module CmmCommonBlockElimZ ( elimCommonBlocks ) where import BlockId import CmmExpr import Prelude hiding (iterate, zip, unzip) import ZipCfg import ZipCfgCmmRep import Data.Bits import qualified Data.List as List import Data.Word import FastString import Control.Monad import Outputable import UniqFM import Unique my_trace :: String -> SDoc -> a -> a my_trace = if False then pprTrace else \_ _ a -> a -- Eliminate common blocks: -- If two blocks are identical except for the label on the first node, -- then we can eliminate one of the blocks. To ensure that the semantics -- of the program are preserved, we have to rewrite each predecessor of the -- eliminated block to proceed with the block we keep. -- The algorithm iterates over the blocks in the graph, -- checking whether it has seen another block that is equal modulo labels. -- If so, then it adds an entry in a map indicating that the new block -- is made redundant by the old block. -- Otherwise, it is added to the useful blocks. -- TODO: Use optimization fuel elimCommonBlocks :: CmmGraph -> CmmGraph elimCommonBlocks g = upd_graph g . snd $ iterate common_block reset hashed_blocks (emptyUFM, emptyBlockEnv) where hashed_blocks = map (\b -> (hash_block b, b)) (reverse (postorder_dfs g)) reset (_, subst) = (emptyUFM, subst) -- Iterate over the blocks until convergence iterate :: (t -> a -> (Bool, t)) -> (t -> t) -> [a] -> t -> t iterate upd reset blocks state = case foldl upd' (False, state) blocks of (True, state') -> iterate upd reset blocks (reset state') (False, state') -> state' where upd' (b, s) a = let (b', s') = upd s a in (b || b', s') -- lift to track changes -- Try to find a block that is equal (or ``common'') to b. type BidMap = BlockEnv BlockId type State = (UniqFM [CmmBlock], BidMap) common_block :: (Outputable h, Uniquable h) => State -> (h, CmmBlock) -> (Bool, State) common_block (bmap, subst) (hash, b) = case lookupUFM bmap hash of Just bs -> case (List.find (eqBlockBodyWith (eqBid subst) b) bs, lookupBlockEnv subst bid) of (Just b', Nothing) -> addSubst b' (Just b', Just b'') | blockId b' /= b'' -> addSubst b' _ -> (False, (addToUFM bmap hash (b : bs), subst)) Nothing -> (False, (addToUFM bmap hash [b], subst)) where bid = blockId b addSubst b' = my_trace "found new common block" (ppr (blockId b')) $ (True, (bmap, extendBlockEnv subst bid (blockId b'))) -- Given the map ``subst'' from BlockId -> BlockId, we rewrite the graph. upd_graph :: CmmGraph -> BidMap -> CmmGraph upd_graph g subst = map_nodes id middle last g where middle = mapExpDeepMiddle exp last l = last' (mapExpDeepLast exp l) last' (LastBranch bid) = LastBranch $ sub bid last' (LastCondBranch p t f) = cond p (sub t) (sub f) last' (LastCall t (Just bid) args res u) = LastCall t (Just $ sub bid) args res u last' l@(LastCall _ Nothing _ _ _) = l last' (LastSwitch e bs) = LastSwitch e $ map (liftM sub) bs cond p t f = if t == f then LastBranch t else LastCondBranch p t f exp (CmmStackSlot (CallArea (Young id)) off) = CmmStackSlot (CallArea (Young (sub id))) off exp (CmmLit (CmmBlock id)) = CmmLit (CmmBlock (sub id)) exp e = e sub = lookupBid subst -- To speed up comparisons, we hash each basic block modulo labels. -- The hashing is a bit arbitrary (the numbers are completely arbitrary), -- but it should be fast and good enough. hash_block :: CmmBlock -> Int hash_block (Block _ t) = fromIntegral (hash_tail t (0 :: Word32) .&. (0x7fffffff :: Word32)) -- UniqFM doesn't like negative Ints where hash_mid (MidComment (FastString u _ _ _ _)) = cvt u hash_mid (MidAssign r e) = hash_reg r + hash_e e hash_mid (MidStore e e') = hash_e e + hash_e e' hash_mid (MidForeignCall _ t _ as) = hash_tgt t + hash_lst hash_e as hash_reg :: CmmReg -> Word32 hash_reg (CmmLocal l) = hash_local l hash_reg (CmmGlobal _) = 19 hash_local (LocalReg _ _) = 117 hash_e :: CmmExpr -> Word32 hash_e (CmmLit l) = hash_lit l hash_e (CmmLoad e _) = 67 + hash_e e hash_e (CmmReg r) = hash_reg r hash_e (CmmMachOp _ es) = hash_lst hash_e es -- pessimal - no operator check hash_e (CmmRegOff r i) = hash_reg r + cvt i hash_e (CmmStackSlot _ _) = 13 hash_lit :: CmmLit -> Word32 hash_lit (CmmInt i _) = fromInteger i hash_lit (CmmFloat r _) = truncate r hash_lit (CmmLabel _) = 119 -- ugh hash_lit (CmmLabelOff _ i) = cvt $ 199 + i hash_lit (CmmLabelDiffOff _ _ i) = cvt $ 299 + i hash_lit (CmmBlock _) = 191 -- ugh hash_lit (CmmHighStackMark) = cvt 313 hash_tgt (ForeignTarget e _) = hash_e e hash_tgt (PrimTarget _) = 31 -- lots of these hash_lst f = foldl (\z x -> f x + z) (0::Word32) hash_last (LastBranch _) = 23 -- would be great to hash these properly hash_last (LastCondBranch p _ _) = hash_e p hash_last (LastCall e _ _ _ _) = hash_e e hash_last (LastSwitch e _) = hash_e e hash_tail (ZLast LastExit) v = 29 + v `shiftL` 1 hash_tail (ZLast (LastOther l)) v = hash_last l + (v `shiftL` 1) hash_tail (ZTail m t) v = hash_tail t (hash_mid m + (v `shiftL` 1)) cvt = fromInteger . toInteger -- Utilities: equality and substitution on the graph. -- Given a map ``subst'' from BlockID -> BlockID, we define equality. eqBid :: BidMap -> BlockId -> BlockId -> Bool eqBid subst bid bid' = lookupBid subst bid == lookupBid subst bid' lookupBid :: BidMap -> BlockId -> BlockId lookupBid subst bid = case lookupBlockEnv subst bid of Just bid -> lookupBid subst bid Nothing -> bid -- Equality on the body of a block, modulo a function mapping block IDs to block IDs. eqBlockBodyWith :: (BlockId -> BlockId -> Bool) -> CmmBlock -> CmmBlock -> Bool eqBlockBodyWith eqBid (Block _ t) (Block _ t') = eqTailWith eqBid t t' type CmmTail = ZTail Middle Last eqTailWith :: (BlockId -> BlockId -> Bool) -> CmmTail -> CmmTail -> Bool eqTailWith eqBid (ZTail m t) (ZTail m' t') = m == m' && eqTailWith eqBid t t' eqTailWith _ (ZLast LastExit) (ZLast LastExit) = True eqTailWith eqBid (ZLast (LastOther l)) (ZLast (LastOther l')) = eqLastWith eqBid l l' eqTailWith _ _ _ = False eqLastWith :: (BlockId -> BlockId -> Bool) -> Last -> Last -> Bool eqLastWith eqBid (LastBranch bid1) (LastBranch bid2) = eqBid bid1 bid2 eqLastWith eqBid (LastCondBranch c1 t1 f1) (LastCondBranch c2 t2 f2) = c1 == c2 && eqBid t1 t2 && eqBid f1 f2 eqLastWith eqBid (LastCall t1 c1 a1 r1 u1) (LastCall t2 c2 a2 r2 u2) = t1 == t2 && eqMaybeWith eqBid c1 c2 && a1 == a2 && r1 == r2 && u1 == u2 eqLastWith eqBid (LastSwitch e1 bs1) (LastSwitch e2 bs2) = e1 == e2 && eqLstWith (eqMaybeWith eqBid) bs1 bs2 eqLastWith _ _ _ = False eqLstWith :: (a -> b -> Bool) -> [a] -> [b] -> Bool eqLstWith eltEq es es' = all (uncurry eltEq) (List.zip es es') eqMaybeWith :: (a -> b -> Bool) -> Maybe a -> Maybe b -> Bool eqMaybeWith eltEq (Just e) (Just e') = eltEq e e' eqMaybeWith _ Nothing Nothing = True eqMaybeWith _ _ _ = False