{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# OPTIONS_GHC -O2 -funbox-strict-fields #-} -- We always optimise this, otherwise performance of a non-optimised -- compiler is severely affected -- -- (c) The University of Glasgow 2002-2006 -- -- Binary I/O library, with special tweaks for GHC -- -- Based on the nhc98 Binary library, which is copyright -- (c) Malcolm Wallace and Colin Runciman, University of York, 1998. -- Under the terms of the license for that software, we must tell you -- where you can obtain the original version of the Binary library, namely -- http://www.cs.york.ac.uk/fp/nhc98/ module GHC.Utils.Binary ( {-type-} Bin, {-class-} Binary(..), {-type-} BinHandle, SymbolTable, Dictionary, BinData(..), dataHandle, handleData, openBinMem, -- closeBin, seekBin, tellBin, castBin, withBinBuffer, writeBinMem, readBinMem, putAt, getAt, -- * For writing instances putByte, getByte, -- * Variable length encodings putULEB128, getULEB128, putSLEB128, getSLEB128, -- * Fixed length encoding FixedLengthEncoding(..), -- * Lazy Binary I/O lazyGet, lazyPut, -- * User data UserData(..), getUserData, setUserData, newReadState, newWriteState, putDictionary, getDictionary, putFS, ) where #include "HsVersions.h" import GHC.Prelude import {-# SOURCE #-} GHC.Types.Name (Name) import GHC.Data.FastString import GHC.Utils.Panic.Plain import GHC.Types.Unique.FM import GHC.Data.FastMutInt import GHC.Utils.Fingerprint import GHC.Types.SrcLoc import Control.DeepSeq import Foreign import Data.Array import Data.ByteString (ByteString) import qualified Data.ByteString.Internal as BS import qualified Data.ByteString.Unsafe as BS import Data.IORef import Data.Char ( ord, chr ) import Data.Time import Data.List (unfoldr) import Control.Monad ( when, (<$!>), unless ) import System.IO as IO import System.IO.Unsafe ( unsafeInterleaveIO ) import System.IO.Error ( mkIOError, eofErrorType ) import GHC.Real ( Ratio(..) ) type BinArray = ForeignPtr Word8 --------------------------------------------------------------- -- BinData --------------------------------------------------------------- data BinData = BinData Int BinArray instance NFData BinData where rnf (BinData sz _) = rnf sz instance Binary BinData where put_ bh (BinData sz dat) = do put_ bh sz putPrim bh sz $ \dest -> withForeignPtr dat $ \orig -> copyBytes dest orig sz -- get bh = do sz <- get bh dat <- mallocForeignPtrBytes sz getPrim bh sz $ \orig -> withForeignPtr dat $ \dest -> copyBytes dest orig sz return (BinData sz dat) dataHandle :: BinData -> IO BinHandle dataHandle (BinData size bin) = do ixr <- newFastMutInt szr <- newFastMutInt writeFastMutInt ixr 0 writeFastMutInt szr size binr <- newIORef bin return (BinMem noUserData ixr szr binr) handleData :: BinHandle -> IO BinData handleData (BinMem _ ixr _ binr) = BinData <$> readFastMutInt ixr <*> readIORef binr --------------------------------------------------------------- -- BinHandle --------------------------------------------------------------- data BinHandle = BinMem { -- binary data stored in an unboxed array bh_usr :: UserData, -- sigh, need parameterized modules :-) _off_r :: !FastMutInt, -- the current offset _sz_r :: !FastMutInt, -- size of the array (cached) _arr_r :: !(IORef BinArray) -- the array (bounds: (0,size-1)) } -- XXX: should really store a "high water mark" for dumping out -- the binary data to a file. getUserData :: BinHandle -> UserData getUserData bh = bh_usr bh setUserData :: BinHandle -> UserData -> BinHandle setUserData bh us = bh { bh_usr = us } -- | Get access to the underlying buffer. -- -- It is quite important that no references to the 'ByteString' leak out of the -- continuation lest terrible things happen. withBinBuffer :: BinHandle -> (ByteString -> IO a) -> IO a withBinBuffer (BinMem _ ix_r _ arr_r) action = do arr <- readIORef arr_r ix <- readFastMutInt ix_r withForeignPtr arr $ \ptr -> BS.unsafePackCStringLen (castPtr ptr, ix) >>= action --------------------------------------------------------------- -- Bin --------------------------------------------------------------- newtype Bin a = BinPtr Int deriving (Eq, Ord, Show, Bounded) castBin :: Bin a -> Bin b castBin (BinPtr i) = BinPtr i --------------------------------------------------------------- -- class Binary --------------------------------------------------------------- -- | Do not rely on instance sizes for general types, -- we use variable length encoding for many of them. class Binary a where put_ :: BinHandle -> a -> IO () put :: BinHandle -> a -> IO (Bin a) get :: BinHandle -> IO a -- define one of put_, put. Use of put_ is recommended because it -- is more likely that tail-calls can kick in, and we rarely need the -- position return value. put_ bh a = do _ <- put bh a; return () put bh a = do p <- tellBin bh; put_ bh a; return p putAt :: Binary a => BinHandle -> Bin a -> a -> IO () putAt bh p x = do seekBin bh p; put_ bh x; return () getAt :: Binary a => BinHandle -> Bin a -> IO a getAt bh p = do seekBin bh p; get bh openBinMem :: Int -> IO BinHandle openBinMem size | size <= 0 = error "Data.Binary.openBinMem: size must be >= 0" | otherwise = do arr <- mallocForeignPtrBytes size arr_r <- newIORef arr ix_r <- newFastMutInt writeFastMutInt ix_r 0 sz_r <- newFastMutInt writeFastMutInt sz_r size return (BinMem noUserData ix_r sz_r arr_r) tellBin :: BinHandle -> IO (Bin a) tellBin (BinMem _ r _ _) = do ix <- readFastMutInt r; return (BinPtr ix) seekBin :: BinHandle -> Bin a -> IO () seekBin h@(BinMem _ ix_r sz_r _) (BinPtr !p) = do sz <- readFastMutInt sz_r if (p >= sz) then do expandBin h p; writeFastMutInt ix_r p else writeFastMutInt ix_r p writeBinMem :: BinHandle -> FilePath -> IO () writeBinMem (BinMem _ ix_r _ arr_r) fn = do h <- openBinaryFile fn WriteMode arr <- readIORef arr_r ix <- readFastMutInt ix_r withForeignPtr arr $ \p -> hPutBuf h p ix hClose h readBinMem :: FilePath -> IO BinHandle -- Return a BinHandle with a totally undefined State readBinMem filename = do h <- openBinaryFile filename ReadMode filesize' <- hFileSize h let filesize = fromIntegral filesize' arr <- mallocForeignPtrBytes filesize count <- withForeignPtr arr $ \p -> hGetBuf h p filesize when (count /= filesize) $ error ("Binary.readBinMem: only read " ++ show count ++ " bytes") hClose h arr_r <- newIORef arr ix_r <- newFastMutInt writeFastMutInt ix_r 0 sz_r <- newFastMutInt writeFastMutInt sz_r filesize return (BinMem noUserData ix_r sz_r arr_r) -- expand the size of the array to include a specified offset expandBin :: BinHandle -> Int -> IO () expandBin (BinMem _ _ sz_r arr_r) !off = do !sz <- readFastMutInt sz_r let !sz' = getSize sz arr <- readIORef arr_r arr' <- mallocForeignPtrBytes sz' withForeignPtr arr $ \old -> withForeignPtr arr' $ \new -> copyBytes new old sz writeFastMutInt sz_r sz' writeIORef arr_r arr' where getSize :: Int -> Int getSize !sz | sz > off = sz | otherwise = getSize (sz * 2) -- ----------------------------------------------------------------------------- -- Low-level reading/writing of bytes -- | Takes a size and action writing up to @size@ bytes. -- After the action has run advance the index to the buffer -- by size bytes. putPrim :: BinHandle -> Int -> (Ptr Word8 -> IO ()) -> IO () putPrim h@(BinMem _ ix_r sz_r arr_r) size f = do ix <- readFastMutInt ix_r sz <- readFastMutInt sz_r when (ix + size > sz) $ expandBin h (ix + size) arr <- readIORef arr_r withForeignPtr arr $ \op -> f (op `plusPtr` ix) writeFastMutInt ix_r (ix + size) -- -- | Similar to putPrim but advances the index by the actual number of -- -- bytes written. -- putPrimMax :: BinHandle -> Int -> (Ptr Word8 -> IO Int) -> IO () -- putPrimMax h@(BinMem _ ix_r sz_r arr_r) size f = do -- ix <- readFastMutInt ix_r -- sz <- readFastMutInt sz_r -- when (ix + size > sz) $ -- expandBin h (ix + size) -- arr <- readIORef arr_r -- written <- withForeignPtr arr $ \op -> f (op `plusPtr` ix) -- writeFastMutInt ix_r (ix + written) getPrim :: BinHandle -> Int -> (Ptr Word8 -> IO a) -> IO a getPrim (BinMem _ ix_r sz_r arr_r) size f = do ix <- readFastMutInt ix_r sz <- readFastMutInt sz_r when (ix + size > sz) $ ioError (mkIOError eofErrorType "Data.Binary.getPrim" Nothing Nothing) arr <- readIORef arr_r w <- withForeignPtr arr $ \op -> f (op `plusPtr` ix) writeFastMutInt ix_r (ix + size) return w putWord8 :: BinHandle -> Word8 -> IO () putWord8 h !w = putPrim h 1 (\op -> poke op w) getWord8 :: BinHandle -> IO Word8 getWord8 h = getPrim h 1 peek putWord16 :: BinHandle -> Word16 -> IO () putWord16 h w = putPrim h 2 (\op -> do pokeElemOff op 0 (fromIntegral (w `shiftR` 8)) pokeElemOff op 1 (fromIntegral (w .&. 0xFF)) ) getWord16 :: BinHandle -> IO Word16 getWord16 h = getPrim h 2 (\op -> do w0 <- fromIntegral <$> peekElemOff op 0 w1 <- fromIntegral <$> peekElemOff op 1 return $! w0 `shiftL` 8 .|. w1 ) putWord32 :: BinHandle -> Word32 -> IO () putWord32 h w = putPrim h 4 (\op -> do pokeElemOff op 0 (fromIntegral (w `shiftR` 24)) pokeElemOff op 1 (fromIntegral ((w `shiftR` 16) .&. 0xFF)) pokeElemOff op 2 (fromIntegral ((w `shiftR` 8) .&. 0xFF)) pokeElemOff op 3 (fromIntegral (w .&. 0xFF)) ) getWord32 :: BinHandle -> IO Word32 getWord32 h = getPrim h 4 (\op -> do w0 <- fromIntegral <$> peekElemOff op 0 w1 <- fromIntegral <$> peekElemOff op 1 w2 <- fromIntegral <$> peekElemOff op 2 w3 <- fromIntegral <$> peekElemOff op 3 return $! (w0 `shiftL` 24) .|. (w1 `shiftL` 16) .|. (w2 `shiftL` 8) .|. w3 ) putWord64 :: BinHandle -> Word64 -> IO () putWord64 h w = putPrim h 8 (\op -> do pokeElemOff op 0 (fromIntegral (w `shiftR` 56)) pokeElemOff op 1 (fromIntegral ((w `shiftR` 48) .&. 0xFF)) pokeElemOff op 2 (fromIntegral ((w `shiftR` 40) .&. 0xFF)) pokeElemOff op 3 (fromIntegral ((w `shiftR` 32) .&. 0xFF)) pokeElemOff op 4 (fromIntegral ((w `shiftR` 24) .&. 0xFF)) pokeElemOff op 5 (fromIntegral ((w `shiftR` 16) .&. 0xFF)) pokeElemOff op 6 (fromIntegral ((w `shiftR` 8) .&. 0xFF)) pokeElemOff op 7 (fromIntegral (w .&. 0xFF)) ) getWord64 :: BinHandle -> IO Word64 getWord64 h = getPrim h 8 (\op -> do w0 <- fromIntegral <$> peekElemOff op 0 w1 <- fromIntegral <$> peekElemOff op 1 w2 <- fromIntegral <$> peekElemOff op 2 w3 <- fromIntegral <$> peekElemOff op 3 w4 <- fromIntegral <$> peekElemOff op 4 w5 <- fromIntegral <$> peekElemOff op 5 w6 <- fromIntegral <$> peekElemOff op 6 w7 <- fromIntegral <$> peekElemOff op 7 return $! (w0 `shiftL` 56) .|. (w1 `shiftL` 48) .|. (w2 `shiftL` 40) .|. (w3 `shiftL` 32) .|. (w4 `shiftL` 24) .|. (w5 `shiftL` 16) .|. (w6 `shiftL` 8) .|. w7 ) putByte :: BinHandle -> Word8 -> IO () putByte bh !w = putWord8 bh w getByte :: BinHandle -> IO Word8 getByte h = getWord8 h -- ----------------------------------------------------------------------------- -- Encode numbers in LEB128 encoding. -- Requires one byte of space per 7 bits of data. -- -- There are signed and unsigned variants. -- Do NOT use the unsigned one for signed values, at worst it will -- result in wrong results, at best it will lead to bad performance -- when coercing negative values to an unsigned type. -- -- We mark them as SPECIALIZE as it's extremely critical that they get specialized -- to their specific types. -- -- TODO: Each use of putByte performs a bounds check, -- we should use putPrimMax here. However it's quite hard to return -- the number of bytes written into putPrimMax without allocating an -- Int for it, while the code below does not allocate at all. -- So we eat the cost of the bounds check instead of increasing allocations -- for now. -- Unsigned numbers {-# SPECIALISE putULEB128 :: BinHandle -> Word -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Word64 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Word32 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Word16 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Int -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Int64 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Int32 -> IO () #-} {-# SPECIALISE putULEB128 :: BinHandle -> Int16 -> IO () #-} putULEB128 :: forall a. (Integral a, FiniteBits a) => BinHandle -> a -> IO () putULEB128 bh w = #if defined(DEBUG) (if w < 0 then panic "putULEB128: Signed number" else id) $ #endif go w where go :: a -> IO () go w | w <= (127 :: a) = putByte bh (fromIntegral w :: Word8) | otherwise = do -- bit 7 (8th bit) indicates more to come. let !byte = setBit (fromIntegral w) 7 :: Word8 putByte bh byte go (w `unsafeShiftR` 7) {-# SPECIALISE getULEB128 :: BinHandle -> IO Word #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Word64 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Word32 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Word16 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Int #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Int64 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Int32 #-} {-# SPECIALISE getULEB128 :: BinHandle -> IO Int16 #-} getULEB128 :: forall a. (Integral a, FiniteBits a) => BinHandle -> IO a getULEB128 bh = go 0 0 where go :: Int -> a -> IO a go shift w = do b <- getByte bh let !hasMore = testBit b 7 let !val = w .|. ((clearBit (fromIntegral b) 7) `unsafeShiftL` shift) :: a if hasMore then do go (shift+7) val else return $! val -- Signed numbers {-# SPECIALISE putSLEB128 :: BinHandle -> Word -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Word64 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Word32 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Word16 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Int -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Int64 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Int32 -> IO () #-} {-# SPECIALISE putSLEB128 :: BinHandle -> Int16 -> IO () #-} putSLEB128 :: forall a. (Integral a, Bits a) => BinHandle -> a -> IO () putSLEB128 bh initial = go initial where go :: a -> IO () go val = do let !byte = fromIntegral (clearBit val 7) :: Word8 let !val' = val `unsafeShiftR` 7 let !signBit = testBit byte 6 let !done = -- Unsigned value, val' == 0 and last value can -- be discriminated from a negative number. ((val' == 0 && not signBit) || -- Signed value, (val' == -1 && signBit)) let !byte' = if done then byte else setBit byte 7 putByte bh byte' unless done $ go val' {-# SPECIALISE getSLEB128 :: BinHandle -> IO Word #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Word64 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Word32 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Word16 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Int #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Int64 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Int32 #-} {-# SPECIALISE getSLEB128 :: BinHandle -> IO Int16 #-} getSLEB128 :: forall a. (Show a, Integral a, FiniteBits a) => BinHandle -> IO a getSLEB128 bh = do (val,shift,signed) <- go 0 0 if signed && (shift < finiteBitSize val ) then return $! ((complement 0 `unsafeShiftL` shift) .|. val) else return val where go :: Int -> a -> IO (a,Int,Bool) go shift val = do byte <- getByte bh let !byteVal = fromIntegral (clearBit byte 7) :: a let !val' = val .|. (byteVal `unsafeShiftL` shift) let !more = testBit byte 7 let !shift' = shift+7 if more then go (shift') val' else do let !signed = testBit byte 6 return (val',shift',signed) -- ----------------------------------------------------------------------------- -- Fixed length encoding instances -- Sometimes words are used to represent a certain bit pattern instead -- of a number. Using FixedLengthEncoding we will write the pattern as -- is to the interface file without the variable length encoding we usually -- apply. -- | Encode the argument in it's full length. This is different from many default -- binary instances which make no guarantee about the actual encoding and -- might do things use variable length encoding. newtype FixedLengthEncoding a = FixedLengthEncoding { unFixedLength :: a } instance Binary (FixedLengthEncoding Word8) where put_ h (FixedLengthEncoding x) = putByte h x get h = FixedLengthEncoding <$> getByte h instance Binary (FixedLengthEncoding Word16) where put_ h (FixedLengthEncoding x) = putWord16 h x get h = FixedLengthEncoding <$> getWord16 h instance Binary (FixedLengthEncoding Word32) where put_ h (FixedLengthEncoding x) = putWord32 h x get h = FixedLengthEncoding <$> getWord32 h instance Binary (FixedLengthEncoding Word64) where put_ h (FixedLengthEncoding x) = putWord64 h x get h = FixedLengthEncoding <$> getWord64 h -- ----------------------------------------------------------------------------- -- Primitive Word writes instance Binary Word8 where put_ bh !w = putWord8 bh w get = getWord8 instance Binary Word16 where put_ = putULEB128 get = getULEB128 instance Binary Word32 where put_ = putULEB128 get = getULEB128 instance Binary Word64 where put_ = putULEB128 get = getULEB128 -- ----------------------------------------------------------------------------- -- Primitive Int writes instance Binary Int8 where put_ h w = put_ h (fromIntegral w :: Word8) get h = do w <- get h; return $! (fromIntegral (w::Word8)) instance Binary Int16 where put_ = putSLEB128 get = getSLEB128 instance Binary Int32 where put_ = putSLEB128 get = getSLEB128 instance Binary Int64 where put_ h w = putSLEB128 h w get h = getSLEB128 h -- ----------------------------------------------------------------------------- -- Instances for standard types instance Binary () where put_ _ () = return () get _ = return () instance Binary Bool where put_ bh b = putByte bh (fromIntegral (fromEnum b)) get bh = do x <- getWord8 bh; return $! (toEnum (fromIntegral x)) instance Binary Char where put_ bh c = put_ bh (fromIntegral (ord c) :: Word32) get bh = do x <- get bh; return $! (chr (fromIntegral (x :: Word32))) instance Binary Int where put_ bh i = put_ bh (fromIntegral i :: Int64) get bh = do x <- get bh return $! (fromIntegral (x :: Int64)) instance Binary a => Binary [a] where put_ bh l = do let len = length l put_ bh len mapM_ (put_ bh) l get bh = do len <- get bh :: IO Int -- Int is variable length encoded so only -- one byte for small lists. let loop 0 = return [] loop n = do a <- get bh; as <- loop (n-1); return (a:as) loop len instance (Ix a, Binary a, Binary b) => Binary (Array a b) where put_ bh arr = do put_ bh $ bounds arr put_ bh $ elems arr get bh = do bounds <- get bh xs <- get bh return $ listArray bounds xs instance (Binary a, Binary b) => Binary (a,b) where put_ bh (a,b) = do put_ bh a; put_ bh b get bh = do a <- get bh b <- get bh return (a,b) instance (Binary a, Binary b, Binary c) => Binary (a,b,c) where put_ bh (a,b,c) = do put_ bh a; put_ bh b; put_ bh c get bh = do a <- get bh b <- get bh c <- get bh return (a,b,c) instance (Binary a, Binary b, Binary c, Binary d) => Binary (a,b,c,d) where put_ bh (a,b,c,d) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d get bh = do a <- get bh b <- get bh c <- get bh d <- get bh return (a,b,c,d) instance (Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a,b,c,d, e) where put_ bh (a,b,c,d, e) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; get bh = do a <- get bh b <- get bh c <- get bh d <- get bh e <- get bh return (a,b,c,d,e) instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a,b,c,d, e, f) where put_ bh (a,b,c,d, e, f) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f; get bh = do a <- get bh b <- get bh c <- get bh d <- get bh e <- get bh f <- get bh return (a,b,c,d,e,f) instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g) => Binary (a,b,c,d,e,f,g) where put_ bh (a,b,c,d,e,f,g) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f; put_ bh g get bh = do a <- get bh b <- get bh c <- get bh d <- get bh e <- get bh f <- get bh g <- get bh return (a,b,c,d,e,f,g) instance Binary a => Binary (Maybe a) where put_ bh Nothing = putByte bh 0 put_ bh (Just a) = do putByte bh 1; put_ bh a get bh = do h <- getWord8 bh case h of 0 -> return Nothing _ -> do x <- get bh; return (Just x) instance (Binary a, Binary b) => Binary (Either a b) where put_ bh (Left a) = do putByte bh 0; put_ bh a put_ bh (Right b) = do putByte bh 1; put_ bh b get bh = do h <- getWord8 bh case h of 0 -> do a <- get bh ; return (Left a) _ -> do b <- get bh ; return (Right b) instance Binary UTCTime where put_ bh u = do put_ bh (utctDay u) put_ bh (utctDayTime u) get bh = do day <- get bh dayTime <- get bh return $ UTCTime { utctDay = day, utctDayTime = dayTime } instance Binary Day where put_ bh d = put_ bh (toModifiedJulianDay d) get bh = do i <- get bh return $ ModifiedJulianDay { toModifiedJulianDay = i } instance Binary DiffTime where put_ bh dt = put_ bh (toRational dt) get bh = do r <- get bh return $ fromRational r {- Finally - a reasonable portable Integer instance. We used to encode values in the Int32 range as such, falling back to a string of all things. In either case we stored a tag byte to discriminate between the two cases. This made some sense as it's highly portable but also not very efficient. However GHC stores a surprisingly large number off large Integer values. In the examples looked at between 25% and 50% of Integers serialized were outside of the Int32 range. Consider a valie like `2724268014499746065`, some sort of hash actually generated by GHC. In the old scheme this was encoded as a list of 19 chars. This gave a size of 77 Bytes, one for the length of the list and 76 since we encode chars as Word32 as well. We can easily do better. The new plan is: * Start with a tag byte * 0 => Int64 (LEB128 encoded) * 1 => Negative large interger * 2 => Positive large integer * Followed by the value: * Int64 is encoded as usual * Large integers are encoded as a list of bytes (Word8). We use Data.Bits which defines a bit order independent of the representation. Values are stored LSB first. This means our example value `2724268014499746065` is now only 10 bytes large. * One byte tag * One byte for the length of the [Word8] list. * 8 bytes for the actual date. The new scheme also does not depend in any way on architecture specific details. We still use this scheme even with LEB128 available, as it has less overhead for truly large numbers. (> maxBound :: Int64) The instance is used for in Binary Integer and Binary Rational in GHC.Types.Literal -} instance Binary Integer where put_ bh i | i >= lo64 && i <= hi64 = do putWord8 bh 0 put_ bh (fromIntegral i :: Int64) | otherwise = do if i < 0 then putWord8 bh 1 else putWord8 bh 2 put_ bh (unroll $ abs i) where lo64 = fromIntegral (minBound :: Int64) hi64 = fromIntegral (maxBound :: Int64) get bh = do int_kind <- getWord8 bh case int_kind of 0 -> fromIntegral <$!> (get bh :: IO Int64) -- Large integer 1 -> negate <$!> getInt 2 -> getInt _ -> panic "Binary Integer - Invalid byte" where getInt :: IO Integer getInt = roll <$!> (get bh :: IO [Word8]) unroll :: Integer -> [Word8] unroll = unfoldr step where step 0 = Nothing step i = Just (fromIntegral i, i `shiftR` 8) roll :: [Word8] -> Integer roll = foldl' unstep 0 . reverse where unstep a b = a `shiftL` 8 .|. fromIntegral b {- -- This code is currently commented out. -- See https://gitlab.haskell.org/ghc/ghc/issues/3379#note_104346 for -- discussion. put_ bh (S# i#) = do putByte bh 0; put_ bh (I# i#) put_ bh (J# s# a#) = do putByte bh 1 put_ bh (I# s#) let sz# = sizeofByteArray# a# -- in *bytes* put_ bh (I# sz#) -- in *bytes* putByteArray bh a# sz# get bh = do b <- getByte bh case b of 0 -> do (I# i#) <- get bh return (S# i#) _ -> do (I# s#) <- get bh sz <- get bh (BA a#) <- getByteArray bh sz return (J# s# a#) putByteArray :: BinHandle -> ByteArray# -> Int# -> IO () putByteArray bh a s# = loop 0# where loop n# | n# ==# s# = return () | otherwise = do putByte bh (indexByteArray a n#) loop (n# +# 1#) getByteArray :: BinHandle -> Int -> IO ByteArray getByteArray bh (I# sz) = do (MBA arr) <- newByteArray sz let loop n | n ==# sz = return () | otherwise = do w <- getByte bh writeByteArray arr n w loop (n +# 1#) loop 0# freezeByteArray arr -} {- data ByteArray = BA ByteArray# data MBA = MBA (MutableByteArray# RealWorld) newByteArray :: Int# -> IO MBA newByteArray sz = IO $ \s -> case newByteArray# sz s of { (# s, arr #) -> (# s, MBA arr #) } freezeByteArray :: MutableByteArray# RealWorld -> IO ByteArray freezeByteArray arr = IO $ \s -> case unsafeFreezeByteArray# arr s of { (# s, arr #) -> (# s, BA arr #) } writeByteArray :: MutableByteArray# RealWorld -> Int# -> Word8 -> IO () writeByteArray arr i (W8# w) = IO $ \s -> case writeWord8Array# arr i w s of { s -> (# s, () #) } indexByteArray :: ByteArray# -> Int# -> Word8 indexByteArray a# n# = W8# (indexWord8Array# a# n#) -} instance (Binary a) => Binary (Ratio a) where put_ bh (a :% b) = do put_ bh a; put_ bh b get bh = do a <- get bh; b <- get bh; return (a :% b) -- Instance uses fixed-width encoding to allow inserting -- Bin placeholders in the stream. instance Binary (Bin a) where put_ bh (BinPtr i) = putWord32 bh (fromIntegral i :: Word32) get bh = do i <- getWord32 bh; return (BinPtr (fromIntegral (i :: Word32))) -- ----------------------------------------------------------------------------- -- Lazy reading/writing lazyPut :: Binary a => BinHandle -> a -> IO () lazyPut bh a = do -- output the obj with a ptr to skip over it: pre_a <- tellBin bh put_ bh pre_a -- save a slot for the ptr put_ bh a -- dump the object q <- tellBin bh -- q = ptr to after object putAt bh pre_a q -- fill in slot before a with ptr to q seekBin bh q -- finally carry on writing at q lazyGet :: Binary a => BinHandle -> IO a lazyGet bh = do p <- get bh -- a BinPtr p_a <- tellBin bh a <- unsafeInterleaveIO $ do -- NB: Use a fresh off_r variable in the child thread, for thread -- safety. off_r <- newFastMutInt getAt bh { _off_r = off_r } p_a seekBin bh p -- skip over the object for now return a -- ----------------------------------------------------------------------------- -- UserData -- ----------------------------------------------------------------------------- -- | Information we keep around during interface file -- serialization/deserialization. Namely we keep the functions for serializing -- and deserializing 'Name's and 'FastString's. We do this because we actually -- use serialization in two distinct settings, -- -- * When serializing interface files themselves -- -- * When computing the fingerprint of an IfaceDecl (which we computing by -- hashing its Binary serialization) -- -- These two settings have different needs while serializing Names: -- -- * Names in interface files are serialized via a symbol table (see Note -- [Symbol table representation of names] in "GHC.Iface.Binary"). -- -- * During fingerprinting a binding Name is serialized as the OccName and a -- non-binding Name is serialized as the fingerprint of the thing they -- represent. See Note [Fingerprinting IfaceDecls] for further discussion. -- data UserData = UserData { -- for *deserialising* only: ud_get_name :: BinHandle -> IO Name, ud_get_fs :: BinHandle -> IO FastString, -- for *serialising* only: ud_put_nonbinding_name :: BinHandle -> Name -> IO (), -- ^ serialize a non-binding 'Name' (e.g. a reference to another -- binding). ud_put_binding_name :: BinHandle -> Name -> IO (), -- ^ serialize a binding 'Name' (e.g. the name of an IfaceDecl) ud_put_fs :: BinHandle -> FastString -> IO () } newReadState :: (BinHandle -> IO Name) -- ^ how to deserialize 'Name's -> (BinHandle -> IO FastString) -> UserData newReadState get_name get_fs = UserData { ud_get_name = get_name, ud_get_fs = get_fs, ud_put_nonbinding_name = undef "put_nonbinding_name", ud_put_binding_name = undef "put_binding_name", ud_put_fs = undef "put_fs" } newWriteState :: (BinHandle -> Name -> IO ()) -- ^ how to serialize non-binding 'Name's -> (BinHandle -> Name -> IO ()) -- ^ how to serialize binding 'Name's -> (BinHandle -> FastString -> IO ()) -> UserData newWriteState put_nonbinding_name put_binding_name put_fs = UserData { ud_get_name = undef "get_name", ud_get_fs = undef "get_fs", ud_put_nonbinding_name = put_nonbinding_name, ud_put_binding_name = put_binding_name, ud_put_fs = put_fs } noUserData :: a noUserData = undef "UserData" undef :: String -> a undef s = panic ("Binary.UserData: no " ++ s) --------------------------------------------------------- -- The Dictionary --------------------------------------------------------- type Dictionary = Array Int FastString -- The dictionary -- Should be 0-indexed putDictionary :: BinHandle -> Int -> UniqFM FastString (Int,FastString) -> IO () putDictionary bh sz dict = do put_ bh sz mapM_ (putFS bh) (elems (array (0,sz-1) (nonDetEltsUFM dict))) -- It's OK to use nonDetEltsUFM here because the elements have indices -- that array uses to create order getDictionary :: BinHandle -> IO Dictionary getDictionary bh = do sz <- get bh elems <- sequence (take sz (repeat (getFS bh))) return (listArray (0,sz-1) elems) --------------------------------------------------------- -- The Symbol Table --------------------------------------------------------- -- On disk, the symbol table is an array of IfExtName, when -- reading it in we turn it into a SymbolTable. type SymbolTable = Array Int Name --------------------------------------------------------- -- Reading and writing FastStrings --------------------------------------------------------- putFS :: BinHandle -> FastString -> IO () putFS bh fs = putBS bh $ bytesFS fs getFS :: BinHandle -> IO FastString getFS bh = do l <- get bh :: IO Int getPrim bh l (\src -> pure $! mkFastStringBytes src l ) putBS :: BinHandle -> ByteString -> IO () putBS bh bs = BS.unsafeUseAsCStringLen bs $ \(ptr, l) -> do put_ bh l putPrim bh l (\op -> BS.memcpy op (castPtr ptr) l) getBS :: BinHandle -> IO ByteString getBS bh = do l <- get bh :: IO Int BS.create l $ \dest -> do getPrim bh l (\src -> BS.memcpy dest src l) instance Binary ByteString where put_ bh f = putBS bh f get bh = getBS bh instance Binary FastString where put_ bh f = case getUserData bh of UserData { ud_put_fs = put_fs } -> put_fs bh f get bh = case getUserData bh of UserData { ud_get_fs = get_fs } -> get_fs bh deriving instance Binary NonDetFastString deriving instance Binary LexicalFastString instance Binary Fingerprint where put_ h (Fingerprint w1 w2) = do put_ h w1; put_ h w2 get h = do w1 <- get h; w2 <- get h; return (Fingerprint w1 w2) instance Binary a => Binary (Located a) where put_ bh (L l x) = do put_ bh l put_ bh x get bh = do l <- get bh x <- get bh return (L l x) instance Binary RealSrcSpan where put_ bh ss = do put_ bh (srcSpanFile ss) put_ bh (srcSpanStartLine ss) put_ bh (srcSpanStartCol ss) put_ bh (srcSpanEndLine ss) put_ bh (srcSpanEndCol ss) get bh = do f <- get bh sl <- get bh sc <- get bh el <- get bh ec <- get bh return (mkRealSrcSpan (mkRealSrcLoc f sl sc) (mkRealSrcLoc f el ec)) instance Binary BufPos where put_ bh (BufPos i) = put_ bh i get bh = BufPos <$> get bh instance Binary BufSpan where put_ bh (BufSpan start end) = do put_ bh start put_ bh end get bh = do start <- get bh end <- get bh return (BufSpan start end) instance Binary UnhelpfulSpanReason where put_ bh r = case r of UnhelpfulNoLocationInfo -> putByte bh 0 UnhelpfulWiredIn -> putByte bh 1 UnhelpfulInteractive -> putByte bh 2 UnhelpfulGenerated -> putByte bh 3 UnhelpfulOther fs -> putByte bh 4 >> put_ bh fs get bh = do h <- getByte bh case h of 0 -> return UnhelpfulNoLocationInfo 1 -> return UnhelpfulWiredIn 2 -> return UnhelpfulInteractive 3 -> return UnhelpfulGenerated _ -> UnhelpfulOther <$> get bh instance Binary SrcSpan where put_ bh (RealSrcSpan ss sb) = do putByte bh 0 put_ bh ss put_ bh sb put_ bh (UnhelpfulSpan s) = do putByte bh 1 put_ bh s get bh = do h <- getByte bh case h of 0 -> do ss <- get bh sb <- get bh return (RealSrcSpan ss sb) _ -> do s <- get bh return (UnhelpfulSpan s)