (null fams') (failWith (mkBadDecMsg doc fams')) ; ctxt' <- cvtContext funPrec ctxt ; (L loc ty') <- cvtType ty ; let inst_ty' = L loc $ mkHsImplicitSigType $ mkHsQualTy ctxt loc ctxt' $ L loc ty' ; returnJustL $ InstD noExtField $ ClsInstD noExtField $ ClsInstDecl { cid_ext = noExtField, cid_poly_ty = inst_ty' , cid_binds = binds' , cid_sigs = Hs.mkClassOpSigs sigs' , cid_tyfam_insts = ats', cid_datafam_insts = adts' , cid_overlap_mode = fmap (L loc . overlap) o } } where overlap pragma = case pragma of TH.Overlaps -> Hs.Overlaps (SourceText "OVERLAPS") TH.Overlappable -> Hs.Overlappable (SourceText "OVERLAPPABLE") TH.Overlapping -> Hs.Overlapping (SourceText "OVERLAPPING") TH.Incoherent -> Hs.Incoherent (SourceText "INCOHERENT") cvtDec (ForeignD ford) = do { ford' <- cvtForD ford ; returnJustL $ ForD noExtField ford' } cvtDec (DataFamilyD tc tvs kind) = do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs ; result <- cvtMaybeKindToFamilyResultSig kind ; returnJustL $ TyClD noExtField $ FamDecl noExtField $ FamilyDecl noExtField DataFamily tc' tvs' Prefix result Nothing } cvtDec (DataInstD ctxt bndrs tys ksig constrs derivs) = do { (ctxt', tc', bndrs', typats') <- cvt_datainst_hdr ctxt bndrs tys ; ksig' <- cvtKind `traverse` ksig ; cons' <- mapM cvtConstr constrs ; derivs' <- cvtDerivs derivs ; let defn = HsDataDefn { dd_ext = noExtField , dd_ND = DataType, dd_cType = Nothing , dd_ctxt = Just ctxt' , dd_kindSig = ksig' , dd_cons = cons', dd_derivs = derivs' } ; returnJustL $ InstD noExtField $ DataFamInstD { dfid_ext = noExtField , dfid_inst = DataFamInstDecl { dfid_eqn = FamEqn { feqn_ext = noExtField , feqn_tycon = tc' , feqn_bndrs = bndrs' , feqn_pats = typats' , feqn_rhs = defn , feqn_fixity = Prefix } }}} cvtDec (NewtypeInstD ctxt bndrs tys ksig constr derivs) = do { (ctxt', tc', bndrs', typats') <- cvt_datainst_hdr ctxt bndrs tys ; ksig' <- cvtKind `traverse` ksig ; con' <- cvtConstr constr ; derivs' <- cvtDerivs derivs ; let defn = HsDataDefn { dd_ext = noExtField , dd_ND = NewType, dd_cType = Nothing , dd_ctxt = Just ctxt' , dd_kindSig = ksig' , dd_cons = [con'], dd_derivs = derivs' } ; returnJustL $ InstD noExtField $ DataFamInstD { dfid_ext = noExtField , dfid_inst = DataFamInstDecl { dfid_eqn = FamEqn { feqn_ext = noExtField , feqn_tycon = tc' , feqn_bndrs = bndrs' , feqn_pats = typats' , feqn_rhs = defn , feqn_fixity = Prefix } }}} cvtDec (TySynInstD eqn) = do { (L _ eqn') <- cvtTySynEqn eqn ; returnJustL $ InstD noExtField $ TyFamInstD { tfid_ext = noExtField , tfid_inst = TyFamInstDecl { tfid_eqn = eqn' } } } cvtDec (OpenTypeFamilyD head) = do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head ; returnJustL $ TyClD noExtField $ FamDecl noExtField $ FamilyDecl noExtField OpenTypeFamily tc' tyvars' Prefix result' injectivity' } cvtDec (ClosedTypeFamilyD head eqns) = do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head ; eqns' <- mapM cvtTySynEqn eqns ; returnJustL $ TyClD noExtField $ FamDecl noExtField $ FamilyDecl noExtField (ClosedTypeFamily (Just eqns')) tc' tyvars' Prefix result' injectivity' } cvtDec (TH.RoleAnnotD tc roles) = do { tc' <- tconNameL tc ; let roles' = map (noLoc . cvtRole) roles ; returnJustL $ Hs.RoleAnnotD noExtField (RoleAnnotDecl noExtField tc' roles') } cvtDec (TH.StandaloneDerivD ds cxt ty) = do { cxt' <- cvtContext funPrec cxt ; ds' <- traverse cvtDerivStrategy ds ; (L loc ty') <- cvtType ty ; let inst_ty' = L loc $ mkHsImplicitSigType $ mkHsQualTy cxt loc cxt' $ L loc ty' ; returnJustL $ DerivD noExtField $ DerivDecl { deriv_ext =noExtField , deriv_strategy = ds' , deriv_type = mkHsWildCardBndrs inst_ty' , deriv_overlap_mode = Nothing } } cvtDec (TH.DefaultSigD nm typ) = do { nm' <- vNameL nm ; ty' <- cvtSigType typ ; returnJustL $ Hs.SigD noExtField $ ClassOpSig noExtField True [nm'] ty'} cvtDec (TH.PatSynD nm args dir pat) = do { nm' <- cNameL nm ; args' <- cvtArgs args ; dir' <- cvtDir nm' dir ; pat' <- cvtPat pat ; returnJustL $ Hs.ValD noExtField $ PatSynBind noExtField $ PSB noExtField nm' args' pat' dir' } where cvtArgs (TH.PrefixPatSyn args) = Hs.PrefixCon noTypeArgs <$> mapM vNameL args cvtArgs (TH.InfixPatSyn a1 a2) = Hs.InfixCon <$> vNameL a1 <*> vNameL a2 cvtArgs (TH.RecordPatSyn sels) = do { sels' <- mapM (fmap (\ (L li i) -> FieldOcc noExtField (L li i)) . vNameL) sels ; vars' <- mapM (vNameL . mkNameS . nameBase) sels ; return $ Hs.RecCon $ zipWith RecordPatSynField sels' vars' } cvtDir _ Unidir = return Unidirectional cvtDir _ ImplBidir = return ImplicitBidirectional cvtDir n (ExplBidir cls) = do { ms <- mapM (cvtClause (mkPrefixFunRhs n)) cls ; th_origin <- getOrigin ; return $ ExplicitBidirectional $ mkMatchGroup th_origin ms } cvtDec (TH.PatSynSigD nm ty) = do { nm' <- cNameL nm ; ty' <- cvtPatSynSigTy ty ; returnJustL $ Hs.SigD noExtField $ PatSynSig noExtField [nm'] ty'} -- Implicit parameter bindings are handled in cvtLocalDecs and -- cvtImplicitParamBind. They are not allowed in any other scope, so -- reaching this case indicates an error. cvtDec (TH.ImplicitParamBindD _ _) = failWith (text "Implicit parameter binding only allowed in let or where") ---------------- cvtTySynEqn :: TySynEqn -> CvtM (LTyFamInstEqn GhcPs) cvtTySynEqn (TySynEqn mb_bndrs lhs rhs) = do { mb_bndrs' <- traverse (mapM cvt_tv) mb_bndrs ; let outer_bndrs = mkHsOuterFamEqnTyVarBndrs mb_bndrs' ; (head_ty, args) <- split_ty_app lhs ; case head_ty of ConT nm -> do { nm' <- tconNameL nm ; rhs' <- cvtType rhs ; let args' = map wrap_tyarg args ; returnL $ FamEqn { feqn_ext = noExtField , feqn_tycon = nm' , feqn_bndrs = outer_bndrs , feqn_pats = args' , feqn_fixity = Prefix , feqn_rhs = rhs' } } InfixT t1 nm t2 -> do { nm' <- tconNameL nm ; args' <- mapM cvtType [t1,t2] ; rhs' <- cvtType rhs ; returnL $ FamEqn { feqn_ext = noExtField , feqn_tycon = nm' , feqn_bndrs = outer_bndrs , feqn_pats = (map HsValArg args') ++ args , feqn_fixity = Hs.Infix , feqn_rhs = rhs' } } _ -> failWith $ text "Invalid type family instance LHS:" <+> text (show lhs) } ---------------- cvt_ci_decs :: SDoc -> [TH.Dec] -> CvtM (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs], [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs]) -- Convert the declarations inside a class or instance decl -- ie signatures, bindings, and associated types cvt_ci_decs doc decs = do { decs' <- cvtDecs decs ; let (ats', bind_sig_decs') = partitionWith is_tyfam_inst decs' ; let (adts', no_ats') = partitionWith is_datafam_inst bind_sig_decs' ; let (sigs', prob_binds') = partitionWith is_sig no_ats' ; let (binds', prob_fams') = partitionWith is_bind prob_binds' ; let (fams', bads) = partitionWith is_fam_decl prob_fams' ; unless (null bads) (failWith (mkBadDecMsg doc bads)) ; return (listToBag binds', sigs', fams', ats', adts') } ---------------- cvt_tycl_hdr :: TH.Cxt -> TH.Name -> [TH.TyVarBndr ()] -> CvtM ( LHsContext GhcPs , Located RdrName , LHsQTyVars GhcPs) cvt_tycl_hdr cxt tc tvs = do { cxt' <- cvtContext funPrec cxt ; tc' <- tconNameL tc ; tvs' <- cvtTvs tvs ; return (cxt', tc', mkHsQTvs tvs') } cvt_datainst_hdr :: TH.Cxt -> Maybe [TH.TyVarBndr ()] -> TH.Type -> CvtM ( LHsContext GhcPs , Located RdrName , HsOuterFamEqnTyVarBndrs GhcPs , HsTyPats GhcPs) cvt_datainst_hdr cxt bndrs tys = do { cxt' <- cvtContext funPrec cxt ; bndrs' <- traverse (mapM cvt_tv) bndrs ; let outer_bndrs = mkHsOuterFamEqnTyVarBndrs bndrs' ; (head_ty, args) <- split_ty_app tys ; case head_ty of ConT nm -> do { nm' <- tconNameL nm ; let args' = map wrap_tyarg args ; return (cxt', nm', outer_bndrs, args') } InfixT t1 nm t2 -> do { nm' <- tconNameL nm ; args' <- mapM cvtType [t1,t2] ; return (cxt', nm', outer_bndrs, ((map HsValArg args') ++ args)) } _ -> failWith $ text "Invalid type instance header:" <+> text (show tys) } ---------------- cvt_tyfam_head :: TypeFamilyHead -> CvtM ( Located RdrName , LHsQTyVars GhcPs , Hs.LFamilyResultSig GhcPs , Maybe (Hs.LInjectivityAnn GhcPs)) cvt_tyfam_head (TypeFamilyHead tc tyvars result injectivity) = do {(_, tc', tyvars') <- cvt_tycl_hdr [] tc tyvars ; result' <- cvtFamilyResultSig result ; injectivity' <- traverse cvtInjectivityAnnotation injectivity ; return (tc', tyvars', result', injectivity') } ------------------------------------------------------------------- -- Partitioning declarations ------------------------------------------------------------------- is_fam_decl :: LHsDecl GhcPs -> Either (LFamilyDecl GhcPs) (LHsDecl GhcPs) is_fam_decl (L loc (TyClD _ (FamDecl { tcdFam = d }))) = Left (L loc d) is_fam_decl decl = Right decl is_tyfam_inst :: LHsDecl GhcPs -> Either (LTyFamInstDecl GhcPs) (LHsDecl GhcPs) is_tyfam_inst (L loc (Hs.InstD _ (TyFamInstD { tfid_inst = d }))) = Left (L loc d) is_tyfam_inst decl = Right decl is_datafam_inst :: LHsDecl GhcPs -> Either (LDataFamInstDecl GhcPs) (LHsDecl GhcPs) is_datafam_inst (L loc (Hs.InstD _ (DataFamInstD { dfid_inst = d }))) = Left (L loc d) is_datafam_inst decl = Right decl is_sig :: LHsDecl GhcPs -> Either (LSig GhcPs) (LHsDecl GhcPs) is_sig (L loc (Hs.SigD _ sig)) = Left (L loc sig) is_sig decl = Right decl is_bind :: LHsDecl GhcPs -> Either (LHsBind GhcPs) (LHsDecl GhcPs) is_bind (L loc (Hs.ValD _ bind)) = Left (L loc bind) is_bind decl = Right decl is_ip_bind :: TH.Dec -> Either (String, TH.Exp) TH.Dec is_ip_bind (TH.ImplicitParamBindD n e) = Left (n, e) is_ip_bind decl = Right decl mkBadDecMsg :: Outputable a => SDoc -> [a] -> SDoc mkBadDecMsg doc bads = sep [ text "Illegal declaration(s) in" <+> doc <> colon , nest 2 (vcat (map Outputable.ppr bads)) ] --------------------------------------------------- -- Data types --------------------------------------------------- cvtConstr :: TH.Con -> CvtM (LConDecl GhcPs) cvtConstr (NormalC c strtys) = do { c' <- cNameL c ; tys' <- mapM cvt_arg strtys ; returnL $ mkConDeclH98 c' Nothing Nothing (PrefixCon noTypeArgs (map hsLinear tys')) } cvtConstr (RecC c varstrtys) = do { c' <- cNameL c ; args' <- mapM cvt_id_arg varstrtys ; returnL $ mkConDeclH98 c' Nothing Nothing (RecCon (noLoc args')) } cvtConstr (InfixC st1 c st2) = do { c' <- cNameL c ; st1' <- cvt_arg st1 ; st2' <- cvt_arg st2 ; returnL $ mkConDeclH98 c' Nothing Nothing (InfixCon (hsLinear st1') (hsLinear st2')) } cvtConstr (ForallC tvs ctxt con) = do { tvs' <- cvtTvs tvs ; ctxt' <- cvtContext funPrec ctxt ; L _ con' <- cvtConstr con ; returnL $ add_forall tvs' ctxt' con' } where add_cxt lcxt Nothing = Just lcxt add_cxt (L loc cxt1) (Just (L _ cxt2)) = Just (L loc (cxt1 ++ cxt2)) add_forall :: [LHsTyVarBndr Hs.Specificity GhcPs] -> LHsContext GhcPs -> ConDecl GhcPs -> ConDecl GhcPs add_forall tvs' cxt' con@(ConDeclGADT { con_bndrs = L l outer_bndrs, con_mb_cxt = cxt }) = con { con_bndrs = L l outer_bndrs' , con_mb_cxt = add_cxt cxt' cxt } where outer_bndrs' | null all_tvs = mkHsOuterImplicit | otherwise = mkHsOuterExplicit all_tvs all_tvs = tvs' ++ outer_exp_tvs outer_exp_tvs = hsOuterExplicitBndrs outer_bndrs add_forall tvs' cxt' con@(ConDeclH98 { con_ex_tvs = ex_tvs, con_mb_cxt = cxt }) = con { con_forall = noLoc $ not (null all_tvs) , con_ex_tvs = all_tvs , con_mb_cxt = add_cxt cxt' cxt } where all_tvs = tvs' ++ ex_tvs cvtConstr (GadtC [] _strtys _ty) = failWith (text "GadtC must have at least one constructor name") cvtConstr (GadtC c strtys ty) = do { c' <- mapM cNameL c ; args <- mapM cvt_arg strtys ; ty' <- cvtType ty ; returnL $ mk_gadt_decl c' (PrefixConGADT $ map hsLinear args) ty'} cvtConstr (RecGadtC [] _varstrtys _ty) = failWith (text "RecGadtC must have at least one constructor name") cvtConstr (RecGadtC c varstrtys ty) = do { c' <- mapM cNameL c ; ty' <- cvtType ty ; rec_flds <- mapM cvt_id_arg varstrtys ; returnL $ mk_gadt_decl c' (RecConGADT $ noLoc rec_flds) ty' } mk_gadt_decl :: [Located RdrName] -> HsConDeclGADTDetails GhcPs -> LHsType GhcPs -> ConDecl GhcPs mk_gadt_decl names args res_ty = ConDeclGADT { con_g_ext = noExtField , con_names = names , con_bndrs = noLoc mkHsOuterImplicit , con_mb_cxt = Nothing , con_g_args = args , con_res_ty = res_ty , con_doc = Nothing } cvtSrcUnpackedness :: TH.SourceUnpackedness -> SrcUnpackedness cvtSrcUnpackedness NoSourceUnpackedness = NoSrcUnpack cvtSrcUnpackedness SourceNoUnpack = SrcNoUnpack cvtSrcUnpackedness SourceUnpack = SrcUnpack cvtSrcStrictness :: TH.SourceStrictness -> SrcStrictness cvtSrcStrictness NoSourceStrictness = NoSrcStrict cvtSrcStrictness SourceLazy = SrcLazy cvtSrcStrictness SourceStrict = SrcStrict cvt_arg :: (TH.Bang, TH.Type) -> CvtM (LHsType GhcPs) cvt_arg (Bang su ss, ty) = do { ty'' <- cvtType ty ; let ty' = parenthesizeHsType appPrec ty'' su' = cvtSrcUnpackedness su ss' = cvtSrcStrictness ss ; returnL $ HsBangTy noExtField (HsSrcBang NoSourceText su' ss') ty' } cvt_id_arg :: (TH.Name, TH.Bang, TH.Type) -> CvtM (LConDeclField GhcPs) cvt_id_arg (i, str, ty) = do { L li i' <- vNameL i ; ty' <- cvt_arg (str,ty) ; return $ noLoc (ConDeclField { cd_fld_ext = noExtField , cd_fld_names = [L li $ FieldOcc noExtField (L li i')] , cd_fld_type = ty' , cd_fld_doc = Nothing}) } cvtDerivs :: [TH.DerivClause] -> CvtM (HsDeriving GhcPs) cvtDerivs cs = do { cs' <- mapM cvtDerivClause cs ; returnL cs' } cvt_fundep :: FunDep -> CvtM (LHsFunDep GhcPs) cvt_fundep (FunDep xs ys) = do { xs' <- mapM tNameL xs ; ys' <- mapM tNameL ys ; returnL (xs', ys') } ------------------------------------------ -- Foreign declarations ------------------------------------------ cvtForD :: Foreign -> CvtM (ForeignDecl GhcPs) cvtForD (ImportF callconv safety from nm ty) -- the prim and javascript calling conventions do not support headers -- and are inserted verbatim, analogous to mkImport in GHC.Parser.PostProcess | callconv == TH.Prim || callconv == TH.JavaScript = mk_imp (CImport (noLoc (cvt_conv callconv)) (noLoc safety') Nothing (CFunction (StaticTarget (SourceText from) (mkFastString from) Nothing True)) (noLoc $ quotedSourceText from)) | Just impspec <- parseCImport (noLoc (cvt_conv callconv)) (noLoc safety') (mkFastString (TH.nameBase nm)) from (noLoc $ quotedSourceText from) = mk_imp impspec | otherwise = failWith $ text (show from) <+> text "is not a valid ccall impent" where mk_imp impspec = do { nm' <- vNameL nm ; ty' <- cvtSigType ty ; return (ForeignImport { fd_i_ext = noExtField , fd_name = nm' , fd_sig_ty = ty' , fd_fi = impspec }) } safety' = case safety of Unsafe -> PlayRisky Safe -> PlaySafe Interruptible -> PlayInterruptible cvtForD (ExportF callconv as nm ty) = do { nm' <- vNameL nm ; ty' <- cvtSigType ty ; let e = CExport (noLoc (CExportStatic (SourceText as) (mkFastString as) (cvt_conv callconv))) (noLoc (SourceText as)) ; return $ ForeignExport { fd_e_ext = noExtField , fd_name = nm' , fd_sig_ty = ty' , fd_fe = e } } cvt_conv :: TH.Callconv -> CCallConv cvt_conv TH.CCall = CCallConv cvt_conv TH.StdCall = StdCallConv cvt_conv TH.CApi = CApiConv cvt_conv TH.Prim = PrimCallConv cvt_conv TH.JavaScript = JavaScriptCallConv ------------------------------------------ -- Pragmas ------------------------------------------ cvtPragmaD :: Pragma -> CvtM (Maybe (LHsDecl GhcPs)) cvtPragmaD (InlineP nm inline rm phases) = do { nm' <- vNameL nm ; let dflt = dfltActivation inline ; let src TH.NoInline = "{-# NOINLINE" src TH.Inline = "{-# INLINE" src TH.Inlinable = "{-# INLINABLE" ; let ip = InlinePragma { inl_src = SourceText $ src inline , inl_inline = cvtInline inline , inl_rule = cvtRuleMatch rm , inl_act = cvtPhases phases dflt , inl_sat = Nothing } ; returnJustL $ Hs.SigD noExtField $ InlineSig noExtField nm' ip } cvtPragmaD (SpecialiseP nm ty inline phases) = do { nm' <- vNameL nm ; ty' <- cvtSigType ty ; let src TH.NoInline = "{-# SPECIALISE NOINLINE" src TH.Inline = "{-# SPECIALISE INLINE" src TH.Inlinable = "{-# SPECIALISE INLINE" ; let (inline', dflt,srcText) = case inline of Just inline1 -> (cvtInline inline1, dfltActivation inline1, src inline1) Nothing -> (NoUserInlinePrag, AlwaysActive, "{-# SPECIALISE") ; let ip = InlinePragma { inl_src = SourceText srcText , inl_inline = inline' , inl_rule = Hs.FunLike , inl_act = cvtPhases phases dflt , inl_sat = Nothing } ; returnJustL $ Hs.SigD noExtField $ SpecSig noExtField nm' [ty'] ip } cvtPragmaD (SpecialiseInstP ty) = do { ty' <- cvtSigType ty ; returnJustL $ Hs.SigD noExtField $ SpecInstSig noExtField (SourceText "{-# SPECIALISE") ty' } cvtPragmaD (RuleP nm ty_bndrs tm_bndrs lhs rhs phases) = do { let nm' = mkFastString nm ; let act = cvtPhases phases AlwaysActive ; ty_bndrs' <- traverse cvtTvs ty_bndrs ; tm_bndrs' <- mapM cvtRuleBndr tm_bndrs ; lhs' <- cvtl lhs ; rhs' <- cvtl rhs ; returnJustL $ Hs.RuleD noExtField $ HsRules { rds_ext = noExtField , rds_src = SourceText "{-# RULES" , rds_rules = [noLoc $ HsRule { rd_ext = noExtField , rd_name = (noLoc (quotedSourceText nm,nm')) , rd_act = act , rd_tyvs = ty_bndrs' , rd_tmvs = tm_bndrs' , rd_lhs = lhs' , rd_rhs = rhs' }] } } cvtPragmaD (AnnP target exp) = do { exp' <- cvtl exp ; target' <- case target of ModuleAnnotation -> return ModuleAnnProvenance TypeAnnotation n -> do n' <- tconName n return (TypeAnnProvenance (noLoc n')) ValueAnnotation n -> do n' <- vcName n return (ValueAnnProvenance (noLoc n')) ; returnJustL $ Hs.AnnD noExtField $ HsAnnotation noExtField (SourceText "{-# ANN") target' exp' } cvtPragmaD (LineP line file) = do { setL (srcLocSpan (mkSrcLoc (fsLit file) line 1)) ; return Nothing } cvtPragmaD (CompleteP cls mty) = do { cls' <- noLoc <$> mapM cNameL cls ; mty' <- traverse tconNameL mty ; returnJustL $ Hs.SigD noExtField $ CompleteMatchSig noExtField NoSourceText cls' mty' } dfltActivation :: TH.Inline -> Activation dfltActivation TH.NoInline = NeverActive dfltActivation _ = AlwaysActive cvtInline :: TH.Inline -> Hs.InlineSpec cvtInline TH.NoInline = Hs.NoInline cvtInline TH.Inline = Hs.Inline cvtInline TH.Inlinable = Hs.Inlinable cvtRuleMatch :: TH.RuleMatch -> RuleMatchInfo cvtRuleMatch TH.ConLike = Hs.ConLike cvtRuleMatch TH.FunLike = Hs.FunLike cvtPhases :: TH.Phases -> Activation -> Activation cvtPhases AllPhases dflt = dflt cvtPhases (FromPhase i) _ = ActiveAfter NoSourceText i cvtPhases (BeforePhase i) _ = ActiveBefore NoSourceText i cvtRuleBndr :: TH.RuleBndr -> CvtM (Hs.LRuleBndr GhcPs) cvtRuleBndr (RuleVar n) = do { n' <- vNameL n ; return $ noLoc $ Hs.RuleBndr noExtField n' } cvtRuleBndr (TypedRuleVar n ty) = do { n' <- vNameL n ; ty' <- cvtType ty ; return $ noLoc $ Hs.RuleBndrSig noExtField n' $ mkHsPatSigType ty' } --------------------------------------------------- -- Declarations --------------------------------------------------- cvtLocalDecs :: SDoc -> [TH.Dec] -> CvtM (HsLocalBinds GhcPs) cvtLocalDecs doc ds = case partitionWith is_ip_bind ds of ([], []) -> return (EmptyLocalBinds noExtField) ([], _) -> do ds' <- cvtDecs ds let (binds, prob_sigs) = partitionWith is_bind ds' let (sigs, bads) = partitionWith is_sig prob_sigs unless (null bads) (failWith (mkBadDecMsg doc bads)) return (HsValBinds noExtField (ValBinds noExtField (listToBag binds) sigs)) (ip_binds, []) -> do binds <- mapM (uncurry cvtImplicitParamBind) ip_binds return (HsIPBinds noExtField (IPBinds noExtField binds)) ((_:_), (_:_)) -> failWith (text "Implicit parameters mixed with other bindings") cvtClause :: HsMatchContext GhcPs -> TH.Clause -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs)) cvtClause ctxt (Clause ps body wheres) = do { ps' <- cvtPats ps ; let pps = map (parenthesizePat appPrec) ps' ; g' <- cvtGuard body ; ds' <- cvtLocalDecs (text "a where clause") wheres ; returnL $ Hs.Match noExtField ctxt pps (GRHSs noExtField g' (noLoc ds')) } cvtImplicitParamBind :: String -> TH.Exp -> CvtM (LIPBind GhcPs) cvtImplicitParamBind n e = do n' <- wrapL (ipName n) e' <- cvtl e returnL (IPBind noExtField (Left n') e') ------------------------------------------------------------------- -- Expressions ------------------------------------------------------------------- cvtl :: TH.Exp -> CvtM (LHsExpr GhcPs) cvtl e = wrapL (cvt e) where cvt (VarE s) = do { s' <- vName s; return $ HsVar noExtField (noLoc s') } cvt (ConE s) = do { s' <- cName s; return $ HsVar noExtField (noLoc s') } cvt (LitE l) | overloadedLit l = go cvtOverLit (HsOverLit noExtField) (hsOverLitNeedsParens appPrec) | otherwise = go cvtLit (HsLit noExtField) (hsLitNeedsParens appPrec) where go :: (Lit -> CvtM (l GhcPs)) -> (l GhcPs -> HsExpr GhcPs) -> (l GhcPs -> Bool) -> CvtM (HsExpr GhcPs) go cvt_lit mk_expr is_compound_lit = do l' <- cvt_lit l let e' = mk_expr l' return $ if is_compound_lit l' then HsPar noExtField (noLoc e') else e' cvt (AppE x@(LamE _ _) y) = do { x' <- cvtl x; y' <- cvtl y ; return $ HsApp noExtField (mkLHsPar x') (mkLHsPar y')} cvt (AppE x y) = do { x' <- cvtl x; y' <- cvtl y ; return $ HsApp noExtField (mkLHsPar x') (mkLHsPar y')} cvt (AppTypeE e t) = do { e' <- cvtl e ; t' <- cvtType t ; let tp = parenthesizeHsType appPrec t' ; return $ HsAppType noExtField e' $ mkHsWildCardBndrs tp } cvt (LamE [] e) = cvt e -- Degenerate case. We convert the body as its -- own expression to avoid pretty-printing -- oddities that can result from zero-argument -- lambda expressions. See #13856. cvt (LamE ps e) = do { ps' <- cvtPats ps; e' <- cvtl e ; let pats = map (parenthesizePat appPrec) ps' ; th_origin <- getOrigin ; return $ HsLam noExtField (mkMatchGroup th_origin [mkSimpleMatch LambdaExpr pats e'])} cvt (LamCaseE ms) = do { ms' <- mapM (cvtMatch CaseAlt) ms ; th_origin <- getOrigin ; return $ HsLamCase noExtField (mkMatchGroup th_origin ms') } cvt (TupE es) = cvt_tup es Boxed cvt (UnboxedTupE es) = cvt_tup es Unboxed cvt (UnboxedSumE e alt arity) = do { e' <- cvtl e ; unboxedSumChecks alt arity ; return $ ExplicitSum noExtField alt arity e'} cvt (CondE x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; ; return $ mkHsIf x' y' z' } cvt (MultiIfE alts) | null alts = failWith (text "Multi-way if-expression with no alternatives") | otherwise = do { alts' <- mapM cvtpair alts ; return $ HsMultiIf noExtField alts' } cvt (LetE ds e) = do { ds' <- cvtLocalDecs (text "a let expression") ds ; e' <- cvtl e; return $ HsLet noExtField (noLoc ds') e'} cvt (CaseE e ms) = do { e' <- cvtl e; ms' <- mapM (cvtMatch CaseAlt) ms ; th_origin <- getOrigin ; return $ HsCase noExtField e' (mkMatchGroup th_origin ms') } cvt (DoE m ss) = cvtHsDo (DoExpr (mk_mod <$> m)) ss cvt (MDoE m ss) = cvtHsDo (MDoExpr (mk_mod <$> m)) ss cvt (CompE ss) = cvtHsDo ListComp ss cvt (ArithSeqE dd) = do { dd' <- cvtDD dd ; return $ ArithSeq noExtField Nothing dd' } cvt (ListE xs) | Just s <- allCharLs xs = do { l' <- cvtLit (StringL s) ; return (HsLit noExtField l') } -- Note [Converting strings] | otherwise = do { xs' <- mapM cvtl xs ; return $ ExplicitList noExtField xs' } -- Infix expressions cvt (InfixE (Just x) s (Just y)) = ensureValidOpExp s $ do { x' <- cvtl x ; s' <- cvtl s ; y' <- cvtl y ; let px = parenthesizeHsExpr opPrec x' py = parenthesizeHsExpr opPrec y' ; wrapParL (HsPar noExtField) $ OpApp noExtField px s' py } -- Parenthesise both arguments and result, -- to ensure this operator application does -- does not get re-associated -- See Note [Operator association] cvt (InfixE Nothing s (Just y)) = ensureValidOpExp s $ do { s' <- cvtl s; y' <- cvtl y ; wrapParL (HsPar noExtField) $ SectionR noExtField s' y' } -- See Note [Sections in HsSyn] in GHC.Hs.Expr cvt (InfixE (Just x) s Nothing ) = ensureValidOpExp s $ do { x' <- cvtl x; s' <- cvtl s ; wrapParL (HsPar noExtField) $ SectionL noExtField x' s' } cvt (InfixE Nothing s Nothing ) = ensureValidOpExp s $ do { s' <- cvtl s ; return $ HsPar noExtField s' } -- Can I indicate this is an infix thing? -- Note [Dropping constructors] cvt (UInfixE x s y) = ensureValidOpExp s $ do { x' <- cvtl x ; let x'' = case unLoc x' of OpApp {} -> x' _ -> mkLHsPar x' ; cvtOpApp x'' s y } -- Note [Converting UInfix] cvt (ParensE e) = do { e' <- cvtl e; return $ HsPar noExtField e' } cvt (SigE e t) = do { e' <- cvtl e; t' <- cvtSigType t ; let pe = parenthesizeHsExpr sigPrec e' ; return $ ExprWithTySig noExtField pe (mkHsWildCardBndrs t') } cvt (RecConE c flds) = do { c' <- cNameL c ; flds' <- mapM (cvtFld (mkFieldOcc . noLoc)) flds ; return $ mkRdrRecordCon c' (HsRecFields flds' Nothing) } cvt (RecUpdE e flds) = do { e' <- cvtl e ; flds' <- mapM (cvtFld (mkAmbiguousFieldOcc . noLoc)) flds ; return $ RecordUpd noExtField e' (Left flds') } cvt (StaticE e) = fmap (HsStatic noExtField) $ cvtl e cvt (UnboundVarE s) = do -- Use of 'vcName' here instead of 'vName' is -- important, because UnboundVarE may contain -- constructor names - see #14627. { s' <- vcName s ; return $ HsVar noExtField (noLoc s') } cvt (LabelE s) = return $ HsOverLabel noExtField (fsLit s) cvt (ImplicitParamVarE n) = do { n' <- ipName n; return $ HsIPVar noExtField n' } {- | #16895 Ensure an infix expression's operator is a variable/constructor. Consider this example: $(uInfixE [|1|] [|id id|] [|2|]) This infix expression is obviously ill-formed so we use this helper function to reject such programs outright. The constructors `ensureValidOpExp` permits should be in sync with `pprInfixExp` in Language.Haskell.TH.Ppr from the template-haskell library. -} ensureValidOpExp :: TH.Exp -> CvtM a -> CvtM a ensureValidOpExp (VarE _n) m = m ensureValidOpExp (ConE _n) m = m ensureValidOpExp (UnboundVarE _n) m = m ensureValidOpExp _e _m = failWith (text "Non-variable expression is not allowed in an infix expression") {- Note [Dropping constructors] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we drop constructors from the input, we must insert parentheses around the argument. For example: UInfixE x * (AppE (InfixE (Just y) + Nothing) z) If we convert the InfixE expression to an operator section but don't insert parentheses, the above expression would be reassociated to OpApp (OpApp x * y) + z which we don't want. -} cvtFld :: (RdrName -> t) -> (TH.Name, TH.Exp) -> CvtM (LHsRecField' t (LHsExpr GhcPs)) cvtFld f (v,e) = do { v' <- vNameL v; e' <- cvtl e ; return (noLoc $ HsRecField { hsRecFieldLbl = fmap f v' , hsRecFieldArg = e' , hsRecPun = False}) } cvtDD :: Range -> CvtM (ArithSeqInfo GhcPs) cvtDD (FromR x) = do { x' <- cvtl x; return $ From x' } cvtDD (FromThenR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' } cvtDD (FromToR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' } cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' } cvt_tup :: [Maybe Exp] -> Boxity -> CvtM (HsExpr GhcPs) cvt_tup es boxity = do { let cvtl_maybe Nothing = return missingTupArg cvtl_maybe (Just e) = fmap (Present noExtField) (cvtl e) ; es' <- mapM cvtl_maybe es ; return $ ExplicitTuple noExtField (map noLoc es') boxity } {- Note [Operator association] We must be quite careful about adding parens: * Infix (UInfix ...) op arg Needs parens round the first arg * Infix (Infix ...) op arg Needs parens round the first arg * UInfix (UInfix ...) op arg No parens for first arg * UInfix (Infix ...) op arg Needs parens round first arg Note [Converting UInfix] ~~~~~~~~~~~~~~~~~~~~~~~~ When converting @UInfixE@, @UInfixP@, and @UInfixT@ values, we want to readjust the trees to reflect the fixities of the underlying operators: UInfixE x * (UInfixE y + z) ---> (x * y) + z This is done by the renamer (see @mkOppAppRn@, @mkConOppPatRn@, and @mkHsOpTyRn@ in GHC.Rename.HsType), which expects that the input will be completely right-biased for types and left-biased for everything else. So we left-bias the trees of @UInfixP@ and @UInfixE@ and right-bias the trees of @UInfixT@. Sample input: UInfixE (UInfixE x op1 y) op2 (UInfixE z op3 w) Sample output: OpApp (OpApp (OpApp x op1 y) op2 z) op3 w The functions @cvtOpApp@, @cvtOpAppP@, and @cvtOpAppT@ are responsible for this biasing. -} {- | @cvtOpApp x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@. The produced tree of infix expressions will be left-biased, provided @x@ is. We can see that @cvtOpApp@ is correct as follows. The inductive hypothesis is that @cvtOpApp x op y@ is left-biased, provided @x@ is. It is clear that this holds for both branches (of @cvtOpApp@), provided we assume it holds for the recursive calls to @cvtOpApp@. When we call @cvtOpApp@ from @cvtl@, the first argument will always be left-biased since we have already run @cvtl@ on it. -} cvtOpApp :: LHsExpr GhcPs -> TH.Exp -> TH.Exp -> CvtM (HsExpr GhcPs) cvtOpApp x op1 (UInfixE y op2 z) = do { l <- wrapL $ cvtOpApp x op1 y ; cvtOpApp l op2 z } cvtOpApp x op y = do { op' <- cvtl op ; y' <- cvtl y ; return (OpApp noExtField x op' y') } ------------------------------------- -- Do notation and statements ------------------------------------- cvtHsDo :: HsStmtContext GhcRn -> [TH.Stmt] -> CvtM (HsExpr GhcPs) cvtHsDo do_or_lc stmts | null stmts = failWith (text "Empty stmt list in do-block") | otherwise = do { stmts' <- cvtStmts stmts ; let Just (stmts'', last') = snocView stmts' ; last'' <- case last' of (L loc (BodyStmt _ body _ _)) -> return (L loc (mkLastStmt body)) _ -> failWith (bad_last last') ; return $ HsDo noExtField do_or_lc (noLoc (stmts'' ++ [last''])) } where bad_last stmt = vcat [ text "Illegal last statement of" <+> pprAStmtContext do_or_lc <> colon , nest 2 $ Outputable.ppr stmt , text "(It should be an expression.)" ] cvtStmts :: [TH.Stmt] -> CvtM [Hs.LStmt GhcPs (LHsExpr GhcPs)] cvtStmts = mapM cvtStmt cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt GhcPs (LHsExpr GhcPs)) cvtStmt (NoBindS e) = do { e' <- cvtl e; returnL $ mkBodyStmt e' } cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnL $ mkPsBindStmt p' e' } cvtStmt (TH.LetS ds) = do { ds' <- cvtLocalDecs (text "a let binding") ds ; returnL $ LetStmt noExtField (noLoc ds') } cvtStmt (TH.ParS dss) = do { dss' <- mapM cvt_one dss ; returnL $ ParStmt noExtField dss' noExpr noSyntaxExpr } where cvt_one ds = do { ds' <- cvtStmts ds ; return (ParStmtBlock noExtField ds' undefined noSyntaxExpr) } cvtStmt (TH.RecS ss) = do { ss' <- mapM cvtStmt ss; returnL (mkRecStmt ss') } cvtMatch :: HsMatchContext GhcPs -> TH.Match -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs)) cvtMatch ctxt (TH.Match p body decs) = do { p' <- cvtPat p ; let lp = case p' of (L loc SigPat{}) -> L loc (ParPat noExtField p') -- #14875 _ -> p' ; g' <- cvtGuard body ; decs' <- cvtLocalDecs (text "a where clause") decs ; returnL $ Hs.Match noExtField ctxt [lp] (GRHSs noExtField g' (noLoc decs')) } cvtGuard :: TH.Body -> CvtM [LGRHS GhcPs (LHsExpr GhcPs)] cvtGuard (GuardedB pairs) = mapM cvtpair pairs cvtGuard (NormalB e) = do { e' <- cvtl e ; g' <- returnL $ GRHS noExtField [] e'; return [g'] } cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS GhcPs (LHsExpr GhcPs)) cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs ; g' <- returnL $ mkBodyStmt ge' ; returnL $ GRHS noExtField [g'] rhs' } cvtpair (PatG gs,rhs) = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs ; returnL $ GRHS noExtField gs' rhs' } cvtOverLit :: Lit -> CvtM (HsOverLit GhcPs) cvtOverLit (IntegerL i) = do { force i; return $ mkHsIntegral (mkIntegralLit i) } cvtOverLit (RationalL r) = do { force r; return $ mkHsFractional (mkTHFractionalLit r) } cvtOverLit (StringL s) = do { let { s' = mkFastString s } ; force s' ; return $ mkHsIsString (quotedSourceText s) s' } cvtOverLit _ = panic "Convert.cvtOverLit: Unexpected overloaded literal" -- An Integer is like an (overloaded) '3' in a Haskell source program -- Similarly 3.5 for fractionals {- Note [Converting strings] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If we get (ListE [CharL 'x', CharL 'y']) we'd like to convert to a string literal for "xy". Of course, we might hope to get (LitE (StringL "xy")), but not always, and allCharLs fails quickly if it isn't a literal string -} allCharLs :: [TH.Exp] -> Maybe String -- Note [Converting strings] -- NB: only fire up this setup for a non-empty list, else -- there's a danger of returning "" for [] :: [Int]! allCharLs xs = case xs of LitE (CharL c) : ys -> go [c] ys _ -> Nothing where go cs [] = Just (reverse cs) go cs (LitE (CharL c) : ys) = go (c:cs) ys go _ _ = Nothing cvtLit :: Lit -> CvtM (HsLit GhcPs) cvtLit (IntPrimL i) = do { force i; return $ HsIntPrim NoSourceText i } cvtLit (WordPrimL w) = do { force w; return $ HsWordPrim NoSourceText w } cvtLit (FloatPrimL f) = do { force f; return $ HsFloatPrim noExtField (mkTHFractionalLit f) } cvtLit (DoublePrimL f) = do { force f; return $ HsDoublePrim noExtField (mkTHFractionalLit f) } cvtLit (CharL c) = do { force c; return $ HsChar NoSourceText c } cvtLit (CharPrimL c) = do { force c; return $ HsCharPrim NoSourceText c } cvtLit (StringL s) = do { let { s' = mkFastString s } ; force s' ; return $ HsString (quotedSourceText s) s' } cvtLit (StringPrimL s) = do { let { !s' = BS.pack s } ; return $ HsStringPrim NoSourceText s' } cvtLit (BytesPrimL (Bytes fptr off sz)) = do let bs = unsafePerformIO $ withForeignPtr fptr $ \ptr -> BS.packCStringLen (ptr `plusPtr` fromIntegral off, fromIntegral sz) force bs return $ HsStringPrim NoSourceText bs cvtLit _ = panic "Convert.cvtLit: Unexpected literal" -- cvtLit should not be called on IntegerL, RationalL -- That precondition is established right here in -- "GHC.ThToHs", hence panic quotedSourceText :: String -> SourceText quotedSourceText s = SourceText $ "\"" ++ s ++ "\"" cvtPats :: [TH.Pat] -> CvtM [Hs.LPat GhcPs] cvtPats pats = mapM cvtPat pats cvtPat :: TH.Pat -> CvtM (Hs.LPat GhcPs) cvtPat pat = wrapL (cvtp pat) cvtp :: TH.Pat -> CvtM (Hs.Pat GhcPs) cvtp (TH.LitP l) | overloadedLit l = do { l' <- cvtOverLit l ; return (mkNPat (noLoc l') Nothing) } -- Not right for negative patterns; -- need to think about that! | otherwise = do { l' <- cvtLit l; return $ Hs.LitPat noExtField l' } cvtp (TH.VarP s) = do { s' <- vName s ; return $ Hs.VarPat noExtField (noLoc s') } cvtp (TupP ps) = do { ps' <- cvtPats ps ; return $ TuplePat noExtField ps' Boxed } cvtp (UnboxedTupP ps) = do { ps' <- cvtPats ps ; return $ TuplePat noExtField ps' Unboxed } cvtp (UnboxedSumP p alt arity) = do { p' <- cvtPat p ; unboxedSumChecks alt arity ; return $ SumPat noExtField p' alt arity } cvtp (ConP s ts ps) = do { s' <- cNameL s ; ps' <- cvtPats ps ; ts' <- mapM cvtType ts ; let pps = map (parenthesizePat appPrec) ps' ; return $ ConPat { pat_con_ext = noExtField , pat_con = s' , pat_args = PrefixCon (map mkHsPatSigType ts') pps } } cvtp (InfixP p1 s p2) = do { s' <- cNameL s; p1' <- cvtPat p1; p2' <- cvtPat p2 ; wrapParL (ParPat noExtField) $ ConPat { pat_con_ext = NoExtField , pat_con = s' , pat_args = InfixCon (parenthesizePat opPrec p1') (parenthesizePat opPrec p2') } } -- See Note [Operator association] cvtp (UInfixP p1 s p2) = do { p1' <- cvtPat p1; cvtOpAppP p1' s p2 } -- Note [Converting UInfix] cvtp (ParensP p) = do { p' <- cvtPat p; ; case unLoc p' of -- may be wrapped ConPatIn ParPat {} -> return $ unLoc p' _ -> return $ ParPat noExtField p' } cvtp (TildeP p) = do { p' <- cvtPat p; return $ LazyPat noExtField p' } cvtp (BangP p) = do { p' <- cvtPat p; return $ BangPat noExtField p' } cvtp (TH.AsP s p) = do { s' <- vNameL s; p' <- cvtPat p ; return $ AsPat noExtField s' p' } cvtp TH.WildP = return $ WildPat noExtField cvtp (RecP c fs) = do { c' <- cNameL c; fs' <- mapM cvtPatFld fs ; return $ ConPat { pat_con_ext = noExtField , pat_con = c' , pat_args = Hs.RecCon $ HsRecFields fs' Nothing } } cvtp (ListP ps) = do { ps' <- cvtPats ps ; return $ ListPat noExtField ps'} cvtp (SigP p t) = do { p' <- cvtPat p; t' <- cvtType t ; return $ SigPat noExtField p' (mkHsPatSigType t') } cvtp (ViewP e p) = do { e' <- cvtl e; p' <- cvtPat p ; return $ ViewPat noExtField e' p'} cvtPatFld :: (TH.Name, TH.Pat) -> CvtM (LHsRecField GhcPs (LPat GhcPs)) cvtPatFld (s,p) = do { L ls s' <- vNameL s ; p' <- cvtPat p ; return (noLoc $ HsRecField { hsRecFieldLbl = L ls $ mkFieldOcc (L ls s') , hsRecFieldArg = p' , hsRecPun = False}) } {- | @cvtOpAppP x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@. The produced tree of infix patterns will be left-biased, provided @x@ is. See the @cvtOpApp@ documentation for how this function works. -} cvtOpAppP :: Hs.LPat GhcPs -> TH.Name -> TH.Pat -> CvtM (Hs.Pat GhcPs) cvtOpAppP x op1 (UInfixP y op2 z) = do { l <- wrapL $ cvtOpAppP x op1 y ; cvtOpAppP l op2 z } cvtOpAppP x op y = do { op' <- cNameL op ; y' <- cvtPat y ; return $ ConPat { pat_con_ext = noExtField , pat_con = op' , pat_args = InfixCon x y' } } ----------------------------------------------------------- -- Types and type variables class CvtFlag flag flag' | flag -> flag' where cvtFlag :: flag -> flag' instance CvtFlag () () where cvtFlag () = () instance CvtFlag TH.Specificity Hs.Specificity where cvtFlag TH.SpecifiedSpec = Hs.SpecifiedSpec cvtFlag TH.InferredSpec = Hs.InferredSpec cvtTvs :: CvtFlag flag flag' => [TH.TyVarBndr flag] -> CvtM [LHsTyVarBndr flag' GhcPs] cvtTvs tvs = mapM cvt_tv tvs cvt_tv :: CvtFlag flag flag' => (TH.TyVarBndr flag) -> CvtM (LHsTyVarBndr flag' GhcPs) cvt_tv (TH.PlainTV nm fl) = do { nm' <- tNameL nm ; let fl' = cvtFlag fl ; returnL $ UserTyVar noExtField fl' nm' } cvt_tv (TH.KindedTV nm fl ki) = do { nm' <- tNameL nm ; let fl' = cvtFlag fl ; ki' <- cvtKind ki ; returnL $ KindedTyVar noExtField fl' nm' ki' } cvtRole :: TH.Role -> Maybe Coercion.Role cvtRole TH.NominalR = Just Coercion.Nominal cvtRole TH.RepresentationalR = Just Coercion.Representational cvtRole TH.PhantomR = Just Coercion.Phantom cvtRole TH.InferR = Nothing cvtContext :: PprPrec -> TH.Cxt -> CvtM (LHsContext GhcPs) cvtContext p tys = do { preds' <- mapM cvtPred tys ; parenthesizeHsContext p <$> returnL preds' } cvtPred :: TH.Pred -> CvtM (LHsType GhcPs) cvtPred = cvtType cvtDerivClauseTys :: TH.Cxt -> CvtM (LDerivClauseTys GhcPs) cvtDerivClauseTys tys = do { tys' <- mapM cvtSigType tys -- Since TH.Cxt doesn't indicate the presence or absence of -- parentheses in a deriving clause, we have to choose between -- DctSingle and DctMulti somewhat arbitrarily. We opt to use DctMulti -- unless the TH.Cxt is a singleton list whose type is a bare type -- constructor with no arguments. ; case tys' of [ty'@(L l (HsSig { sig_bndrs = HsOuterImplicit{} , sig_body = L _ (HsTyVar _ NotPromoted _) }))] -> return $ L l $ DctSingle noExtField ty' _ -> returnL $ DctMulti noExtField tys' } cvtDerivClause :: TH.DerivClause -> CvtM (LHsDerivingClause GhcPs) cvtDerivClause (TH.DerivClause ds tys) = do { tys' <- cvtDerivClauseTys tys ; ds' <- traverse cvtDerivStrategy ds ; returnL $ HsDerivingClause noExtField ds' tys' } cvtDerivStrategy :: TH.DerivStrategy -> CvtM (Hs.LDerivStrategy GhcPs) cvtDerivStrategy TH.StockStrategy = returnL Hs.StockStrategy cvtDerivStrategy TH.AnyclassStrategy = returnL Hs.AnyclassStrategy cvtDerivStrategy TH.NewtypeStrategy = returnL Hs.NewtypeStrategy cvtDerivStrategy (TH.ViaStrategy ty) = do ty' <- cvtSigType ty returnL $ Hs.ViaStrategy ty' cvtType :: TH.Type -> CvtM (LHsType GhcPs) cvtType = cvtTypeKind "type" cvtSigType :: TH.Type -> CvtM (LHsSigType GhcPs) cvtSigType = cvtSigTypeKind "type" -- | Convert a Template Haskell 'Type' to an 'LHsSigType'. To avoid duplicating -- the logic in 'cvtTypeKind' here, we simply reuse 'cvtTypeKind' and perform -- surgery on the 'LHsType' it returns to turn it into an 'LHsSigType'. cvtSigTypeKind :: String -> TH.Type -> CvtM (LHsSigType GhcPs) cvtSigTypeKind ty_str ty = do ty' <- cvtTypeKind ty_str ty pure $ hsTypeToHsSigType ty' cvtTypeKind :: String -> TH.Type -> CvtM (LHsType GhcPs) cvtTypeKind ty_str ty = do { (head_ty, tys') <- split_ty_app ty ; let m_normals = mapM extract_normal tys' where extract_normal (HsValArg ty) = Just ty extract_normal _ = Nothing ; case head_ty of TupleT n | Just normals <- m_normals , normals `lengthIs` n -- Saturated -> returnL (HsTupleTy noExtField HsBoxedOrConstraintTuple normals) | otherwise -> mk_apps (HsTyVar noExtField NotPromoted (noLoc (getRdrName (tupleTyCon Boxed n)))) tys' UnboxedTupleT n | Just normals <- m_normals , normals `lengthIs` n -- Saturated -> returnL (HsTupleTy noExtField HsUnboxedTuple normals) | otherwise -> mk_apps (HsTyVar noExtField NotPromoted (noLoc (getRdrName (tupleTyCon Unboxed n)))) tys' UnboxedSumT n | n < 2 -> failWith $ vcat [ text "Illegal sum arity:" <+> text (show n) , nest 2 $ text "Sums must have an arity of at least 2" ] | Just normals <- m_normals , normals `lengthIs` n -- Saturated -> returnL (HsSumTy noExtField normals) | otherwise -> mk_apps (HsTyVar noExtField NotPromoted (noLoc (getRdrName (sumTyCon n)))) tys' ArrowT | Just normals <- m_normals , [x',y'] <- normals -> do x'' <- case unLoc x' of HsFunTy{} -> returnL (HsParTy noExtField x') HsForAllTy{} -> returnL (HsParTy noExtField x') -- #14646 HsQualTy{} -> returnL (HsParTy noExtField x') -- #15324 _ -> return $ parenthesizeHsType sigPrec x' let y'' = parenthesizeHsType sigPrec y' returnL (HsFunTy noExtField (HsUnrestrictedArrow NormalSyntax) x'' y'') | otherwise -> mk_apps (HsTyVar noExtField NotPromoted (noLoc (getRdrName unrestrictedFunTyCon))) tys' MulArrowT | Just normals <- m_normals , [w',x',y'] <- normals -> do x'' <- case unLoc x' of HsFunTy{} -> returnL (HsParTy noExtField x') HsForAllTy{} -> returnL (HsParTy noExtField x') -- #14646 HsQualTy{} -> returnL (HsParTy noExtField x') -- #15324 _ -> return $ parenthesizeHsType sigPrec x' let y'' = parenthesizeHsType sigPrec y' w'' = hsTypeToArrow w' returnL (HsFunTy noExtField w'' x'' y'') | otherwise -> mk_apps (HsTyVar noExtField NotPromoted (noLoc (getRdrName funTyCon))) tys' ListT | Just normals <- m_normals , [x'] <- normals -> returnL (HsListTy noExtField x') | otherwise -> mk_apps (HsTyVar noExtField NotPromoted (noLoc (getRdrName listTyCon))) tys' VarT nm -> do { nm' <- tNameL nm ; mk_apps (HsTyVar noExtField NotPromoted nm') tys' } ConT nm -> do { nm' <- tconName nm ; let prom = name_promotedness nm' ; mk_apps (HsTyVar noExtField prom (noLoc nm')) tys'} ForallT tvs cxt ty | null tys' -> do { tvs' <- cvtTvs tvs ; cxt' <- cvtContext funPrec cxt ; ty' <- cvtType ty ; loc <- getL ; let tele = mkHsForAllInvisTele tvs' hs_ty = mkHsForAllTy loc tele rho_ty rho_ty = mkHsQualTy cxt loc cxt' ty' ; return hs_ty } ForallVisT tvs ty | null tys' -> do { tvs' <- cvtTvs tvs ; ty' <- cvtType ty ; loc <- getL ; let tele = mkHsForAllVisTele tvs' ; pure $ mkHsForAllTy loc tele ty' } SigT ty ki -> do { ty' <- cvtType ty ; ki' <- cvtKind ki ; mk_apps (HsKindSig noExtField ty' ki') tys' } LitT lit -> mk_apps (HsTyLit noExtField (cvtTyLit lit)) tys' WildCardT -> mk_apps mkAnonWildCardTy tys' InfixT t1 s t2 -> do { s' <- tconName s ; t1' <- cvtType t1 ; t2' <- cvtType t2 ; let prom = name_promotedness s' ; mk_apps (HsTyVar noExtField prom (noLoc s')) ([HsValArg t1', HsValArg t2'] ++ tys') } UInfixT t1 s t2 -> do { t2' <- cvtType t2 ; t <- cvtOpAppT t1 s t2' ; mk_apps (unLoc t) tys' } -- Note [Converting UInfix] ParensT t -> do { t' <- cvtType t ; mk_apps (HsParTy noExtField t') tys' } PromotedT nm -> do { nm' <- cName nm ; mk_apps (HsTyVar noExtField IsPromoted (noLoc nm')) tys' } -- Promoted data constructor; hence cName PromotedTupleT n | Just normals <- m_normals , normals `lengthIs` n -- Saturated -> returnL (HsExplicitTupleTy noExtField normals) | otherwise -> mk_apps (HsTyVar noExtField IsPromoted (noLoc (getRdrName (tupleDataCon Boxed n)))) tys' PromotedNilT -> mk_apps (HsExplicitListTy noExtField IsPromoted []) tys' PromotedConsT -- See Note [Representing concrete syntax in types] -- in Language.Haskell.TH.Syntax | Just normals <- m_normals , [ty1, L _ (HsExplicitListTy _ ip tys2)] <- normals -> returnL (HsExplicitListTy noExtField ip (ty1:tys2)) | otherwise -> mk_apps (HsTyVar noExtField IsPromoted (noLoc (getRdrName consDataCon))) tys' StarT -> mk_apps (HsTyVar noExtField NotPromoted (noLoc (getRdrName liftedTypeKindTyCon))) tys' ConstraintT -> mk_apps (HsTyVar noExtField NotPromoted (noLoc (getRdrName constraintKindTyCon))) tys' EqualityT | Just normals <- m_normals , [x',y'] <- normals -> let px = parenthesizeHsType opPrec x' py = parenthesizeHsType opPrec y' in returnL (HsOpTy noExtField px (noLoc eqTyCon_RDR) py) -- The long-term goal is to remove the above case entirely and -- subsume it under the case for InfixT. See #15815, comment:6, -- for more details. | otherwise -> mk_apps (HsTyVar noExtField NotPromoted (noLoc eqTyCon_RDR)) tys' ImplicitParamT n t -> do { n' <- wrapL $ ipName n ; t' <- cvtType t ; returnL (HsIParamTy noExtField n' t') } _ -> failWith (ptext (sLit ("Malformed " ++ ty_str)) <+> text (show ty)) } hsTypeToArrow :: LHsType GhcPs -> HsArrow GhcPs hsTypeToArrow w = case unLoc w of HsTyVar _ _ (L _ (isExact_maybe -> Just n)) | n == oneDataConName -> HsLinearArrow NormalSyntax | n == manyDataConName -> HsUnrestrictedArrow NormalSyntax _ -> HsExplicitMult NormalSyntax w -- ConT/InfixT can contain both data constructor (i.e., promoted) names and -- other (i.e, unpromoted) names, as opposed to PromotedT, which can only -- contain data constructor names. See #15572/#17394. We use this function to -- determine whether to mark a name as promoted/unpromoted when dealing with -- ConT/InfixT. name_promotedness :: RdrName -> Hs.PromotionFlag name_promotedness nm | isRdrDataCon nm = IsPromoted | otherwise = NotPromoted -- | Constructs an application of a type to arguments passed in a list. mk_apps :: HsType GhcPs -> [LHsTypeArg GhcPs] -> CvtM (LHsType GhcPs) mk_apps head_ty type_args = do head_ty' <- returnL head_ty -- We must parenthesize the function type in case of an explicit -- signature. For instance, in `(Maybe :: Type -> Type) Int`, there -- _must_ be parentheses around `Maybe :: Type -> Type`. let phead_ty :: LHsType GhcPs phead_ty = parenthesizeHsType sigPrec head_ty' go :: [LHsTypeArg GhcPs] -> CvtM (LHsType GhcPs) go [] = pure head_ty' go (arg:args) = case arg of HsValArg ty -> do p_ty <- add_parens ty mk_apps (HsAppTy noExtField phead_ty p_ty) args HsTypeArg l ki -> do p_ki <- add_parens ki mk_apps (HsAppKindTy l phead_ty p_ki) args HsArgPar _ -> mk_apps (HsParTy noExtField phead_ty) args go type_args where -- See Note [Adding parens for splices] add_parens lt@(L _ t) | hsTypeNeedsParens appPrec t = returnL (HsParTy noExtField lt) | otherwise = return lt wrap_tyarg :: LHsTypeArg GhcPs -> LHsTypeArg GhcPs wrap_tyarg (HsValArg ty) = HsValArg $ parenthesizeHsType appPrec ty wrap_tyarg (HsTypeArg l ki) = HsTypeArg l $ parenthesizeHsType appPrec ki wrap_tyarg ta@(HsArgPar {}) = ta -- Already parenthesized -- --------------------------------------------------------------------- -- Note [Adding parens for splices] {- The hsSyn representation of parsed source explicitly contains all the original parens, as written in the source. When a Template Haskell (TH) splice is evaluated, the original splice is first renamed and type checked and then finally converted to core in GHC.HsToCore.Quote. This core is then run in the TH engine, and the result comes back as a TH AST. In the process, all parens are stripped out, as they are not needed. This Convert module then converts the TH AST back to hsSyn AST. In order to pretty-print this hsSyn AST, parens need to be adde back at certain points so that the code is readable with its original meaning. So scattered through "GHC.ThToHs" are various points where parens are added. See (among other closed issues) https://gitlab.haskell.org/ghc/ghc/issues/14289 -} -- --------------------------------------------------------------------- split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsTypeArg GhcPs]) split_ty_app ty = go ty [] where go (AppT f a) as' = do { a' <- cvtType a; go f (HsValArg a':as') } go (AppKindT ty ki) as' = do { ki' <- cvtKind ki ; go ty (HsTypeArg noSrcSpan ki':as') } go (ParensT t) as' = do { loc <- getL; go t (HsArgPar loc: as') } go f as = return (f,as) cvtTyLit :: TH.TyLit -> HsTyLit cvtTyLit (TH.NumTyLit i) = HsNumTy NoSourceText i cvtTyLit (TH.StrTyLit s) = HsStrTy NoSourceText (fsLit s) cvtTyLit (TH.CharTyLit c) = HsCharTy NoSourceText c {- | @cvtOpAppT x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@. The produced tree of infix types will be right-biased, provided @y@ is. See the @cvtOpApp@ documentation for how this function works. -} cvtOpAppT :: TH.Type -> TH.Name -> LHsType GhcPs -> CvtM (LHsType GhcPs) cvtOpAppT (UInfixT x op2 y) op1 z = do { l <- cvtOpAppT y op1 z ; cvtOpAppT x op2 l } cvtOpAppT x op y = do { op' <- tconNameL op ; x' <- cvtType x ; returnL (mkHsOpTy x' op' y) } cvtKind :: TH.Kind -> CvtM (LHsKind GhcPs) cvtKind = cvtTypeKind "kind" cvtSigKind :: TH.Kind -> CvtM (LHsSigType GhcPs) cvtSigKind = cvtSigTypeKind "kind" -- | Convert Maybe Kind to a type family result signature. Used with data -- families where naming of the result is not possible (thus only kind or no -- signature is possible). cvtMaybeKindToFamilyResultSig :: Maybe TH.Kind -> CvtM (LFamilyResultSig GhcPs) cvtMaybeKindToFamilyResultSig Nothing = returnL (Hs.NoSig noExtField) cvtMaybeKindToFamilyResultSig (Just ki) = do { ki' <- cvtKind ki ; returnL (Hs.KindSig noExtField ki') } -- | Convert type family result signature. Used with both open and closed type -- families. cvtFamilyResultSig :: TH.FamilyResultSig -> CvtM (Hs.LFamilyResultSig GhcPs) cvtFamilyResultSig TH.NoSig = returnL (Hs.NoSig noExtField) cvtFamilyResultSig (TH.KindSig ki) = do { ki' <- cvtKind ki ; returnL (Hs.KindSig noExtField ki') } cvtFamilyResultSig (TH.TyVarSig bndr) = do { tv <- cvt_tv bndr ; returnL (Hs.TyVarSig noExtField tv) } -- | Convert injectivity annotation of a type family. cvtInjectivityAnnotation :: TH.InjectivityAnn -> CvtM (Hs.LInjectivityAnn GhcPs) cvtInjectivityAnnotation (TH.InjectivityAnn annLHS annRHS) = do { annLHS' <- tNameL annLHS ; annRHS' <- mapM tNameL annRHS ; returnL (Hs.InjectivityAnn annLHS' annRHS') } cvtPatSynSigTy :: TH.Type -> CvtM (LHsSigType GhcPs) -- pattern synonym types are of peculiar shapes, which is why we treat -- them separately from regular types; -- see Note [Pattern synonym type signatures and Template Haskell] cvtPatSynSigTy (ForallT univs reqs (ForallT exis provs ty)) | null exis, null provs = cvtSigType (ForallT univs reqs ty) | null univs, null reqs = do { l <- getL ; ty' <- cvtType (ForallT exis provs ty) ; return $ L l $ mkHsImplicitSigType $ L l (HsQualTy { hst_ctxt = Nothing , hst_xqual = noExtField , hst_body = ty' }) } | null reqs = do { l <- getL ; univs' <- cvtTvs univs ; ty' <- cvtType (ForallT exis provs ty) ; let forTy = mkHsExplicitSigType univs' $ L l cxtTy cxtTy = HsQualTy { hst_ctxt = Nothing , hst_xqual = noExtField , hst_body = ty' } ; return $ L l forTy } | otherwise = cvtSigType (ForallT univs reqs (ForallT exis provs ty)) cvtPatSynSigTy ty = cvtSigType ty ----------------------------------------------------------- cvtFixity :: TH.Fixity -> Hs.Fixity cvtFixity (TH.Fixity prec dir) = Hs.Fixity NoSourceText prec (cvt_dir dir) where cvt_dir TH.InfixL = Hs.InfixL cvt_dir TH.InfixR = Hs.InfixR cvt_dir TH.InfixN = Hs.InfixN ----------------------------------------------------------- ----------------------------------------------------------- -- some useful things overloadedLit :: Lit -> Bool -- True for literals that Haskell treats as overloaded overloadedLit (IntegerL _) = True overloadedLit (RationalL _) = True overloadedLit _ = False -- Checks that are performed when converting unboxed sum expressions and -- patterns alike. unboxedSumChecks :: TH.SumAlt -> TH.SumArity -> CvtM () unboxedSumChecks alt arity | alt > arity = failWith $ text "Sum alternative" <+> text (show alt) <+> text "exceeds its arity," <+> text (show arity) | alt <= 0 = failWith $ vcat [ text "Illegal sum alternative:" <+> text (show alt) , nest 2 $ text "Sum alternatives must start from 1" ] | arity < 2 = failWith $ vcat [ text "Illegal sum arity:" <+> text (show arity) , nest 2 $ text "Sums must have an arity of at least 2" ] | otherwise = return () -- | If passed an empty list of 'LHsTyVarBndr's, this simply returns the -- third argument (an 'LHsType'). Otherwise, return an 'HsForAllTy' -- using the provided 'LHsQTyVars' and 'LHsType'. mkHsForAllTy :: SrcSpan -- ^ The location of the returned 'LHsType' if it needs an -- explicit forall -> HsForAllTelescope GhcPs -- ^ The converted type variable binders -> LHsType GhcPs -- ^ The converted rho type -> LHsType GhcPs -- ^ The complete type, quantified with a forall if necessary mkHsForAllTy loc tele rho_ty | no_tvs = rho_ty | otherwise = L loc $ HsForAllTy { hst_tele = tele , hst_xforall = noExtField , hst_body = rho_ty } where no_tvs = case tele of HsForAllVis { hsf_vis_bndrs = bndrs } -> null bndrs HsForAllInvis { hsf_invis_bndrs = bndrs } -> null bndrs -- | If passed an empty 'TH.Cxt', this simply returns the third argument -- (an 'LHsType'). Otherwise, return an 'HsQualTy' using the provided -- 'LHsContext' and 'LHsType'. -- It's important that we don't build an HsQualTy if the context is empty, -- as the pretty-printer for HsType _always_ prints contexts, even if -- they're empty. See #13183. mkHsQualTy :: TH.Cxt -- ^ The original Template Haskell context -> SrcSpan -- ^ The location of the returned 'LHsType' if it needs an -- explicit context -> LHsContext GhcPs -- ^ The converted context -> LHsType GhcPs -- ^ The converted tau type -> LHsType GhcPs -- ^ The complete type, qualified with a context if necessary mkHsQualTy ctxt loc ctxt' ty | null ctxt = ty | otherwise = L loc $ HsQualTy { hst_xqual = noExtField , hst_ctxt = Just ctxt' , hst_body = ty } mkHsOuterFamEqnTyVarBndrs :: Maybe [LHsTyVarBndr () GhcPs] -> HsOuterFamEqnTyVarBndrs GhcPs mkHsOuterFamEqnTyVarBndrs = maybe mkHsOuterImplicit mkHsOuterExplicit -------------------------------------------------------------------- -- Turning Name back into RdrName -------------------------------------------------------------------- -- variable names vNameL, cNameL, vcNameL, tNameL, tconNameL :: TH.Name -> CvtM (Located RdrName) vName, cName, vcName, tName, tconName :: TH.Name -> CvtM RdrName -- Variable names vNameL n = wrapL (vName n) vName n = cvtName OccName.varName n -- Constructor function names; this is Haskell source, hence srcDataName cNameL n = wrapL (cName n) cName n = cvtName OccName.dataName n -- Variable *or* constructor names; check by looking at the first char vcNameL n = wrapL (vcName n) vcName n = if isVarName n then vName n else cName n -- Type variable names tNameL n = wrapL (tName n) tName n = cvtName OccName.tvName n -- Type Constructor names tconNameL n = wrapL (tconName n) tconName n = cvtName OccName.tcClsName n ipName :: String -> CvtM HsIPName ipName n = do { unless (okVarOcc n) (failWith (badOcc OccName.varName n)) ; return (HsIPName (fsLit n)) } cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName cvtName ctxt_ns (TH.Name occ flavour) | not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str) | otherwise = do { loc <- getL ; let rdr_name = thRdrName loc ctxt_ns occ_str flavour ; force rdr_name ; return rdr_name } where occ_str = TH.occString occ okOcc :: OccName.NameSpace -> String -> Bool okOcc ns str | OccName.isVarNameSpace ns = okVarOcc str | OccName.isDataConNameSpace ns = okConOcc str | otherwise = okTcOcc str -- Determine the name space of a name in a type -- isVarName :: TH.Name -> Bool isVarName (TH.Name occ _) = case TH.occString occ of "" -> False (c:_) -> startsVarId c || startsVarSym c badOcc :: OccName.NameSpace -> String -> SDoc badOcc ctxt_ns occ = text "Illegal" <+> pprNameSpace ctxt_ns <+> text "name:" <+> quotes (text occ) thRdrName :: SrcSpan -> OccName.NameSpace -> String -> TH.NameFlavour -> RdrName -- This turns a TH Name into a RdrName; used for both binders and occurrences -- See Note [Binders in Template Haskell] -- The passed-in name space tells what the context is expecting; -- use it unless the TH name knows what name-space it comes -- from, in which case use the latter -- -- We pass in a SrcSpan (gotten from the monad) because this function -- is used for *binders* and if we make an Exact Name we want it -- to have a binding site inside it. (cf #5434) -- -- ToDo: we may generate silly RdrNames, by passing a name space -- that doesn't match the string, like VarName ":+", -- which will give confusing error messages later -- -- The strict applications ensure that any buried exceptions get forced thRdrName loc ctxt_ns th_occ th_name = case th_name of TH.NameG th_ns pkg mod -> thOrigRdrName th_occ th_ns pkg mod TH.NameQ mod -> (mkRdrQual $! mk_mod mod) $! occ TH.NameL uniq -> nameRdrName $! (((Name.mkInternalName $! mk_uniq (fromInteger uniq)) $! occ) loc) TH.NameU uniq -> nameRdrName $! (((Name.mkSystemNameAt $! mk_uniq (fromInteger uniq)) $! occ) loc) TH.NameS | Just name <- isBuiltInOcc_maybe occ -> nameRdrName $! name | otherwise -> mkRdrUnqual $! occ -- We check for built-in syntax here, because the TH -- user might have written a (NameS "(,,)"), for example where occ :: OccName.OccName occ = mk_occ ctxt_ns th_occ -- Return an unqualified exact RdrName if we're dealing with built-in syntax. -- See #13776. thOrigRdrName :: String -> TH.NameSpace -> PkgName -> ModName -> RdrName thOrigRdrName occ th_ns pkg mod = let occ' = mk_occ (mk_ghc_ns th_ns) occ in case isBuiltInOcc_maybe occ' of Just name -> nameRdrName name Nothing -> (mkOrig $! (mkModule (mk_pkg pkg) (mk_mod mod))) $! occ' thRdrNameGuesses :: TH.Name -> [RdrName] thRdrNameGuesses (TH.Name occ flavour) -- This special case for NameG ensures that we don't generate duplicates in the output list | TH.NameG th_ns pkg mod <- flavour = [ thOrigRdrName occ_str th_ns pkg mod] | otherwise = [ thRdrName noSrcSpan gns occ_str flavour | gns <- guessed_nss] where -- guessed_ns are the name spaces guessed from looking at the TH name guessed_nss | isLexCon (mkFastString occ_str) = [OccName.tcName, OccName.dataName] | otherwise = [OccName.varName, OccName.tvName] occ_str = TH.occString occ -- The packing and unpacking is rather turgid :-( mk_occ :: OccName.NameSpace -> String -> OccName.OccName mk_occ ns occ = OccName.mkOccName ns occ mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace mk_ghc_ns TH.DataName = OccName.dataName mk_ghc_ns TH.TcClsName = OccName.tcClsName mk_ghc_ns TH.VarName = OccName.varName mk_mod :: TH.ModName -> ModuleName mk_mod mod = mkModuleName (TH.modString mod) mk_pkg :: TH.PkgName -> Unit mk_pkg pkg = stringToUnit (TH.pkgString pkg) mk_uniq :: Int -> Unique mk_uniq u = mkUniqueGrimily u {- Note [Binders in Template Haskell] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider this TH term construction: do { x1 <- TH.newName "x" -- newName :: String -> Q TH.Name ; x2 <- TH.newName "x" -- Builds a NameU ; x3 <- TH.newName "x" ; let x = mkName "x" -- mkName :: String -> TH.Name -- Builds a NameS ; return (LamE (..pattern [x1,x2]..) $ LamE (VarPat x3) $ ..tuple (x1,x2,x3,x)) } It represents the term \[x1,x2]. \x3. (x1,x2,x3,x) a) We don't want to complain about "x" being bound twice in the pattern [x1,x2] b) We don't want x3 to shadow the x1,x2 c) We *do* want 'x' (dynamically bound with mkName) to bind to the innermost binding of "x", namely x3. d) When pretty printing, we want to print a unique with x1,x2 etc, else they'll all print as "x" which isn't very helpful When we convert all this to HsSyn, the TH.Names are converted with thRdrName. To achieve (b) we want the binders to be Exact RdrNames. Achieving (a) is a bit awkward, because - We must check for duplicate and shadowed names on Names, not RdrNames, *after* renaming. See Note [Collect binders only after renaming] in GHC.Hs.Utils - But to achieve (a) we must distinguish between the Exact RdrNames arising from TH and the Unqual RdrNames that would come from a user writing \[x,x] -> blah So in Convert.thRdrName we translate TH Name RdrName -------------------------------------------------------- NameU (arising from newName) --> Exact (Name{ System }) NameS (arising from mkName) --> Unqual Notice that the NameUs generate *System* Names. Then, when figuring out shadowing and duplicates, we can filter out System Names. This use of System Names fits with other uses of System Names, eg for temporary variables "a". Since there are lots of things called "a" we usually want to print the name with the unique, and that is indeed the way System Names are printed. There's a small complication of course; see Note [Looking up Exact RdrNames] in GHC.Rename.Env. -} {- Note [Pattern synonym type signatures and Template Haskell] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In general, the type signature of a pattern synonym pattern P x1 x2 .. xn = is of the form forall univs. reqs => forall exis. provs => t1 -> t2 -> ... -> tn -> t with the following parts: 1) the (possibly empty lists of) universally quantified type variables `univs` and required constraints `reqs` on them. 2) the (possibly empty lists of) existentially quantified type variables `exis` and the provided constraints `provs` on them. 3) the types `t1`, `t2`, .., `tn` of the pattern synonym's arguments x1, x2, .., xn, respectively 4) the type `t` of , mentioning only universals from `univs`. Due to the two forall quantifiers and constraint contexts (either of which might be empty), pattern synonym type signatures are treated specially in `GHC.HsToCore.Quote`, `GHC.ThToHs`, and `GHC.Tc.Gen.Splice`: (a) When desugaring a pattern synonym from HsSyn to TH.Dec in `GHC.HsToCore.Quote`, we represent its *full* type signature in TH, i.e.: ForallT univs reqs (ForallT exis provs ty) (where ty is the AST representation of t1 -> t2 -> ... -> tn -> t) (b) When converting pattern synonyms from TH.Dec to HsSyn in `GHC.ThToHs`, we convert their TH type signatures back to an appropriate Haskell pattern synonym type of the form forall univs. reqs => forall exis. provs => t1 -> t2 -> ... -> tn -> t where initial empty `univs` type variables or an empty `reqs` constraint context are represented *explicitly* as `() =>`. (c) When reifying a pattern synonym in `GHC.Tc.Gen.Splice`, we always return its *full* type, i.e.: ForallT univs reqs (ForallT exis provs ty) (where ty is the AST representation of t1 -> t2 -> ... -> tn -> t) The key point is to always represent a pattern synonym's *full* type in cases (a) and (c) to make it clear which of the two forall quantifiers and/or constraint contexts are specified, and which are not. See GHC's user's guide on pattern synonyms for more information about pattern synonym type signatures. -}