-- (c) The University of Glasgow, 2006 {-# LANGUAGE CPP, ScopedTypeVariables, BangPatterns, FlexibleContexts #-} -- | Unit manipulation module GHC.Unit.State ( module GHC.Unit.Info, -- * Reading the package config, and processing cmdline args UnitState(..), UnitDatabase (..), emptyUnitState, initUnits, readUnitDatabases, readUnitDatabase, getUnitDbRefs, resolveUnitDatabase, listUnitInfo, -- * Querying the package config lookupUnit, lookupUnit', unsafeLookupUnit, lookupUnitId, lookupUnitId', unsafeLookupUnitId, lookupPackageName, improveUnit, searchPackageId, displayUnitId, listVisibleModuleNames, lookupModuleInAllUnits, lookupModuleWithSuggestions, lookupPluginModuleWithSuggestions, LookupResult(..), ModuleSuggestion(..), ModuleOrigin(..), UnusableUnitReason(..), pprReason, -- * Inspecting the set of packages in scope getUnitIncludePath, getUnitLibraryPath, getUnitLinkOpts, getUnitExtraCcOpts, getUnitFrameworkPath, getUnitFrameworks, getPreloadUnitsAnd, collectArchives, collectIncludeDirs, collectLibraryPaths, collectLinkOpts, packageHsLibs, getLibs, -- * Module hole substitution ShHoleSubst, renameHoleUnit, renameHoleModule, renameHoleUnit', renameHoleModule', instUnitToUnit, instModuleToModule, -- * Utils mkIndefUnitId, updateIndefUnitId, unwireUnit, pprFlag, pprUnits, pprUnitsSimple, pprModuleMap, homeUnitIsIndefinite, homeUnitIsDefinite, ) where #include "HsVersions.h" import GHC.Prelude import GHC.Unit.Database import GHC.Unit.Info import GHC.Unit.Types import GHC.Unit.Module import GHC.Driver.Session import GHC.Driver.Ways import GHC.Types.Unique.FM import GHC.Types.Unique.DFM import GHC.Types.Unique.Set import GHC.Types.Unique.DSet import GHC.Utils.Misc import GHC.Utils.Panic import GHC.Utils.Outputable as Outputable import GHC.Data.Maybe import System.Environment ( getEnv ) import GHC.Data.FastString import GHC.Utils.Error ( debugTraceMsg, MsgDoc, dumpIfSet_dyn, withTiming, DumpFormat (..) ) import GHC.Utils.Exception import System.Directory import System.FilePath as FilePath import Control.Monad import Data.Graph (stronglyConnComp, SCC(..)) import Data.Char ( toUpper ) import Data.List as List import Data.Map (Map) import Data.Set (Set) import Data.Monoid (First(..)) import qualified Data.Semigroup as Semigroup import qualified Data.Map as Map import qualified Data.Map.Strict as MapStrict import qualified Data.Set as Set -- --------------------------------------------------------------------------- -- The Unit state -- | Unit state is all stored in 'DynFlags', including the details of -- all units, which units are exposed, and which modules they -- provide. -- -- The unit state is computed by 'initUnits', and kept in DynFlags. -- It is influenced by various command-line flags: -- -- * @-package @ and @-package-id @ cause @@ to become exposed. -- If @-hide-all-packages@ was not specified, these commands also cause -- all other packages with the same name to become hidden. -- -- * @-hide-package @ causes @@ to become hidden. -- -- * (there are a few more flags, check below for their semantics) -- -- The unit state has the following properties. -- -- * Let @exposedUnits@ be the set of packages thus exposed. -- Let @depExposedUnits@ be the transitive closure from @exposedUnits@ of -- their dependencies. -- -- * When searching for a module from a preload import declaration, -- only the exposed modules in @exposedUnits@ are valid. -- -- * When searching for a module from an implicit import, all modules -- from @depExposedUnits@ are valid. -- -- * When linking in a compilation manager mode, we link in packages the -- program depends on (the compiler knows this list by the -- time it gets to the link step). Also, we link in all packages -- which were mentioned with preload @-package@ flags on the command-line, -- or are a transitive dependency of same, or are \"base\"\/\"rts\". -- The reason for this is that we might need packages which don't -- contain any Haskell modules, and therefore won't be discovered -- by the normal mechanism of dependency tracking. -- Notes on DLLs -- ~~~~~~~~~~~~~ -- When compiling module A, which imports module B, we need to -- know whether B will be in the same DLL as A. -- If it's in the same DLL, we refer to B_f_closure -- If it isn't, we refer to _imp__B_f_closure -- When compiling A, we record in B's Module value whether it's -- in a different DLL, by setting the DLL flag. -- | Given a module name, there may be multiple ways it came into scope, -- possibly simultaneously. This data type tracks all the possible ways -- it could have come into scope. Warning: don't use the record functions, -- they're partial! data ModuleOrigin = -- | Module is hidden, and thus never will be available for import. -- (But maybe the user didn't realize), so we'll still keep track -- of these modules.) ModHidden -- | Module is unavailable because the package is unusable. | ModUnusable UnusableUnitReason -- | Module is public, and could have come from some places. | ModOrigin { -- | @Just False@ means that this module is in -- someone's @exported-modules@ list, but that package is hidden; -- @Just True@ means that it is available; @Nothing@ means neither -- applies. fromOrigUnit :: Maybe Bool -- | Is the module available from a reexport of an exposed package? -- There could be multiple. , fromExposedReexport :: [UnitInfo] -- | Is the module available from a reexport of a hidden package? , fromHiddenReexport :: [UnitInfo] -- | Did the module export come from a package flag? (ToDo: track -- more information. , fromPackageFlag :: Bool } instance Outputable ModuleOrigin where ppr ModHidden = text "hidden module" ppr (ModUnusable _) = text "unusable module" ppr (ModOrigin e res rhs f) = sep (punctuate comma ( (case e of Nothing -> [] Just False -> [text "hidden package"] Just True -> [text "exposed package"]) ++ (if null res then [] else [text "reexport by" <+> sep (map (ppr . mkUnit) res)]) ++ (if null rhs then [] else [text "hidden reexport by" <+> sep (map (ppr . mkUnit) res)]) ++ (if f then [text "package flag"] else []) )) -- | Smart constructor for a module which is in @exposed-modules@. Takes -- as an argument whether or not the defining package is exposed. fromExposedModules :: Bool -> ModuleOrigin fromExposedModules e = ModOrigin (Just e) [] [] False -- | Smart constructor for a module which is in @reexported-modules@. Takes -- as an argument whether or not the reexporting package is exposed, and -- also its 'UnitInfo'. fromReexportedModules :: Bool -> UnitInfo -> ModuleOrigin fromReexportedModules True pkg = ModOrigin Nothing [pkg] [] False fromReexportedModules False pkg = ModOrigin Nothing [] [pkg] False -- | Smart constructor for a module which was bound by a package flag. fromFlag :: ModuleOrigin fromFlag = ModOrigin Nothing [] [] True instance Semigroup ModuleOrigin where ModOrigin e res rhs f <> ModOrigin e' res' rhs' f' = ModOrigin (g e e') (res ++ res') (rhs ++ rhs') (f || f') where g (Just b) (Just b') | b == b' = Just b | otherwise = panic "ModOrigin: package both exposed/hidden" g Nothing x = x g x Nothing = x _x <> _y = panic "ModOrigin: hidden module redefined" instance Monoid ModuleOrigin where mempty = ModOrigin Nothing [] [] False mappend = (Semigroup.<>) -- | Is the name from the import actually visible? (i.e. does it cause -- ambiguity, or is it only relevant when we're making suggestions?) originVisible :: ModuleOrigin -> Bool originVisible ModHidden = False originVisible (ModUnusable _) = False originVisible (ModOrigin b res _ f) = b == Just True || not (null res) || f -- | Are there actually no providers for this module? This will never occur -- except when we're filtering based on package imports. originEmpty :: ModuleOrigin -> Bool originEmpty (ModOrigin Nothing [] [] False) = True originEmpty _ = False type PreloadUnitClosure = UniqSet UnitId -- | 'UniqFM' map from 'Unit' to a 'UnitVisibility'. type VisibilityMap = Map Unit UnitVisibility -- | 'UnitVisibility' records the various aspects of visibility of a particular -- 'Unit'. data UnitVisibility = UnitVisibility { uv_expose_all :: Bool -- ^ Should all modules in exposed-modules should be dumped into scope? , uv_renamings :: [(ModuleName, ModuleName)] -- ^ Any custom renamings that should bring extra 'ModuleName's into -- scope. , uv_package_name :: First FastString -- ^ The package name associated with the 'Unit'. This is used -- to implement legacy behavior where @-package foo-0.1@ implicitly -- hides any packages named @foo@ , uv_requirements :: Map ModuleName (Set InstantiatedModule) -- ^ The signatures which are contributed to the requirements context -- from this unit ID. , uv_explicit :: Bool -- ^ Whether or not this unit was explicitly brought into scope, -- as opposed to implicitly via the 'exposed' fields in the -- package database (when @-hide-all-packages@ is not passed.) } instance Outputable UnitVisibility where ppr (UnitVisibility { uv_expose_all = b, uv_renamings = rns, uv_package_name = First mb_pn, uv_requirements = reqs, uv_explicit = explicit }) = ppr (b, rns, mb_pn, reqs, explicit) instance Semigroup UnitVisibility where uv1 <> uv2 = UnitVisibility { uv_expose_all = uv_expose_all uv1 || uv_expose_all uv2 , uv_renamings = uv_renamings uv1 ++ uv_renamings uv2 , uv_package_name = mappend (uv_package_name uv1) (uv_package_name uv2) , uv_requirements = Map.unionWith Set.union (uv_requirements uv1) (uv_requirements uv2) , uv_explicit = uv_explicit uv1 || uv_explicit uv2 } instance Monoid UnitVisibility where mempty = UnitVisibility { uv_expose_all = False , uv_renamings = [] , uv_package_name = First Nothing , uv_requirements = Map.empty , uv_explicit = False } mappend = (Semigroup.<>) -- | Map from 'ModuleName' to a set of of module providers (i.e. a 'Module' and -- its 'ModuleOrigin'). -- -- NB: the set is in fact a 'Map Module ModuleOrigin', probably to keep only one -- origin for a given 'Module' type ModuleNameProvidersMap = Map ModuleName (Map Module ModuleOrigin) data UnitState = UnitState { -- | A mapping of 'Unit' to 'UnitInfo'. This list is adjusted -- so that only valid units are here. 'UnitInfo' reflects -- what was stored *on disk*, except for the 'trusted' flag, which -- is adjusted at runtime. (In particular, some units in this map -- may have the 'exposed' flag be 'False'.) unitInfoMap :: UnitInfoMap, -- | The set of transitively reachable units according -- to the explicitly provided command line arguments. -- A fully instantiated VirtUnit may only be replaced by a RealUnit from -- this set. -- See Note [VirtUnit to RealUnit improvement] preloadClosure :: PreloadUnitClosure, -- | A mapping of 'PackageName' to 'IndefUnitId'. This is used when -- users refer to packages in Backpack includes. packageNameMap :: Map PackageName IndefUnitId, -- | A mapping from database unit keys to wired in unit ids. wireMap :: Map UnitId UnitId, -- | A mapping from wired in unit ids to unit keys from the database. unwireMap :: Map UnitId UnitId, -- | The packages we're going to link in eagerly. This list -- should be in reverse dependency order; that is, a package -- is always mentioned before the packages it depends on. preloadUnits :: [UnitId], -- | Packages which we explicitly depend on (from a command line flag). -- We'll use this to generate version macros. explicitUnits :: [Unit], -- | This is a full map from 'ModuleName' to all modules which may possibly -- be providing it. These providers may be hidden (but we'll still want -- to report them in error messages), or it may be an ambiguous import. moduleNameProvidersMap :: !ModuleNameProvidersMap, -- | A map, like 'moduleNameProvidersMap', but controlling plugin visibility. pluginModuleNameProvidersMap :: !ModuleNameProvidersMap, -- | A map saying, for each requirement, what interfaces must be merged -- together when we use them. For example, if our dependencies -- are @p[A=]@ and @q[A=,B=r[C=]:B]@, then the interfaces -- to merge for A are @p[A=]:A@, @q[A=,B=r[C=]:B]:A@ -- and @r[C=]:C@. -- -- There's an entry in this map for each hole in our home library. requirementContext :: Map ModuleName [InstantiatedModule], -- | Indicate if we can instantiate units on-the-fly. -- -- This should only be true when we are type-checking an indefinite unit. -- See Note [About units] in GHC.Unit. allowVirtualUnits :: !Bool } emptyUnitState :: UnitState emptyUnitState = UnitState { unitInfoMap = Map.empty, preloadClosure = emptyUniqSet, packageNameMap = Map.empty, wireMap = Map.empty, unwireMap = Map.empty, preloadUnits = [], explicitUnits = [], moduleNameProvidersMap = Map.empty, pluginModuleNameProvidersMap = Map.empty, requirementContext = Map.empty, allowVirtualUnits = False } -- | Unit database data UnitDatabase unit = UnitDatabase { unitDatabasePath :: FilePath , unitDatabaseUnits :: [GenUnitInfo unit] } type UnitInfoMap = Map UnitId UnitInfo -- | Find the unit we know about with the given unit, if any lookupUnit :: UnitState -> Unit -> Maybe UnitInfo lookupUnit pkgs = lookupUnit' (allowVirtualUnits pkgs) (unitInfoMap pkgs) (preloadClosure pkgs) -- | A more specialized interface, which doesn't require a 'UnitState' (so it -- can be used while we're initializing 'DynFlags') -- -- Parameters: -- * a boolean specifying whether or not to look for on-the-fly renamed interfaces -- * a 'UnitInfoMap' -- * a 'PreloadUnitClosure' lookupUnit' :: Bool -> UnitInfoMap -> PreloadUnitClosure -> Unit -> Maybe UnitInfo lookupUnit' allowOnTheFlyInst pkg_map closure u = case u of HoleUnit -> error "Hole unit" RealUnit i -> Map.lookup (unDefinite i) pkg_map VirtUnit i | allowOnTheFlyInst -> -- lookup UnitInfo of the indefinite unit to be instantiated and -- instantiate it on-the-fly fmap (renameUnitInfo pkg_map closure (instUnitInsts i)) (Map.lookup (indefUnit (instUnitInstanceOf i)) pkg_map) | otherwise -> -- lookup UnitInfo by virtual UnitId. This is used to find indefinite -- units. Even if they are real, installed units, they can't use the -- `RealUnit` constructor (it is reserved for definite units) so we use -- the `VirtUnit` constructor. Map.lookup (virtualUnitId i) pkg_map -- | Find the unit we know about with the given unit id, if any lookupUnitId :: UnitState -> UnitId -> Maybe UnitInfo lookupUnitId state uid = lookupUnitId' (unitInfoMap state) uid -- | Find the unit we know about with the given unit id, if any lookupUnitId' :: UnitInfoMap -> UnitId -> Maybe UnitInfo lookupUnitId' db uid = Map.lookup uid db -- | Looks up the given unit in the package state, panicing if it is not found unsafeLookupUnit :: HasDebugCallStack => UnitState -> Unit -> UnitInfo unsafeLookupUnit state u = case lookupUnit state u of Just info -> info Nothing -> pprPanic "unsafeLookupUnit" (ppr u) -- | Looks up the given unit id in the package state, panicing if it is not found unsafeLookupUnitId :: HasDebugCallStack => UnitState -> UnitId -> UnitInfo unsafeLookupUnitId state uid = case lookupUnitId state uid of Just info -> info Nothing -> pprPanic "unsafeLookupUnitId" (ppr uid) -- | Find the package we know about with the given package name (e.g. @foo@), if any -- (NB: there might be a locally defined unit name which overrides this) lookupPackageName :: UnitState -> PackageName -> Maybe IndefUnitId lookupPackageName pkgstate n = Map.lookup n (packageNameMap pkgstate) -- | Search for packages with a given package ID (e.g. \"foo-0.1\") searchPackageId :: UnitState -> PackageId -> [UnitInfo] searchPackageId pkgstate pid = filter ((pid ==) . unitPackageId) (listUnitInfo pkgstate) -- | Create a Map UnitId UnitInfo -- -- For each instantiated unit, we add two map keys: -- * the real unit id -- * the virtual unit id made from its instantiation -- -- We do the same thing for fully indefinite units (which are "instantiated" -- with module holes). -- mkUnitInfoMap :: [UnitInfo] -> UnitInfoMap mkUnitInfoMap infos = foldl' add Map.empty infos where mkVirt p = virtualUnitId (mkInstantiatedUnit (unitInstanceOf p) (unitInstantiations p)) add pkg_map p | not (null (unitInstantiations p)) = Map.insert (mkVirt p) p $ Map.insert (unitId p) p $ pkg_map | otherwise = Map.insert (unitId p) p pkg_map -- | Get a list of entries from the package database. NB: be careful with -- this function, although all packages in this map are "visible", this -- does not imply that the exposed-modules of the package are available -- (they may have been thinned or renamed). listUnitInfo :: UnitState -> [UnitInfo] listUnitInfo state = Map.elems (unitInfoMap state) -- ---------------------------------------------------------------------------- -- Loading the package db files and building up the package state -- | Read the package database files, and sets up various internal tables of -- package information, according to the package-related flags on the -- command-line (@-package@, @-hide-package@ etc.) -- -- Returns a list of packages to link in if we're doing dynamic linking. -- This list contains the packages that the user explicitly mentioned with -- @-package@ flags. -- -- 'initUnits' can be called again subsequently after updating the -- 'packageFlags' field of the 'DynFlags', and it will update the -- 'unitState' in 'DynFlags' and return a list of packages to -- link in. initUnits :: DynFlags -> IO (DynFlags, [UnitId]) initUnits dflags = do let forcePkgDb (state, _) = unitInfoMap state `seq` () (state,raw_dbs) <- withTiming dflags (text "initializing package database") forcePkgDb $ do -- read the databases if they have not been already read raw_dbs <- case unitDatabases dflags of Nothing -> readUnitDatabases dflags Just dbs -> return dbs -- distrust all units if the flag is set let distrust_all db = db { unitDatabaseUnits = distrustAllUnits (unitDatabaseUnits db) } dbs | gopt Opt_DistrustAllPackages dflags = map distrust_all raw_dbs | otherwise = raw_dbs -- create the UnitState state <- mkUnitState dflags dbs return (state, raw_dbs) dumpIfSet_dyn (dflags { pprCols = 200 }) Opt_D_dump_mod_map "Mod Map" FormatText (pprModuleMap (moduleNameProvidersMap state)) -- Some wired units can be used to instantiate the home unit. We need to -- replace their unit keys by their wired unit ids. let wiringMap = wireMap state unwiredInsts = homeUnitInstantiations dflags wiredInsts = map (fmap (upd_wired_in_mod wiringMap)) unwiredInsts return (dflags{ unitDatabases = Just raw_dbs, unitState = state, homeUnitInstantiations = wiredInsts }, (preloadUnits state)) -- ----------------------------------------------------------------------------- -- Reading the unit database(s) readUnitDatabases :: DynFlags -> IO [UnitDatabase UnitId] readUnitDatabases dflags = do conf_refs <- getUnitDbRefs dflags confs <- liftM catMaybes $ mapM (resolveUnitDatabase dflags) conf_refs mapM (readUnitDatabase dflags) confs getUnitDbRefs :: DynFlags -> IO [PkgDbRef] getUnitDbRefs dflags = do let system_conf_refs = [UserPkgDb, GlobalPkgDb] e_pkg_path <- tryIO (getEnv $ map toUpper (programName dflags) ++ "_PACKAGE_PATH") let base_conf_refs = case e_pkg_path of Left _ -> system_conf_refs Right path | not (null path) && isSearchPathSeparator (last path) -> map PkgDbPath (splitSearchPath (init path)) ++ system_conf_refs | otherwise -> map PkgDbPath (splitSearchPath path) -- Apply the package DB-related flags from the command line to get the -- final list of package DBs. -- -- Notes on ordering: -- * The list of flags is reversed (later ones first) -- * We work with the package DB list in "left shadows right" order -- * and finally reverse it at the end, to get "right shadows left" -- return $ reverse (foldr doFlag base_conf_refs (packageDBFlags dflags)) where doFlag (PackageDB p) dbs = p : dbs doFlag NoUserPackageDB dbs = filter isNotUser dbs doFlag NoGlobalPackageDB dbs = filter isNotGlobal dbs doFlag ClearPackageDBs _ = [] isNotUser UserPkgDb = False isNotUser _ = True isNotGlobal GlobalPkgDb = False isNotGlobal _ = True -- | Return the path of a package database from a 'PkgDbRef'. Return 'Nothing' -- when the user database filepath is expected but the latter doesn't exist. -- -- NB: This logic is reimplemented in Cabal, so if you change it, -- make sure you update Cabal. (Or, better yet, dump it in the -- compiler info so Cabal can use the info.) resolveUnitDatabase :: DynFlags -> PkgDbRef -> IO (Maybe FilePath) resolveUnitDatabase dflags GlobalPkgDb = return $ Just (globalPackageDatabasePath dflags) resolveUnitDatabase dflags UserPkgDb = runMaybeT $ do dir <- versionedAppDir dflags let pkgconf = dir "package.conf.d" exist <- tryMaybeT $ doesDirectoryExist pkgconf if exist then return pkgconf else mzero resolveUnitDatabase _ (PkgDbPath name) = return $ Just name readUnitDatabase :: DynFlags -> FilePath -> IO (UnitDatabase UnitId) readUnitDatabase dflags conf_file = do isdir <- doesDirectoryExist conf_file proto_pkg_configs <- if isdir then readDirStyleUnitInfo conf_file else do isfile <- doesFileExist conf_file if isfile then do mpkgs <- tryReadOldFileStyleUnitInfo case mpkgs of Just pkgs -> return pkgs Nothing -> throwGhcExceptionIO $ InstallationError $ "ghc no longer supports single-file style package " ++ "databases (" ++ conf_file ++ ") use 'ghc-pkg init' to create the database with " ++ "the correct format." else throwGhcExceptionIO $ InstallationError $ "can't find a package database at " ++ conf_file let -- Fix #16360: remove trailing slash from conf_file before calculating pkgroot conf_file' = dropTrailingPathSeparator conf_file top_dir = topDir dflags pkgroot = takeDirectory conf_file' pkg_configs1 = map (mungeUnitInfo top_dir pkgroot . mapUnitInfo (\(UnitKey x) -> UnitId x) unitIdFS . mkUnitKeyInfo) proto_pkg_configs -- return $ UnitDatabase conf_file' pkg_configs1 where readDirStyleUnitInfo conf_dir = do let filename = conf_dir "package.cache" cache_exists <- doesFileExist filename if cache_exists then do debugTraceMsg dflags 2 $ text "Using binary package database:" <+> text filename readPackageDbForGhc filename else do -- If there is no package.cache file, we check if the database is not -- empty by inspecting if the directory contains any .conf file. If it -- does, something is wrong and we fail. Otherwise we assume that the -- database is empty. debugTraceMsg dflags 2 $ text "There is no package.cache in" <+> text conf_dir <> text ", checking if the database is empty" db_empty <- all (not . isSuffixOf ".conf") <$> getDirectoryContents conf_dir if db_empty then do debugTraceMsg dflags 3 $ text "There are no .conf files in" <+> text conf_dir <> text ", treating" <+> text "package database as empty" return [] else do throwGhcExceptionIO $ InstallationError $ "there is no package.cache in " ++ conf_dir ++ " even though package database is not empty" -- Single-file style package dbs have been deprecated for some time, but -- it turns out that Cabal was using them in one place. So this is a -- workaround to allow older Cabal versions to use this newer ghc. -- We check if the file db contains just "[]" and if so, we look for a new -- dir-style db in conf_file.d/, ie in a dir next to the given file. -- We cannot just replace the file with a new dir style since Cabal still -- assumes it's a file and tries to overwrite with 'writeFile'. -- ghc-pkg also cooperates with this workaround. tryReadOldFileStyleUnitInfo = do content <- readFile conf_file `catchIO` \_ -> return "" if take 2 content == "[]" then do let conf_dir = conf_file <.> "d" direxists <- doesDirectoryExist conf_dir if direxists then do debugTraceMsg dflags 2 (text "Ignoring old file-style db and trying:" <+> text conf_dir) liftM Just (readDirStyleUnitInfo conf_dir) else return (Just []) -- ghc-pkg will create it when it's updated else return Nothing distrustAllUnits :: [UnitInfo] -> [UnitInfo] distrustAllUnits pkgs = map distrust pkgs where distrust pkg = pkg{ unitIsTrusted = False } mungeUnitInfo :: FilePath -> FilePath -> UnitInfo -> UnitInfo mungeUnitInfo top_dir pkgroot = mungeDynLibFields . mungeUnitInfoPaths top_dir pkgroot mungeDynLibFields :: UnitInfo -> UnitInfo mungeDynLibFields pkg = pkg { unitLibraryDynDirs = case unitLibraryDynDirs pkg of [] -> unitLibraryDirs pkg ds -> ds } -- ----------------------------------------------------------------------------- -- Modify our copy of the package database based on trust flags, -- -trust and -distrust. applyTrustFlag :: DynFlags -> UnitPrecedenceMap -> UnusableUnits -> [UnitInfo] -> TrustFlag -> IO [UnitInfo] applyTrustFlag dflags prec_map unusable pkgs flag = case flag of -- we trust all matching packages. Maybe should only trust first one? -- and leave others the same or set them untrusted TrustPackage str -> case selectPackages prec_map (PackageArg str) pkgs unusable of Left ps -> trustFlagErr dflags flag ps Right (ps,qs) -> return (map trust ps ++ qs) where trust p = p {unitIsTrusted=True} DistrustPackage str -> case selectPackages prec_map (PackageArg str) pkgs unusable of Left ps -> trustFlagErr dflags flag ps Right (ps,qs) -> return (distrustAllUnits ps ++ qs) -- | A little utility to tell if the home unit is indefinite -- (if it is not, we should never use on-the-fly renaming.) homeUnitIsIndefinite :: DynFlags -> Bool homeUnitIsIndefinite dflags = not (homeUnitIsDefinite dflags) -- | A little utility to tell if the home unit is definite -- (if it is, we should never use on-the-fly renaming.) homeUnitIsDefinite :: DynFlags -> Bool homeUnitIsDefinite dflags = unitIsDefinite (homeUnit dflags) applyPackageFlag :: DynFlags -> UnitPrecedenceMap -> UnitInfoMap -> PreloadUnitClosure -> UnusableUnits -> Bool -- if False, if you expose a package, it implicitly hides -- any previously exposed packages with the same name -> [UnitInfo] -> VisibilityMap -- Initially exposed -> PackageFlag -- flag to apply -> IO VisibilityMap -- Now exposed applyPackageFlag dflags prec_map pkg_map closure unusable no_hide_others pkgs vm flag = case flag of ExposePackage _ arg (ModRenaming b rns) -> case findPackages prec_map pkg_map closure arg pkgs unusable of Left ps -> packageFlagErr dflags flag ps Right (p:_) -> return vm' where n = fsPackageName p -- If a user says @-unit-id p[A=]@, this imposes -- a requirement on us: whatever our signature A is, -- it must fulfill all of p[A=]:A's requirements. -- This method is responsible for computing what our -- inherited requirements are. reqs | UnitIdArg orig_uid <- arg = collectHoles orig_uid | otherwise = Map.empty collectHoles uid = case uid of HoleUnit -> Map.empty RealUnit {} -> Map.empty -- definite units don't have holes VirtUnit indef -> let local = [ Map.singleton (moduleName mod) (Set.singleton $ Module indef mod_name) | (mod_name, mod) <- instUnitInsts indef , isHoleModule mod ] recurse = [ collectHoles (moduleUnit mod) | (_, mod) <- instUnitInsts indef ] in Map.unionsWith Set.union $ local ++ recurse uv = UnitVisibility { uv_expose_all = b , uv_renamings = rns , uv_package_name = First (Just n) , uv_requirements = reqs , uv_explicit = True } vm' = Map.insertWith mappend (mkUnit p) uv vm_cleared -- In the old days, if you said `ghc -package p-0.1 -package p-0.2` -- (or if p-0.1 was registered in the pkgdb as exposed: True), -- the second package flag would override the first one and you -- would only see p-0.2 in exposed modules. This is good for -- usability. -- -- However, with thinning and renaming (or Backpack), there might be -- situations where you legitimately want to see two versions of a -- package at the same time, and this behavior would make it -- impossible to do so. So we decided that if you pass -- -hide-all-packages, this should turn OFF the overriding behavior -- where an exposed package hides all other packages with the same -- name. This should not affect Cabal at all, which only ever -- exposes one package at a time. -- -- NB: Why a variable no_hide_others? We have to apply this logic to -- -plugin-package too, and it's more consistent if the switch in -- behavior is based off of -- -hide-all-packages/-hide-all-plugin-packages depending on what -- flag is in question. vm_cleared | no_hide_others = vm -- NB: renamings never clear | (_:_) <- rns = vm | otherwise = Map.filterWithKey (\k uv -> k == mkUnit p || First (Just n) /= uv_package_name uv) vm _ -> panic "applyPackageFlag" HidePackage str -> case findPackages prec_map pkg_map closure (PackageArg str) pkgs unusable of Left ps -> packageFlagErr dflags flag ps Right ps -> return vm' where vm' = foldl' (flip Map.delete) vm (map mkUnit ps) -- | Like 'selectPackages', but doesn't return a list of unmatched -- packages. Furthermore, any packages it returns are *renamed* -- if the 'UnitArg' has a renaming associated with it. findPackages :: UnitPrecedenceMap -> UnitInfoMap -> PreloadUnitClosure -> PackageArg -> [UnitInfo] -> UnusableUnits -> Either [(UnitInfo, UnusableUnitReason)] [UnitInfo] findPackages prec_map pkg_map closure arg pkgs unusable = let ps = mapMaybe (finder arg) pkgs in if null ps then Left (mapMaybe (\(x,y) -> finder arg x >>= \x' -> return (x',y)) (Map.elems unusable)) else Right (sortByPreference prec_map ps) where finder (PackageArg str) p = if str == unitPackageIdString p || str == unitPackageNameString p then Just p else Nothing finder (UnitIdArg uid) p = case uid of RealUnit (Definite iuid) | iuid == unitId p -> Just p VirtUnit inst | indefUnit (instUnitInstanceOf inst) == unitId p -> Just (renameUnitInfo pkg_map closure (instUnitInsts inst) p) _ -> Nothing selectPackages :: UnitPrecedenceMap -> PackageArg -> [UnitInfo] -> UnusableUnits -> Either [(UnitInfo, UnusableUnitReason)] ([UnitInfo], [UnitInfo]) selectPackages prec_map arg pkgs unusable = let matches = matching arg (ps,rest) = partition matches pkgs in if null ps then Left (filter (matches.fst) (Map.elems unusable)) else Right (sortByPreference prec_map ps, rest) -- | Rename a 'UnitInfo' according to some module instantiation. renameUnitInfo :: UnitInfoMap -> PreloadUnitClosure -> [(ModuleName, Module)] -> UnitInfo -> UnitInfo renameUnitInfo pkg_map closure insts conf = let hsubst = listToUFM insts smod = renameHoleModule' pkg_map closure hsubst new_insts = map (\(k,v) -> (k,smod v)) (unitInstantiations conf) in conf { unitInstantiations = new_insts, unitExposedModules = map (\(mod_name, mb_mod) -> (mod_name, fmap smod mb_mod)) (unitExposedModules conf) } -- A package named on the command line can either include the -- version, or just the name if it is unambiguous. matchingStr :: String -> UnitInfo -> Bool matchingStr str p = str == unitPackageIdString p || str == unitPackageNameString p matchingId :: UnitId -> UnitInfo -> Bool matchingId uid p = uid == unitId p matching :: PackageArg -> UnitInfo -> Bool matching (PackageArg str) = matchingStr str matching (UnitIdArg (RealUnit (Definite uid))) = matchingId uid matching (UnitIdArg _) = \_ -> False -- TODO: warn in this case -- | This sorts a list of packages, putting "preferred" packages first. -- See 'compareByPreference' for the semantics of "preference". sortByPreference :: UnitPrecedenceMap -> [UnitInfo] -> [UnitInfo] sortByPreference prec_map = sortBy (flip (compareByPreference prec_map)) -- | Returns 'GT' if @pkg@ should be preferred over @pkg'@ when picking -- which should be "active". Here is the order of preference: -- -- 1. First, prefer the latest version -- 2. If the versions are the same, prefer the package that -- came in the latest package database. -- -- Pursuant to #12518, we could change this policy to, for example, remove -- the version preference, meaning that we would always prefer the packages -- in later package database. -- -- Instead, we use that preference based policy only when one of the packages -- is integer-gmp and the other is integer-simple. -- This currently only happens when we're looking up which concrete -- package to use in place of @integer-wired-in@ and that two different -- package databases supply a different integer library. For more about -- the fake @integer-wired-in@ package, see Note [The integer library] -- in the @GHC.Builtin.Names@ module. compareByPreference :: UnitPrecedenceMap -> UnitInfo -> UnitInfo -> Ordering compareByPreference prec_map pkg pkg' | Just prec <- Map.lookup (unitId pkg) prec_map , Just prec' <- Map.lookup (unitId pkg') prec_map , differentIntegerPkgs pkg pkg' = compare prec prec' | otherwise = case comparing unitPackageVersion pkg pkg' of GT -> GT EQ | Just prec <- Map.lookup (unitId pkg) prec_map , Just prec' <- Map.lookup (unitId pkg') prec_map -- Prefer the package from the later DB flag (i.e., higher -- precedence) -> compare prec prec' | otherwise -> EQ LT -> LT where isIntegerPkg p = unitPackageNameString p `elem` ["integer-simple", "integer-gmp"] differentIntegerPkgs p p' = isIntegerPkg p && isIntegerPkg p' && (unitPackageName p /= unitPackageName p') comparing :: Ord a => (t -> a) -> t -> t -> Ordering comparing f a b = f a `compare` f b packageFlagErr :: DynFlags -> PackageFlag -> [(UnitInfo, UnusableUnitReason)] -> IO a packageFlagErr dflags flag reasons = packageFlagErr' dflags (pprFlag flag) reasons trustFlagErr :: DynFlags -> TrustFlag -> [(UnitInfo, UnusableUnitReason)] -> IO a trustFlagErr dflags flag reasons = packageFlagErr' dflags (pprTrustFlag flag) reasons packageFlagErr' :: DynFlags -> SDoc -> [(UnitInfo, UnusableUnitReason)] -> IO a packageFlagErr' dflags flag_doc reasons = throwGhcExceptionIO (CmdLineError (showSDoc dflags $ err)) where err = text "cannot satisfy " <> flag_doc <> (if null reasons then Outputable.empty else text ": ") $$ nest 4 (ppr_reasons $$ text "(use -v for more information)") ppr_reasons = vcat (map ppr_reason reasons) ppr_reason (p, reason) = pprReason (ppr (unitId p) <+> text "is") reason pprFlag :: PackageFlag -> SDoc pprFlag flag = case flag of HidePackage p -> text "-hide-package " <> text p ExposePackage doc _ _ -> text doc pprTrustFlag :: TrustFlag -> SDoc pprTrustFlag flag = case flag of TrustPackage p -> text "-trust " <> text p DistrustPackage p -> text "-distrust " <> text p -- ----------------------------------------------------------------------------- -- Wired-in units -- -- See Note [Wired-in units] in GHC.Unit.Module type WiringMap = Map UnitId UnitId findWiredInUnits :: DynFlags -> UnitPrecedenceMap -> [UnitInfo] -- database -> VisibilityMap -- info on what packages are visible -- for wired in selection -> IO ([UnitInfo], -- package database updated for wired in WiringMap) -- map from unit id to wired identity findWiredInUnits dflags prec_map pkgs vis_map = do -- Now we must find our wired-in packages, and rename them to -- their canonical names (eg. base-1.0 ==> base), as described -- in Note [Wired-in units] in GHC.Unit.Module let matches :: UnitInfo -> UnitId -> Bool pc `matches` pid -- See Note [The integer library] in GHC.Builtin.Names | pid == integerUnitId = unitPackageNameString pc `elem` ["integer-gmp", "integer-simple"] pc `matches` pid = unitPackageName pc == PackageName (unitIdFS pid) -- find which package corresponds to each wired-in package -- delete any other packages with the same name -- update the package and any dependencies to point to the new -- one. -- -- When choosing which package to map to a wired-in package -- name, we try to pick the latest version of exposed packages. -- However, if there are no exposed wired in packages available -- (e.g. -hide-all-packages was used), we can't bail: we *have* -- to assign a package for the wired-in package: so we try again -- with hidden packages included to (and pick the latest -- version). -- -- You can also override the default choice by using -ignore-package: -- this works even when there is no exposed wired in package -- available. -- findWiredInUnit :: [UnitInfo] -> UnitId -> IO (Maybe (UnitId, UnitInfo)) findWiredInUnit pkgs wired_pkg = let all_ps = [ p | p <- pkgs, p `matches` wired_pkg ] all_exposed_ps = [ p | p <- all_ps , Map.member (mkUnit p) vis_map ] in case all_exposed_ps of [] -> case all_ps of [] -> notfound many -> pick (head (sortByPreference prec_map many)) many -> pick (head (sortByPreference prec_map many)) where notfound = do debugTraceMsg dflags 2 $ text "wired-in package " <> ftext (unitIdFS wired_pkg) <> text " not found." return Nothing pick :: UnitInfo -> IO (Maybe (UnitId, UnitInfo)) pick pkg = do debugTraceMsg dflags 2 $ text "wired-in package " <> ftext (unitIdFS wired_pkg) <> text " mapped to " <> ppr (unitId pkg) return (Just (wired_pkg, pkg)) mb_wired_in_pkgs <- mapM (findWiredInUnit pkgs) wiredInUnitIds let wired_in_pkgs = catMaybes mb_wired_in_pkgs wiredInMap :: Map UnitId UnitId wiredInMap = Map.fromList [ (unitId realUnitInfo, wiredInUnitId) | (wiredInUnitId, realUnitInfo) <- wired_in_pkgs , not (unitIsIndefinite realUnitInfo) ] updateWiredInDependencies pkgs = map (upd_deps . upd_pkg) pkgs where upd_pkg pkg | Just wiredInUnitId <- Map.lookup (unitId pkg) wiredInMap = pkg { unitId = wiredInUnitId , unitInstanceOf = mkIndefUnitId (unitState dflags) (unitIdFS wiredInUnitId) -- every non instantiated unit is an instance of -- itself (required by Backpack...) -- -- See Note [About Units] in GHC.Unit } | otherwise = pkg upd_deps pkg = pkg { unitDepends = map (upd_wired_in wiredInMap) (unitDepends pkg), unitExposedModules = map (\(k,v) -> (k, fmap (upd_wired_in_mod wiredInMap) v)) (unitExposedModules pkg) } return (updateWiredInDependencies pkgs, wiredInMap) -- Helper functions for rewiring Module and Unit. These -- rewrite Units of modules in wired-in packages to the form known to the -- compiler, as described in Note [Wired-in units] in GHC.Unit.Module. -- -- For instance, base-4.9.0.0 will be rewritten to just base, to match -- what appears in GHC.Builtin.Names. upd_wired_in_mod :: WiringMap -> Module -> Module upd_wired_in_mod wiredInMap (Module uid m) = Module (upd_wired_in_uid wiredInMap uid) m upd_wired_in_uid :: WiringMap -> Unit -> Unit upd_wired_in_uid wiredInMap u = case u of HoleUnit -> HoleUnit RealUnit (Definite uid) -> RealUnit (Definite (upd_wired_in wiredInMap uid)) VirtUnit indef_uid -> VirtUnit $ mkInstantiatedUnit (instUnitInstanceOf indef_uid) (map (\(x,y) -> (x,upd_wired_in_mod wiredInMap y)) (instUnitInsts indef_uid)) upd_wired_in :: WiringMap -> UnitId -> UnitId upd_wired_in wiredInMap key | Just key' <- Map.lookup key wiredInMap = key' | otherwise = key updateVisibilityMap :: WiringMap -> VisibilityMap -> VisibilityMap updateVisibilityMap wiredInMap vis_map = foldl' f vis_map (Map.toList wiredInMap) where f vm (from, to) = case Map.lookup (RealUnit (Definite from)) vis_map of Nothing -> vm Just r -> Map.insert (RealUnit (Definite to)) r (Map.delete (RealUnit (Definite from)) vm) -- ---------------------------------------------------------------------------- -- | The reason why a package is unusable. data UnusableUnitReason = -- | We ignored it explicitly using @-ignore-package@. IgnoredWithFlag -- | This package transitively depends on a package that was never present -- in any of the provided databases. | BrokenDependencies [UnitId] -- | This package transitively depends on a package involved in a cycle. -- Note that the list of 'UnitId' reports the direct dependencies -- of this package that (transitively) depended on the cycle, and not -- the actual cycle itself (which we report separately at high verbosity.) | CyclicDependencies [UnitId] -- | This package transitively depends on a package which was ignored. | IgnoredDependencies [UnitId] -- | This package transitively depends on a package which was -- shadowed by an ABI-incompatible package. | ShadowedDependencies [UnitId] instance Outputable UnusableUnitReason where ppr IgnoredWithFlag = text "[ignored with flag]" ppr (BrokenDependencies uids) = brackets (text "broken" <+> ppr uids) ppr (CyclicDependencies uids) = brackets (text "cyclic" <+> ppr uids) ppr (IgnoredDependencies uids) = brackets (text "ignored" <+> ppr uids) ppr (ShadowedDependencies uids) = brackets (text "shadowed" <+> ppr uids) type UnusableUnits = Map UnitId (UnitInfo, UnusableUnitReason) pprReason :: SDoc -> UnusableUnitReason -> SDoc pprReason pref reason = case reason of IgnoredWithFlag -> pref <+> text "ignored due to an -ignore-package flag" BrokenDependencies deps -> pref <+> text "unusable due to missing dependencies:" $$ nest 2 (hsep (map ppr deps)) CyclicDependencies deps -> pref <+> text "unusable due to cyclic dependencies:" $$ nest 2 (hsep (map ppr deps)) IgnoredDependencies deps -> pref <+> text ("unusable because the -ignore-package flag was used to " ++ "ignore at least one of its dependencies:") $$ nest 2 (hsep (map ppr deps)) ShadowedDependencies deps -> pref <+> text "unusable due to shadowed dependencies:" $$ nest 2 (hsep (map ppr deps)) reportCycles :: DynFlags -> [SCC UnitInfo] -> IO () reportCycles dflags sccs = mapM_ report sccs where report (AcyclicSCC _) = return () report (CyclicSCC vs) = debugTraceMsg dflags 2 $ text "these packages are involved in a cycle:" $$ nest 2 (hsep (map (ppr . unitId) vs)) reportUnusable :: DynFlags -> UnusableUnits -> IO () reportUnusable dflags pkgs = mapM_ report (Map.toList pkgs) where report (ipid, (_, reason)) = debugTraceMsg dflags 2 $ pprReason (text "package" <+> ppr ipid <+> text "is") reason -- ---------------------------------------------------------------------------- -- -- Utilities on the database -- -- | A reverse dependency index, mapping an 'UnitId' to -- the 'UnitId's which have a dependency on it. type RevIndex = Map UnitId [UnitId] -- | Compute the reverse dependency index of a package database. reverseDeps :: UnitInfoMap -> RevIndex reverseDeps db = Map.foldl' go Map.empty db where go r pkg = foldl' (go' (unitId pkg)) r (unitDepends pkg) go' from r to = Map.insertWith (++) to [from] r -- | Given a list of 'UnitId's to remove, a database, -- and a reverse dependency index (as computed by 'reverseDeps'), -- remove those packages, plus any packages which depend on them. -- Returns the pruned database, as well as a list of 'UnitInfo's -- that was removed. removeUnits :: [UnitId] -> RevIndex -> UnitInfoMap -> (UnitInfoMap, [UnitInfo]) removeUnits uids index m = go uids (m,[]) where go [] (m,pkgs) = (m,pkgs) go (uid:uids) (m,pkgs) | Just pkg <- Map.lookup uid m = case Map.lookup uid index of Nothing -> go uids (Map.delete uid m, pkg:pkgs) Just rdeps -> go (rdeps ++ uids) (Map.delete uid m, pkg:pkgs) | otherwise = go uids (m,pkgs) -- | Given a 'UnitInfo' from some 'UnitInfoMap', -- return all entries in 'depends' which correspond to packages -- that do not exist in the index. depsNotAvailable :: UnitInfoMap -> UnitInfo -> [UnitId] depsNotAvailable pkg_map pkg = filter (not . (`Map.member` pkg_map)) (unitDepends pkg) -- | Given a 'UnitInfo' from some 'UnitInfoMap' -- return all entries in 'unitAbiDepends' which correspond to packages -- that do not exist, OR have mismatching ABIs. depsAbiMismatch :: UnitInfoMap -> UnitInfo -> [UnitId] depsAbiMismatch pkg_map pkg = map fst . filter (not . abiMatch) $ unitAbiDepends pkg where abiMatch (dep_uid, abi) | Just dep_pkg <- Map.lookup dep_uid pkg_map = unitAbiHash dep_pkg == abi | otherwise = False -- ----------------------------------------------------------------------------- -- Ignore packages ignoreUnits :: [IgnorePackageFlag] -> [UnitInfo] -> UnusableUnits ignoreUnits flags pkgs = Map.fromList (concatMap doit flags) where doit (IgnorePackage str) = case partition (matchingStr str) pkgs of (ps, _) -> [ (unitId p, (p, IgnoredWithFlag)) | p <- ps ] -- missing package is not an error for -ignore-package, -- because a common usage is to -ignore-package P as -- a preventative measure just in case P exists. -- ---------------------------------------------------------------------------- -- -- Merging databases -- -- | For each package, a mapping from uid -> i indicates that this -- package was brought into GHC by the ith @-package-db@ flag on -- the command line. We use this mapping to make sure we prefer -- packages that were defined later on the command line, if there -- is an ambiguity. type UnitPrecedenceMap = Map UnitId Int -- | Given a list of databases, merge them together, where -- packages with the same unit id in later databases override -- earlier ones. This does NOT check if the resulting database -- makes sense (that's done by 'validateDatabase'). mergeDatabases :: DynFlags -> [UnitDatabase UnitId] -> IO (UnitInfoMap, UnitPrecedenceMap) mergeDatabases dflags = foldM merge (Map.empty, Map.empty) . zip [1..] where merge (pkg_map, prec_map) (i, UnitDatabase db_path db) = do debugTraceMsg dflags 2 $ text "loading package database" <+> text db_path forM_ (Set.toList override_set) $ \pkg -> debugTraceMsg dflags 2 $ text "package" <+> ppr pkg <+> text "overrides a previously defined package" return (pkg_map', prec_map') where db_map = mk_pkg_map db mk_pkg_map = Map.fromList . map (\p -> (unitId p, p)) -- The set of UnitIds which appear in both db and pkgs. These are the -- ones that get overridden. Compute this just to give some -- helpful debug messages at -v2 override_set :: Set UnitId override_set = Set.intersection (Map.keysSet db_map) (Map.keysSet pkg_map) -- Now merge the sets together (NB: in case of duplicate, -- first argument preferred) pkg_map' :: UnitInfoMap pkg_map' = Map.union db_map pkg_map prec_map' :: UnitPrecedenceMap prec_map' = Map.union (Map.map (const i) db_map) prec_map -- | Validates a database, removing unusable packages from it -- (this includes removing packages that the user has explicitly -- ignored.) Our general strategy: -- -- 1. Remove all broken packages (dangling dependencies) -- 2. Remove all packages that are cyclic -- 3. Apply ignore flags -- 4. Remove all packages which have deps with mismatching ABIs -- validateDatabase :: DynFlags -> UnitInfoMap -> (UnitInfoMap, UnusableUnits, [SCC UnitInfo]) validateDatabase dflags pkg_map1 = (pkg_map5, unusable, sccs) where ignore_flags = reverse (ignorePackageFlags dflags) -- Compute the reverse dependency index index = reverseDeps pkg_map1 -- Helper function mk_unusable mk_err dep_matcher m uids = Map.fromList [ (unitId pkg, (pkg, mk_err (dep_matcher m pkg))) | pkg <- uids ] -- Find broken packages directly_broken = filter (not . null . depsNotAvailable pkg_map1) (Map.elems pkg_map1) (pkg_map2, broken) = removeUnits (map unitId directly_broken) index pkg_map1 unusable_broken = mk_unusable BrokenDependencies depsNotAvailable pkg_map2 broken -- Find recursive packages sccs = stronglyConnComp [ (pkg, unitId pkg, unitDepends pkg) | pkg <- Map.elems pkg_map2 ] getCyclicSCC (CyclicSCC vs) = map unitId vs getCyclicSCC (AcyclicSCC _) = [] (pkg_map3, cyclic) = removeUnits (concatMap getCyclicSCC sccs) index pkg_map2 unusable_cyclic = mk_unusable CyclicDependencies depsNotAvailable pkg_map3 cyclic -- Apply ignore flags directly_ignored = ignoreUnits ignore_flags (Map.elems pkg_map3) (pkg_map4, ignored) = removeUnits (Map.keys directly_ignored) index pkg_map3 unusable_ignored = mk_unusable IgnoredDependencies depsNotAvailable pkg_map4 ignored -- Knock out packages whose dependencies don't agree with ABI -- (i.e., got invalidated due to shadowing) directly_shadowed = filter (not . null . depsAbiMismatch pkg_map4) (Map.elems pkg_map4) (pkg_map5, shadowed) = removeUnits (map unitId directly_shadowed) index pkg_map4 unusable_shadowed = mk_unusable ShadowedDependencies depsAbiMismatch pkg_map5 shadowed unusable = directly_ignored `Map.union` unusable_ignored `Map.union` unusable_broken `Map.union` unusable_cyclic `Map.union` unusable_shadowed -- ----------------------------------------------------------------------------- -- When all the command-line options are in, we can process our package -- settings and populate the package state. mkUnitState :: DynFlags -- initial databases, in the order they were specified on -- the command line (later databases shadow earlier ones) -> [UnitDatabase UnitId] -> IO UnitState mkUnitState dflags dbs = do {- Plan. There are two main steps for making the package state: 1. We want to build a single, unified package database based on all of the input databases, which upholds the invariant that there is only one package per any UnitId and there are no dangling dependencies. We'll do this by merging, and then successively filtering out bad dependencies. a) Merge all the databases together. If an input database defines unit ID that is already in the unified database, that package SHADOWS the existing package in the current unified database. Note that order is important: packages defined later in the list of command line arguments shadow those defined earlier. b) Remove all packages with missing dependencies, or mutually recursive dependencies. b) Remove packages selected by -ignore-package from input database c) Remove all packages which depended on packages that are now shadowed by an ABI-incompatible package d) report (with -v) any packages that were removed by steps 1-3 2. We want to look at the flags controlling package visibility, and build a mapping of what module names are in scope and where they live. a) on the final, unified database, we apply -trust/-distrust flags directly, modifying the database so that the 'trusted' field has the correct value. b) we use the -package/-hide-package flags to compute a visibility map, stating what packages are "exposed" for the purposes of computing the module map. * if any flag refers to a package which was removed by 1-5, then we can give an error message explaining why * if -hide-all-packages was not specified, this step also hides packages which are superseded by later exposed packages * this step is done TWICE if -plugin-package/-hide-all-plugin-packages are used c) based on the visibility map, we pick wired packages and rewrite them to have the expected unitId. d) finally, using the visibility map and the package database, we build a mapping saying what every in scope module name points to. -} -- This, and the other reverse's that you will see, are due to the fact that -- packageFlags, pluginPackageFlags, etc. are all specified in *reverse* order -- than they are on the command line. let other_flags = reverse (packageFlags dflags) debugTraceMsg dflags 2 $ text "package flags" <+> ppr other_flags -- Merge databases together, without checking validity (pkg_map1, prec_map) <- mergeDatabases dflags dbs -- Now that we've merged everything together, prune out unusable -- packages. let (pkg_map2, unusable, sccs) = validateDatabase dflags pkg_map1 reportCycles dflags sccs reportUnusable dflags unusable -- Apply trust flags (these flags apply regardless of whether -- or not packages are visible or not) pkgs1 <- foldM (applyTrustFlag dflags prec_map unusable) (Map.elems pkg_map2) (reverse (trustFlags dflags)) let prelim_pkg_db = mkUnitInfoMap pkgs1 -- -- Calculate the initial set of units from package databases, prior to any package flags. -- -- Conceptually, we select the latest versions of all valid (not unusable) *packages* -- (not units). This is empty if we have -hide-all-packages. -- -- Then we create an initial visibility map with default visibilities for all -- exposed, definite units which belong to the latest valid packages. -- let preferLater unit unit' = case compareByPreference prec_map unit unit' of GT -> unit _ -> unit' addIfMorePreferable m unit = addToUDFM_C preferLater m (fsPackageName unit) unit -- This is the set of maximally preferable packages. In fact, it is a set of -- most preferable *units* keyed by package name, which act as stand-ins in -- for "a package in a database". We use units here because we don't have -- "a package in a database" as a type currently. mostPreferablePackageReps = if gopt Opt_HideAllPackages dflags then emptyUDFM else foldl' addIfMorePreferable emptyUDFM pkgs1 -- When exposing units, we want to consider all of those in the most preferable -- packages. We can implement that by looking for units that are equi-preferable -- with the most preferable unit for package. Being equi-preferable means that -- they must be in the same database, with the same version, and the same package name. -- -- We must take care to consider all these units and not just the most -- preferable one, otherwise we can end up with problems like #16228. mostPreferable u = case lookupUDFM mostPreferablePackageReps (fsPackageName u) of Nothing -> False Just u' -> compareByPreference prec_map u u' == EQ vis_map1 = foldl' (\vm p -> -- Note: we NEVER expose indefinite packages by -- default, because it's almost assuredly not -- what you want (no mix-in linking has occurred). if unitIsExposed p && unitIsDefinite (mkUnit p) && mostPreferable p then Map.insert (mkUnit p) UnitVisibility { uv_expose_all = True, uv_renamings = [], uv_package_name = First (Just (fsPackageName p)), uv_requirements = Map.empty, uv_explicit = False } vm else vm) Map.empty pkgs1 -- -- Compute a visibility map according to the command-line flags (-package, -- -hide-package). This needs to know about the unusable packages, since if a -- user tries to enable an unusable package, we should let them know. -- vis_map2 <- foldM (applyPackageFlag dflags prec_map prelim_pkg_db emptyUniqSet unusable (gopt Opt_HideAllPackages dflags) pkgs1) vis_map1 other_flags -- -- Sort out which packages are wired in. This has to be done last, since -- it modifies the unit ids of wired in packages, but when we process -- package arguments we need to key against the old versions. -- (pkgs2, wired_map) <- findWiredInUnits dflags prec_map pkgs1 vis_map2 let pkg_db = mkUnitInfoMap pkgs2 -- Update the visibility map, so we treat wired packages as visible. let vis_map = updateVisibilityMap wired_map vis_map2 let hide_plugin_pkgs = gopt Opt_HideAllPluginPackages dflags plugin_vis_map <- case pluginPackageFlags dflags of -- common case; try to share the old vis_map [] | not hide_plugin_pkgs -> return vis_map | otherwise -> return Map.empty _ -> do let plugin_vis_map1 | hide_plugin_pkgs = Map.empty -- Use the vis_map PRIOR to wired in, -- because otherwise applyPackageFlag -- won't work. | otherwise = vis_map2 plugin_vis_map2 <- foldM (applyPackageFlag dflags prec_map prelim_pkg_db emptyUniqSet unusable (gopt Opt_HideAllPluginPackages dflags) pkgs1) plugin_vis_map1 (reverse (pluginPackageFlags dflags)) -- Updating based on wired in packages is mostly -- good hygiene, because it won't matter: no wired in -- package has a compiler plugin. -- TODO: If a wired in package had a compiler plugin, -- and you tried to pick different wired in packages -- with the plugin flags and the normal flags... what -- would happen? I don't know! But this doesn't seem -- likely to actually happen. return (updateVisibilityMap wired_map plugin_vis_map2) -- -- Here we build up a set of the packages mentioned in -package -- flags on the command line; these are called the "preload" -- packages. we link these packages in eagerly. The preload set -- should contain at least rts & base, which is why we pretend that -- the command line contains -package rts & -package base. -- -- NB: preload IS important even for type-checking, because we -- need the correct include path to be set. -- let preload1 = Map.keys (Map.filter uv_explicit vis_map) let pkgname_map = foldl' add Map.empty pkgs2 where add pn_map p = Map.insert (unitPackageName p) (unitInstanceOf p) pn_map -- The explicitUnits accurately reflects the set of units we have turned -- on; as such, it also is the only way one can come up with requirements. -- The requirement context is directly based off of this: we simply -- look for nested unit IDs that are directly fed holes: the requirements -- of those units are precisely the ones we need to track let explicit_pkgs = Map.keys vis_map req_ctx = Map.map (Set.toList) $ Map.unionsWith Set.union (map uv_requirements (Map.elems vis_map)) let preload2 = preload1 let -- add base & rts to the preload units basicLinkedUnits | gopt Opt_AutoLinkPackages dflags = fmap (RealUnit . Definite) $ filter (flip Map.member pkg_db) [baseUnitId, rtsUnitId] | otherwise = [] -- but in any case remove the current unit from the set of -- preloaded units so that base/rts does not end up in the -- set up units package when we are just building it -- (NB: since this is only relevant for base/rts it doesn't matter -- that homeUnitInstantiations is not wired yet) -- preload3 = ordNub $ filter (/= homeUnit dflags) $ (basicLinkedUnits ++ preload2) -- Close the preload packages with their dependencies let dep_preload_err = closeUnitDeps pkg_db (zip (map toUnitId preload3) (repeat Nothing)) dep_preload <- throwErr dflags dep_preload_err let mod_map1 = mkModuleNameProvidersMap dflags pkg_db emptyUniqSet vis_map mod_map2 = mkUnusableModuleNameProvidersMap unusable mod_map = Map.union mod_map1 mod_map2 -- Force pstate to avoid leaking the dflags passed to mkUnitState let !pstate = UnitState { preloadUnits = dep_preload , explicitUnits = explicit_pkgs , unitInfoMap = pkg_db , preloadClosure = emptyUniqSet , moduleNameProvidersMap = mod_map , pluginModuleNameProvidersMap = mkModuleNameProvidersMap dflags pkg_db emptyUniqSet plugin_vis_map , packageNameMap = pkgname_map , wireMap = wired_map , unwireMap = Map.fromList [ (v,k) | (k,v) <- Map.toList wired_map ] , requirementContext = req_ctx -- when the home unit is indefinite, it means we are type-checking it -- only (not producing any code). Hence we can use virtual units -- instantiated on-the-fly (see Note [About units] in GHC.Unit) , allowVirtualUnits = homeUnitIsIndefinite dflags } return pstate -- | Given a wired-in 'Unit', "unwire" it into the 'Unit' -- that it was recorded as in the package database. unwireUnit :: UnitState -> Unit-> Unit unwireUnit state uid@(RealUnit (Definite def_uid)) = maybe uid (RealUnit . Definite) (Map.lookup def_uid (unwireMap state)) unwireUnit _ uid = uid -- ----------------------------------------------------------------------------- -- | Makes the mapping from module to package info -- Slight irritation: we proceed by leafing through everything -- in the installed package database, which makes handling indefinite -- packages a bit bothersome. mkModuleNameProvidersMap :: DynFlags -> UnitInfoMap -> PreloadUnitClosure -> VisibilityMap -> ModuleNameProvidersMap mkModuleNameProvidersMap dflags pkg_map closure vis_map = -- What should we fold on? Both situations are awkward: -- -- * Folding on the visibility map means that we won't create -- entries for packages that aren't mentioned in vis_map -- (e.g., hidden packages, causing #14717) -- -- * Folding on pkg_map is awkward because if we have an -- Backpack instantiation, we need to possibly add a -- package from pkg_map multiple times to the actual -- ModuleNameProvidersMap. Also, we don't really want -- definite package instantiations to show up in the -- list of possibilities. -- -- So what will we do instead? We'll extend vis_map with -- entries for every definite (for non-Backpack) and -- indefinite (for Backpack) package, so that we get the -- hidden entries we need. Map.foldlWithKey extend_modmap emptyMap vis_map_extended where vis_map_extended = Map.union vis_map {- preferred -} default_vis default_vis = Map.fromList [ (mkUnit pkg, mempty) | pkg <- Map.elems pkg_map -- Exclude specific instantiations of an indefinite -- package , unitIsIndefinite pkg || null (unitInstantiations pkg) ] emptyMap = Map.empty setOrigins m os = fmap (const os) m extend_modmap modmap uid UnitVisibility { uv_expose_all = b, uv_renamings = rns } = addListTo modmap theBindings where pkg = unit_lookup uid theBindings :: [(ModuleName, Map Module ModuleOrigin)] theBindings = newBindings b rns newBindings :: Bool -> [(ModuleName, ModuleName)] -> [(ModuleName, Map Module ModuleOrigin)] newBindings e rns = es e ++ hiddens ++ map rnBinding rns rnBinding :: (ModuleName, ModuleName) -> (ModuleName, Map Module ModuleOrigin) rnBinding (orig, new) = (new, setOrigins origEntry fromFlag) where origEntry = case lookupUFM esmap orig of Just r -> r Nothing -> throwGhcException (CmdLineError (showSDoc dflags (text "package flag: could not find module name" <+> ppr orig <+> text "in package" <+> ppr pk))) es :: Bool -> [(ModuleName, Map Module ModuleOrigin)] es e = do (m, exposedReexport) <- exposed_mods let (pk', m', origin') = case exposedReexport of Nothing -> (pk, m, fromExposedModules e) Just (Module pk' m') -> let pkg' = unit_lookup pk' in (pk', m', fromReexportedModules e pkg') return (m, mkModMap pk' m' origin') esmap :: UniqFM (Map Module ModuleOrigin) esmap = listToUFM (es False) -- parameter here doesn't matter, orig will -- be overwritten hiddens = [(m, mkModMap pk m ModHidden) | m <- hidden_mods] pk = mkUnit pkg unit_lookup uid = lookupUnit' (homeUnitIsIndefinite dflags) pkg_map closure uid `orElse` pprPanic "unit_lookup" (ppr uid) exposed_mods = unitExposedModules pkg hidden_mods = unitHiddenModules pkg -- | Make a 'ModuleNameProvidersMap' covering a set of unusable packages. mkUnusableModuleNameProvidersMap :: UnusableUnits -> ModuleNameProvidersMap mkUnusableModuleNameProvidersMap unusables = Map.foldl' extend_modmap Map.empty unusables where extend_modmap modmap (pkg, reason) = addListTo modmap bindings where bindings :: [(ModuleName, Map Module ModuleOrigin)] bindings = exposed ++ hidden origin = ModUnusable reason pkg_id = mkUnit pkg exposed = map get_exposed exposed_mods hidden = [(m, mkModMap pkg_id m origin) | m <- hidden_mods] get_exposed (mod, Just mod') = (mod, Map.singleton mod' origin) get_exposed (mod, _) = (mod, mkModMap pkg_id mod origin) exposed_mods = unitExposedModules pkg hidden_mods = unitHiddenModules pkg -- | Add a list of key/value pairs to a nested map. -- -- The outer map is processed with 'Data.Map.Strict' to prevent memory leaks -- when reloading modules in GHCi (see #4029). This ensures that each -- value is forced before installing into the map. addListTo :: (Monoid a, Ord k1, Ord k2) => Map k1 (Map k2 a) -> [(k1, Map k2 a)] -> Map k1 (Map k2 a) addListTo = foldl' merge where merge m (k, v) = MapStrict.insertWith (Map.unionWith mappend) k v m -- | Create a singleton module mapping mkModMap :: Unit -> ModuleName -> ModuleOrigin -> Map Module ModuleOrigin mkModMap pkg mod = Map.singleton (mkModule pkg mod) -- ----------------------------------------------------------------------------- -- Extracting information from the packages in scope -- Many of these functions take a list of packages: in those cases, -- the list is expected to contain the "dependent packages", -- i.e. those packages that were found to be depended on by the -- current module/program. These can be auto or non-auto packages, it -- doesn't really matter. The list is always combined with the list -- of preload (command-line) packages to determine which packages to -- use. -- | Find all the include directories in these and the preload packages getUnitIncludePath :: DynFlags -> [UnitId] -> IO [String] getUnitIncludePath dflags pkgs = collectIncludeDirs `fmap` getPreloadUnitsAnd dflags pkgs collectIncludeDirs :: [UnitInfo] -> [FilePath] collectIncludeDirs ps = ordNub (filter notNull (concatMap unitIncludeDirs ps)) -- | Find all the library paths in these and the preload packages getUnitLibraryPath :: DynFlags -> [UnitId] -> IO [String] getUnitLibraryPath dflags pkgs = collectLibraryPaths dflags `fmap` getPreloadUnitsAnd dflags pkgs collectLibraryPaths :: DynFlags -> [UnitInfo] -> [FilePath] collectLibraryPaths dflags = ordNub . filter notNull . concatMap (libraryDirsForWay dflags) -- | Find all the link options in these and the preload packages, -- returning (package hs lib options, extra library options, other flags) getUnitLinkOpts :: DynFlags -> [UnitId] -> IO ([String], [String], [String]) getUnitLinkOpts dflags pkgs = collectLinkOpts dflags `fmap` getPreloadUnitsAnd dflags pkgs collectLinkOpts :: DynFlags -> [UnitInfo] -> ([String], [String], [String]) collectLinkOpts dflags ps = ( concatMap (map ("-l" ++) . packageHsLibs dflags) ps, concatMap (map ("-l" ++) . unitExtDepLibsSys) ps, concatMap unitLinkerOptions ps ) collectArchives :: DynFlags -> UnitInfo -> IO [FilePath] collectArchives dflags pc = filterM doesFileExist [ searchPath ("lib" ++ lib ++ ".a") | searchPath <- searchPaths , lib <- libs ] where searchPaths = ordNub . filter notNull . libraryDirsForWay dflags $ pc libs = packageHsLibs dflags pc ++ unitExtDepLibsSys pc getLibs :: DynFlags -> [UnitId] -> IO [(String,String)] getLibs dflags pkgs = do ps <- getPreloadUnitsAnd dflags pkgs fmap concat . forM ps $ \p -> do let candidates = [ (l f, f) | l <- collectLibraryPaths dflags [p] , f <- (\n -> "lib" ++ n ++ ".a") <$> packageHsLibs dflags p ] filterM (doesFileExist . fst) candidates packageHsLibs :: DynFlags -> UnitInfo -> [String] packageHsLibs dflags p = map (mkDynName . addSuffix) (unitLibraries p) where ways0 = ways dflags ways1 = Set.filter (/= WayDyn) ways0 -- the name of a shared library is libHSfoo-ghc.so -- we leave out the _dyn, because it is superfluous -- debug and profiled RTSs include support for -eventlog ways2 | WayDebug `Set.member` ways1 || WayProf `Set.member` ways1 = Set.filter (/= WayEventLog) ways1 | otherwise = ways1 tag = waysTag (Set.filter (not . wayRTSOnly) ways2) rts_tag = waysTag ways2 mkDynName x | WayDyn `Set.notMember` ways dflags = x | "HS" `isPrefixOf` x = x ++ '-':programName dflags ++ projectVersion dflags -- For non-Haskell libraries, we use the name "Cfoo". The .a -- file is libCfoo.a, and the .so is libfoo.so. That way the -- linker knows what we mean for the vanilla (-lCfoo) and dyn -- (-lfoo) ways. We therefore need to strip the 'C' off here. | Just x' <- stripPrefix "C" x = x' | otherwise = panic ("Don't understand library name " ++ x) -- Add _thr and other rts suffixes to packages named -- `rts` or `rts-1.0`. Why both? Traditionally the rts -- package is called `rts` only. However the tooling -- usually expects a package name to have a version. -- As such we will gradually move towards the `rts-1.0` -- package name, at which point the `rts` package name -- will eventually be unused. -- -- This change elevates the need to add custom hooks -- and handling specifically for the `rts` package for -- example in ghc-cabal. addSuffix rts@"HSrts" = rts ++ (expandTag rts_tag) addSuffix rts@"HSrts-1.0"= rts ++ (expandTag rts_tag) addSuffix other_lib = other_lib ++ (expandTag tag) expandTag t | null t = "" | otherwise = '_':t -- | Either the 'unitLibraryDirs' or 'unitLibraryDynDirs' as appropriate for the way. libraryDirsForWay :: DynFlags -> UnitInfo -> [String] libraryDirsForWay dflags | WayDyn `elem` ways dflags = unitLibraryDynDirs | otherwise = unitLibraryDirs -- | Find all the C-compiler options in these and the preload packages getUnitExtraCcOpts :: DynFlags -> [UnitId] -> IO [String] getUnitExtraCcOpts dflags pkgs = do ps <- getPreloadUnitsAnd dflags pkgs return (concatMap unitCcOptions ps) -- | Find all the package framework paths in these and the preload packages getUnitFrameworkPath :: DynFlags -> [UnitId] -> IO [String] getUnitFrameworkPath dflags pkgs = do ps <- getPreloadUnitsAnd dflags pkgs return (ordNub (filter notNull (concatMap unitExtDepFrameworkDirs ps))) -- | Find all the package frameworks in these and the preload packages getUnitFrameworks :: DynFlags -> [UnitId] -> IO [String] getUnitFrameworks dflags pkgs = do ps <- getPreloadUnitsAnd dflags pkgs return (concatMap unitExtDepFrameworks ps) -- ----------------------------------------------------------------------------- -- Package Utils -- | Takes a 'ModuleName', and if the module is in any package returns -- list of modules which take that name. lookupModuleInAllUnits :: UnitState -> ModuleName -> [(Module, UnitInfo)] lookupModuleInAllUnits pkgs m = case lookupModuleWithSuggestions pkgs m Nothing of LookupFound a b -> [(a,b)] LookupMultiple rs -> map f rs where f (m,_) = (m, expectJust "lookupModule" (lookupUnit pkgs (moduleUnit m))) _ -> [] -- | The result of performing a lookup data LookupResult = -- | Found the module uniquely, nothing else to do LookupFound Module UnitInfo -- | Multiple modules with the same name in scope | LookupMultiple [(Module, ModuleOrigin)] -- | No modules found, but there were some hidden ones with -- an exact name match. First is due to package hidden, second -- is due to module being hidden | LookupHidden [(Module, ModuleOrigin)] [(Module, ModuleOrigin)] -- | No modules found, but there were some unusable ones with -- an exact name match | LookupUnusable [(Module, ModuleOrigin)] -- | Nothing found, here are some suggested different names | LookupNotFound [ModuleSuggestion] -- suggestions data ModuleSuggestion = SuggestVisible ModuleName Module ModuleOrigin | SuggestHidden ModuleName Module ModuleOrigin lookupModuleWithSuggestions :: UnitState -> ModuleName -> Maybe FastString -> LookupResult lookupModuleWithSuggestions pkgs = lookupModuleWithSuggestions' pkgs (moduleNameProvidersMap pkgs) lookupPluginModuleWithSuggestions :: UnitState -> ModuleName -> Maybe FastString -> LookupResult lookupPluginModuleWithSuggestions pkgs = lookupModuleWithSuggestions' pkgs (pluginModuleNameProvidersMap pkgs) lookupModuleWithSuggestions' :: UnitState -> ModuleNameProvidersMap -> ModuleName -> Maybe FastString -> LookupResult lookupModuleWithSuggestions' pkgs mod_map m mb_pn = case Map.lookup m mod_map of Nothing -> LookupNotFound suggestions Just xs -> case foldl' classify ([],[],[], []) (Map.toList xs) of ([], [], [], []) -> LookupNotFound suggestions (_, _, _, [(m, _)]) -> LookupFound m (mod_unit m) (_, _, _, exposed@(_:_)) -> LookupMultiple exposed ([], [], unusable@(_:_), []) -> LookupUnusable unusable (hidden_pkg, hidden_mod, _, []) -> LookupHidden hidden_pkg hidden_mod where classify (hidden_pkg, hidden_mod, unusable, exposed) (m, origin0) = let origin = filterOrigin mb_pn (mod_unit m) origin0 x = (m, origin) in case origin of ModHidden -> (hidden_pkg, x:hidden_mod, unusable, exposed) ModUnusable _ -> (hidden_pkg, hidden_mod, x:unusable, exposed) _ | originEmpty origin -> (hidden_pkg, hidden_mod, unusable, exposed) | originVisible origin -> (hidden_pkg, hidden_mod, unusable, x:exposed) | otherwise -> (x:hidden_pkg, hidden_mod, unusable, exposed) unit_lookup p = lookupUnit pkgs p `orElse` pprPanic "lookupModuleWithSuggestions" (ppr p <+> ppr m) mod_unit = unit_lookup . moduleUnit -- Filters out origins which are not associated with the given package -- qualifier. No-op if there is no package qualifier. Test if this -- excluded all origins with 'originEmpty'. filterOrigin :: Maybe FastString -> UnitInfo -> ModuleOrigin -> ModuleOrigin filterOrigin Nothing _ o = o filterOrigin (Just pn) pkg o = case o of ModHidden -> if go pkg then ModHidden else mempty (ModUnusable _) -> if go pkg then o else mempty ModOrigin { fromOrigUnit = e, fromExposedReexport = res, fromHiddenReexport = rhs } -> ModOrigin { fromOrigUnit = if go pkg then e else Nothing , fromExposedReexport = filter go res , fromHiddenReexport = filter go rhs , fromPackageFlag = False -- always excluded } where go pkg = pn == fsPackageName pkg suggestions = fuzzyLookup (moduleNameString m) all_mods all_mods :: [(String, ModuleSuggestion)] -- All modules all_mods = sortBy (comparing fst) $ [ (moduleNameString m, suggestion) | (m, e) <- Map.toList (moduleNameProvidersMap pkgs) , suggestion <- map (getSuggestion m) (Map.toList e) ] getSuggestion name (mod, origin) = (if originVisible origin then SuggestVisible else SuggestHidden) name mod origin listVisibleModuleNames :: UnitState -> [ModuleName] listVisibleModuleNames state = map fst (filter visible (Map.toList (moduleNameProvidersMap state))) where visible (_, ms) = any originVisible (Map.elems ms) -- | Lookup 'UnitInfo' for every preload unit, for every unit used to -- instantiate the current unit, and for every unit explicitly passed in the -- given list of UnitId. getPreloadUnitsAnd :: DynFlags -> [UnitId] -> IO [UnitInfo] getPreloadUnitsAnd dflags ids0 = let ids = ids0 ++ -- An indefinite package will have insts to HOLE, -- which is not a real package. Don't look it up. -- Fixes #14525 if homeUnitIsIndefinite dflags then [] else map (toUnitId . moduleUnit . snd) (homeUnitInstantiations dflags) state = unitState dflags pkg_map = unitInfoMap state preload = preloadUnits state in do all_pkgs <- throwErr dflags (closeUnitDeps' pkg_map preload (ids `zip` repeat Nothing)) return (map (unsafeLookupUnitId state) all_pkgs) throwErr :: DynFlags -> MaybeErr MsgDoc a -> IO a throwErr dflags m = case m of Failed e -> throwGhcExceptionIO (CmdLineError (showSDoc dflags e)) Succeeded r -> return r -- | Takes a list of UnitIds (and their "parent" dependency, used for error -- messages), and returns the list with dependencies included, in reverse -- dependency order (a units appears before those it depends on). closeUnitDeps :: UnitInfoMap -> [(UnitId,Maybe UnitId)] -> MaybeErr MsgDoc [UnitId] closeUnitDeps pkg_map ps = closeUnitDeps' pkg_map [] ps -- | Similar to closeUnitDeps but takes a list of already loaded units as an -- additional argument. closeUnitDeps' :: UnitInfoMap -> [UnitId] -> [(UnitId,Maybe UnitId)] -> MaybeErr MsgDoc [UnitId] closeUnitDeps' pkg_map current_ids ps = foldM (add_unit pkg_map) current_ids ps -- | Add a UnitId and those it depends on (recursively) to the given list of -- UnitIds if they are not already in it. Return a list in reverse dependency -- order (a unit appears before those it depends on). -- -- The UnitId is looked up in the given UnitInfoMap (to find its dependencies). -- It it's not found, the optional parent unit is used to return a more precise -- error message ("dependency of "). add_unit :: UnitInfoMap -> [UnitId] -> (UnitId,Maybe UnitId) -> MaybeErr MsgDoc [UnitId] add_unit pkg_map ps (p, mb_parent) | p `elem` ps = return ps -- Check if we've already added this unit | otherwise = case lookupUnitId' pkg_map p of Nothing -> Failed $ (ftext (fsLit "unknown package:") <+> ppr p) <> case mb_parent of Nothing -> Outputable.empty Just parent -> space <> parens (text "dependency of" <+> ftext (unitIdFS parent)) Just info -> do -- Add the unit's dependents also ps' <- foldM add_unit_key ps (unitDepends info) return (p : ps') where add_unit_key ps key = add_unit pkg_map ps (key, Just p) -- ----------------------------------------------------------------------------- -- Cabal packages may contain several components (programs, libraries, etc.). -- As far as GHC is concerned, installed package components ("units") are -- identified by an opaque IndefUnitId string provided by Cabal. As the string -- contains a hash, we don't want to display it to users so GHC queries the -- database to retrieve some infos about the original source package (name, -- version, component name). -- -- Instead we want to display: packagename-version[:componentname] -- -- Component name is only displayed if it isn't the default library -- -- To do this we need to query the database (cached in DynFlags). We cache -- these details in the IndefUnitId itself because we don't want to query -- DynFlags each time we pretty-print the IndefUnitId -- mkIndefUnitId :: UnitState -> FastString -> IndefUnitId mkIndefUnitId pkgstate raw = let uid = UnitId raw in case lookupUnitId pkgstate uid of Nothing -> Indefinite uid Nothing -- we didn't find the unit at all Just c -> Indefinite uid $ Just $ mkUnitPprInfo c -- | Update component ID details from the database updateIndefUnitId :: UnitState -> IndefUnitId -> IndefUnitId updateIndefUnitId pkgstate uid = mkIndefUnitId pkgstate (unitIdFS (indefUnit uid)) displayUnitId :: UnitState -> UnitId -> Maybe String displayUnitId pkgstate uid = fmap unitPackageIdString (lookupUnitId pkgstate uid) -- ----------------------------------------------------------------------------- -- Displaying packages -- | Show (very verbose) package info pprUnits :: UnitState -> SDoc pprUnits = pprUnitsWith pprUnitInfo pprUnitsWith :: (UnitInfo -> SDoc) -> UnitState -> SDoc pprUnitsWith pprIPI pkgstate = vcat (intersperse (text "---") (map pprIPI (listUnitInfo pkgstate))) -- | Show simplified unit info. -- -- The idea is to only print package id, and any information that might -- be different from the package databases (exposure, trust) pprUnitsSimple :: UnitState -> SDoc pprUnitsSimple = pprUnitsWith pprIPI where pprIPI ipi = let i = unitIdFS (unitId ipi) e = if unitIsExposed ipi then text "E" else text " " t = if unitIsTrusted ipi then text "T" else text " " in e <> t <> text " " <> ftext i -- | Show the mapping of modules to where they come from. pprModuleMap :: ModuleNameProvidersMap -> SDoc pprModuleMap mod_map = vcat (map pprLine (Map.toList mod_map)) where pprLine (m,e) = ppr m $$ nest 50 (vcat (map (pprEntry m) (Map.toList e))) pprEntry :: Outputable a => ModuleName -> (Module, a) -> SDoc pprEntry m (m',o) | m == moduleName m' = ppr (moduleUnit m') <+> parens (ppr o) | otherwise = ppr m' <+> parens (ppr o) fsPackageName :: UnitInfo -> FastString fsPackageName info = fs where PackageName fs = unitPackageName info -- | Given a fully instantiated 'InstantiatedUnit', improve it into a -- 'RealUnit' if we can find it in the package database. improveUnit :: UnitState -> Unit -> Unit improveUnit state u = improveUnit' (unitInfoMap state) (preloadClosure state) u -- | Given a fully instantiated 'InstantiatedUnit', improve it into a -- 'RealUnit' if we can find it in the package database. improveUnit' :: UnitInfoMap -> PreloadUnitClosure -> Unit -> Unit improveUnit' _ _ uid@(RealUnit _) = uid -- short circuit improveUnit' pkg_map closure uid = -- Do NOT lookup indefinite ones, they won't be useful! case lookupUnit' False pkg_map closure uid of Nothing -> uid Just pkg -> -- Do NOT improve if the indefinite unit id is not -- part of the closure unique set. See -- Note [VirtUnit to RealUnit improvement] if unitId pkg `elementOfUniqSet` closure then mkUnit pkg else uid -- | Check the database to see if we already have an installed unit that -- corresponds to the given 'InstantiatedUnit'. -- -- Return a `UnitId` which either wraps the `InstantiatedUnit` unchanged or -- references a matching installed unit. -- -- See Note [VirtUnit to RealUnit improvement] instUnitToUnit :: UnitState -> InstantiatedUnit -> Unit instUnitToUnit state iuid = -- NB: suppose that we want to compare the instantiated -- unit p[H=impl:H] against p+abcd (where p+abcd -- happens to be the existing, installed version of -- p[H=impl:H]. If we *only* wrap in p[H=impl:H] -- VirtUnit, they won't compare equal; only -- after improvement will the equality hold. improveUnit state $ VirtUnit iuid -- | Substitution on module variables, mapping module names to module -- identifiers. type ShHoleSubst = ModuleNameEnv Module -- | Substitutes holes in a 'Module'. NOT suitable for being called -- directly on a 'nameModule', see Note [Representation of module/name variable]. -- @p[A=]:B@ maps to @p[A=q():A]:B@ with @A=q():A@; -- similarly, @@ maps to @q():A@. renameHoleModule :: UnitState -> ShHoleSubst -> Module -> Module renameHoleModule state = renameHoleModule' (unitInfoMap state) (preloadClosure state) -- | Substitutes holes in a 'Unit', suitable for renaming when -- an include occurs; see Note [Representation of module/name variable]. -- -- @p[A=]@ maps to @p[A=]@ with @A=@. renameHoleUnit :: UnitState -> ShHoleSubst -> Unit -> Unit renameHoleUnit state = renameHoleUnit' (unitInfoMap state) (preloadClosure state) -- | Like 'renameHoleModule', but requires only 'ClosureUnitInfoMap' -- so it can be used by "Packages". renameHoleModule' :: UnitInfoMap -> PreloadUnitClosure -> ShHoleSubst -> Module -> Module renameHoleModule' pkg_map closure env m | not (isHoleModule m) = let uid = renameHoleUnit' pkg_map closure env (moduleUnit m) in mkModule uid (moduleName m) | Just m' <- lookupUFM env (moduleName m) = m' -- NB m = , that's what's in scope. | otherwise = m -- | Like 'renameHoleUnit, but requires only 'ClosureUnitInfoMap' -- so it can be used by "Packages". renameHoleUnit' :: UnitInfoMap -> PreloadUnitClosure -> ShHoleSubst -> Unit -> Unit renameHoleUnit' pkg_map closure env uid = case uid of (VirtUnit InstantiatedUnit{ instUnitInstanceOf = cid , instUnitInsts = insts , instUnitHoles = fh }) -> if isNullUFM (intersectUFM_C const (udfmToUfm (getUniqDSet fh)) env) then uid -- Functorially apply the substitution to the instantiation, -- then check the 'ClosureUnitInfoMap' to see if there is -- a compiled version of this 'InstantiatedUnit' we can improve to. -- See Note [VirtUnit to RealUnit improvement] else improveUnit' pkg_map closure $ mkVirtUnit cid (map (\(k,v) -> (k, renameHoleModule' pkg_map closure env v)) insts) _ -> uid -- | Injects an 'InstantiatedModule' to 'Module' (see also -- 'instUnitToUnit'. instModuleToModule :: UnitState -> InstantiatedModule -> Module instModuleToModule pkgstate (Module iuid mod_name) = mkModule (instUnitToUnit pkgstate iuid) mod_name