{-# LANGUAGE RecordWildCards, GADTs #-} module CmmLayoutStack ( cmmLayoutStack, setInfoTableStackMap ) where import StgCmmUtils ( callerSaveVolatileRegs ) -- XXX import StgCmmForeign ( saveThreadState, loadThreadState ) -- XXX import Cmm import BlockId import CLabel import CmmUtils import MkGraph import Module import ForeignCall import CmmLive import CmmProcPoint import SMRep import Hoopl import Constants import UniqSupply import Maybes import UniqFM import Util import DynFlags import FastString import Outputable import Data.Map (Map) import qualified Data.Map as Map import qualified Data.Set as Set import Control.Monad.Fix import Data.Array as Array import Data.Bits import Data.List (nub) import Control.Monad (liftM) #include "HsVersions.h" data StackSlot = Occupied | Empty -- Occupied: a return address or part of an update frame instance Outputable StackSlot where ppr Occupied = ptext (sLit "XXX") ppr Empty = ptext (sLit "---") -- All stack locations are expressed as positive byte offsets from the -- "base", which is defined to be the address above the return address -- on the stack on entry to this CmmProc. -- -- Lower addresses have higher StackLocs. -- type StackLoc = ByteOff {- A StackMap describes the stack at any given point. At a continuation it has a particular layout, like this: | | <- base |-------------| | ret0 | <- base + 8 |-------------| . upd frame . <- base + sm_ret_off |-------------| | | . vars . . (live/dead) . | | <- base + sm_sp - sm_args |-------------| | ret1 | . ret vals . <- base + sm_sp (<--- Sp points here) |-------------| Why do we include the final return address (ret0) in our stack map? I have absolutely no idea, but it seems to be done that way consistently in the rest of the code generator, so I played along here. --SDM Note that we will be constructing an info table for the continuation (ret1), which needs to describe the stack down to, but not including, the update frame (or ret0, if there is no update frame). -} data StackMap = StackMap { sm_sp :: StackLoc -- ^ the offset of Sp relative to the base on entry -- to this block. , sm_args :: ByteOff -- ^ the number of bytes of arguments in the area for this block -- Defn: the offset of young(L) relative to the base is given by -- (sm_sp - sm_args) of the StackMap for block L. , sm_ret_off :: ByteOff -- ^ Number of words of stack that we do not describe with an info -- table, because it contains an update frame. , sm_regs :: UniqFM (LocalReg,StackLoc) -- ^ regs on the stack } instance Outputable StackMap where ppr StackMap{..} = text "Sp = " <> int sm_sp $$ text "sm_args = " <> int sm_args $$ text "sm_ret_off = " <> int sm_ret_off $$ text "sm_regs = " <> ppr (eltsUFM sm_regs) cmmLayoutStack :: DynFlags -> ProcPointSet -> ByteOff -> CmmGraph -> UniqSM (CmmGraph, BlockEnv StackMap) cmmLayoutStack dflags procpoints entry_args graph0@(CmmGraph { g_entry = entry }) = do -- pprTrace "cmmLayoutStack" (ppr entry_args) $ return () -- We need liveness info. We could do removeDeadAssignments at -- the same time, but it buys nothing over doing cmmSink later, -- and costs a lot more than just cmmLiveness. -- (graph, liveness) <- removeDeadAssignments graph0 let (graph, liveness) = (graph0, cmmLiveness graph0) -- pprTrace "liveness" (ppr liveness) $ return () let blocks = postorderDfs graph (final_stackmaps, _final_high_sp, new_blocks) <- mfix $ \ ~(rec_stackmaps, rec_high_sp, _new_blocks) -> layout procpoints liveness entry entry_args rec_stackmaps rec_high_sp blocks new_blocks' <- mapM (lowerSafeForeignCall dflags) new_blocks -- pprTrace ("Sp HWM") (ppr _final_high_sp) $ return () return (ofBlockList entry new_blocks', final_stackmaps) layout :: BlockSet -- proc points -> BlockEnv CmmLive -- liveness -> BlockId -- entry -> ByteOff -- stack args on entry -> BlockEnv StackMap -- [final] stack maps -> ByteOff -- [final] Sp high water mark -> [CmmBlock] -- [in] blocks -> UniqSM ( BlockEnv StackMap -- [out] stack maps , ByteOff -- [out] Sp high water mark , [CmmBlock] -- [out] new blocks ) layout procpoints liveness entry entry_args final_stackmaps final_hwm blocks = go blocks init_stackmap entry_args [] where (updfr, cont_info) = collectContInfo blocks init_stackmap = mapSingleton entry StackMap{ sm_sp = entry_args , sm_args = entry_args , sm_ret_off = updfr , sm_regs = emptyUFM } go [] acc_stackmaps acc_hwm acc_blocks = return (acc_stackmaps, acc_hwm, acc_blocks) go (b0 : bs) acc_stackmaps acc_hwm acc_blocks = do let (entry0@(CmmEntry entry_lbl), middle0, last0) = blockSplit b0 let stack0@StackMap { sm_sp = sp0 } = mapFindWithDefault (pprPanic "no stack map for" (ppr entry_lbl)) entry_lbl acc_stackmaps -- pprTrace "layout" (ppr entry_lbl <+> ppr stack0) $ return () -- (a) Update the stack map to include the effects of -- assignments in this block let stack1 = foldBlockNodesF (procMiddle acc_stackmaps) middle0 stack0 -- (b) Insert assignments to reload all the live variables if this -- block is a proc point let middle1 = if entry_lbl `setMember` procpoints then foldr blockCons middle0 (insertReloads stack0) else middle0 -- (c) Look at the last node and if we are making a call or -- jumping to a proc point, we must save the live -- variables, adjust Sp, and construct the StackMaps for -- each of the successor blocks. See handleLastNode for -- details. (middle2, sp_off, last1, fixup_blocks, out) <- handleLastNode procpoints liveness cont_info acc_stackmaps stack1 middle0 last0 -- pprTrace "layout(out)" (ppr out) $ return () -- (d) Manifest Sp: run over the nodes in the block and replace -- CmmStackSlot with CmmLoad from Sp with a concrete offset. -- -- our block: -- middle1 -- the original middle nodes -- middle2 -- live variable saves from handleLastNode -- Sp = Sp + sp_off -- Sp adjustment goes here -- last1 -- the last node -- let middle_pre = blockToList $ foldl blockSnoc middle1 middle2 sp_high = final_hwm - entry_args -- The stack check value is adjusted by the Sp offset on -- entry to the proc, which is entry_args. We are -- assuming that we only do a stack check at the -- beginning of a proc, and we don't modify Sp before the -- check. final_blocks = manifestSp final_stackmaps stack0 sp0 sp_high entry0 middle_pre sp_off last1 fixup_blocks acc_stackmaps' = mapUnion acc_stackmaps out -- If this block jumps to the GC, then we do not take its -- stack usage into account for the high-water mark. -- Otherwise, if the only stack usage is in the stack-check -- failure block itself, we will do a redundant stack -- check. The stack has a buffer designed to accommodate -- the largest amount of stack needed for calling the GC. -- this_sp_hwm | isGcJump last0 = 0 | otherwise = sp0 - sp_off hwm' = maximum (acc_hwm : this_sp_hwm : map sm_sp (mapElems out)) go bs acc_stackmaps' hwm' (final_blocks ++ acc_blocks) -- ----------------------------------------------------------------------------- -- Not foolproof, but GCFun is the culprit we most want to catch isGcJump :: CmmNode O C -> Bool isGcJump (CmmCall { cml_target = CmmReg (CmmGlobal l) }) = l == GCFun || l == GCEnter1 isGcJump _something_else = False -- ----------------------------------------------------------------------------- -- This doesn't seem right somehow. We need to find out whether this -- proc will push some update frame material at some point, so that we -- can avoid using that area of the stack for spilling. The -- updfr_space field of the CmmProc *should* tell us, but it doesn't -- (I think maybe it gets filled in later when we do proc-point -- splitting). -- -- So we'll just take the max of all the cml_ret_offs. This could be -- unnecessarily pessimistic, but probably not in the code we -- generate. collectContInfo :: [CmmBlock] -> (ByteOff, BlockEnv ByteOff) collectContInfo blocks = (maximum ret_offs, mapFromList (catMaybes mb_argss)) where (mb_argss, ret_offs) = mapAndUnzip get_cont blocks get_cont b = case lastNode b of CmmCall { cml_cont = Just l, .. } -> (Just (l, cml_ret_args), cml_ret_off) CmmForeignCall { .. } -> (Just (succ, 0), updfr) -- ?? _other -> (Nothing, 0) -- ----------------------------------------------------------------------------- -- Updating the StackMap from middle nodes -- Look for loads from stack slots, and update the StackMap. This is -- purely for optimisation reasons, so that we can avoid saving a -- variable back to a different stack slot if it is already on the -- stack. -- -- This happens a lot: for example when function arguments are passed -- on the stack and need to be immediately saved across a call, we -- want to just leave them where they are on the stack. -- procMiddle :: BlockEnv StackMap -> CmmNode e x -> StackMap -> StackMap procMiddle stackmaps node sm = case node of CmmAssign (CmmLocal r) (CmmLoad (CmmStackSlot area off) _) -> sm { sm_regs = addToUFM (sm_regs sm) r (r,loc) } where loc = getStackLoc area off stackmaps CmmAssign (CmmLocal r) _other -> sm { sm_regs = delFromUFM (sm_regs sm) r } _other -> sm getStackLoc :: Area -> ByteOff -> BlockEnv StackMap -> StackLoc getStackLoc Old n _ = n getStackLoc (Young l) n stackmaps = case mapLookup l stackmaps of Nothing -> pprPanic "getStackLoc" (ppr l) Just sm -> sm_sp sm - sm_args sm + n -- ----------------------------------------------------------------------------- -- Handling stack allocation for a last node -- We take a single last node and turn it into: -- -- C1 (some statements) -- Sp = Sp + N -- C2 (some more statements) -- call f() -- the actual last node -- -- plus possibly some more blocks (we may have to add some fixup code -- between the last node and the continuation). -- -- C1: is the code for saving the variables across this last node onto -- the stack, if the continuation is a call or jumps to a proc point. -- -- C2: if the last node is a safe foreign call, we have to inject some -- extra code that goes *after* the Sp adjustment. handleLastNode :: ProcPointSet -> BlockEnv CmmLive -> BlockEnv ByteOff -> BlockEnv StackMap -> StackMap -> Block CmmNode O O -> CmmNode O C -> UniqSM ( [CmmNode O O] -- nodes to go *before* the Sp adjustment , ByteOff -- amount to adjust Sp , CmmNode O C -- new last node , [CmmBlock] -- new blocks , BlockEnv StackMap -- stackmaps for the continuations ) handleLastNode procpoints liveness cont_info stackmaps stack0@StackMap { sm_sp = sp0 } middle last = case last of -- At each return / tail call, -- adjust Sp to point to the last argument pushed, which -- is cml_args, after popping any other junk from the stack. CmmCall{ cml_cont = Nothing, .. } -> do let sp_off = sp0 - cml_args return ([], sp_off, last, [], mapEmpty) -- At each CmmCall with a continuation: CmmCall{ cml_cont = Just cont_lbl, .. } -> return $ lastCall cont_lbl cml_args cml_ret_args cml_ret_off CmmForeignCall{ succ = cont_lbl, .. } -> do return $ lastCall cont_lbl wORD_SIZE wORD_SIZE (sm_ret_off stack0) -- one word each for args and results: the return address CmmBranch{..} -> handleBranches CmmCondBranch{..} -> handleBranches CmmSwitch{..} -> handleBranches where -- Calls and ForeignCalls are handled the same way: lastCall :: BlockId -> ByteOff -> ByteOff -> ByteOff -> ( [CmmNode O O] , ByteOff , CmmNode O C , [CmmBlock] , BlockEnv StackMap ) lastCall lbl cml_args cml_ret_args cml_ret_off = ( assignments , spOffsetForCall sp0 cont_stack cml_args , last , [] -- no new blocks , mapSingleton lbl cont_stack ) where (assignments, cont_stack) = prepareStack lbl cml_ret_args cml_ret_off prepareStack lbl cml_ret_args cml_ret_off | Just cont_stack <- mapLookup lbl stackmaps -- If we have already seen this continuation before, then -- we just have to make the stack look the same: = (fixupStack stack0 cont_stack, cont_stack) -- Otherwise, we have to allocate the stack frame | otherwise = (save_assignments, new_cont_stack) where (new_cont_stack, save_assignments) = setupStackFrame lbl liveness cml_ret_off cml_ret_args stack0 -- For other last nodes (branches), if any of the targets is a -- proc point, we have to set up the stack to match what the proc -- point is expecting. -- handleBranches :: UniqSM ( [CmmNode O O] , ByteOff , CmmNode O C , [CmmBlock] , BlockEnv StackMap ) handleBranches -- Note [diamond proc point] | Just l <- futureContinuation middle , (nub $ filter (`setMember` procpoints) $ successors last) == [l] = do let cont_args = mapFindWithDefault 0 l cont_info (assigs, cont_stack) = prepareStack l cont_args (sm_ret_off stack0) out = mapFromList [ (l', cont_stack) | l' <- successors last ] return ( assigs , spOffsetForCall sp0 cont_stack wORD_SIZE , last , [] , out) | otherwise = do pps <- mapM handleBranch (successors last) let lbl_map :: LabelMap Label lbl_map = mapFromList [ (l,tmp) | (l,tmp,_,_) <- pps ] fix_lbl l = mapFindWithDefault l l lbl_map return ( [] , 0 , mapSuccessors fix_lbl last , concat [ blk | (_,_,_,blk) <- pps ] , mapFromList [ (l, sm) | (l,_,sm,_) <- pps ] ) -- For each successor of this block handleBranch :: BlockId -> UniqSM (BlockId, BlockId, StackMap, [CmmBlock]) handleBranch l -- (a) if the successor already has a stackmap, we need to -- shuffle the current stack to make it look the same. -- We have to insert a new block to make this happen. | Just stack2 <- mapLookup l stackmaps = do let assigs = fixupStack stack0 stack2 (tmp_lbl, block) <- makeFixupBlock sp0 l stack2 assigs return (l, tmp_lbl, stack2, block) -- (b) if the successor is a proc point, save everything -- on the stack. | l `setMember` procpoints = do let cont_args = mapFindWithDefault 0 l cont_info (stack2, assigs) = --pprTrace "first visit to proc point" -- (ppr l <+> ppr stack1) $ setupStackFrame l liveness (sm_ret_off stack0) cont_args stack0 -- (tmp_lbl, block) <- makeFixupBlock sp0 l stack2 assigs return (l, tmp_lbl, stack2, block) -- (c) otherwise, the current StackMap is the StackMap for -- the continuation. But we must remember to remove any -- variables from the StackMap that are *not* live at -- the destination, because this StackMap might be used -- by fixupStack if this is a join point. | otherwise = return (l, l, stack1, []) where live = mapFindWithDefault (panic "handleBranch") l liveness stack1 = stack0 { sm_regs = filterUFM is_live (sm_regs stack0) } is_live (r,_) = r `elemRegSet` live makeFixupBlock :: ByteOff -> Label -> StackMap -> [CmmNode O O] -> UniqSM (Label, [CmmBlock]) makeFixupBlock sp0 l stack assigs | null assigs && sp0 == sm_sp stack = return (l, []) | otherwise = do tmp_lbl <- liftM mkBlockId $ getUniqueM let sp_off = sp0 - sm_sp stack block = blockJoin (CmmEntry tmp_lbl) (maybeAddSpAdj sp_off (blockFromList assigs)) (CmmBranch l) return (tmp_lbl, [block]) -- Sp is currently pointing to current_sp, -- we want it to point to -- (sm_sp cont_stack - sm_args cont_stack + args) -- so the difference is -- sp0 - (sm_sp cont_stack - sm_args cont_stack + args) spOffsetForCall :: ByteOff -> StackMap -> ByteOff -> ByteOff spOffsetForCall current_sp cont_stack args = current_sp - (sm_sp cont_stack - sm_args cont_stack + args) -- | create a sequence of assignments to establish the new StackMap, -- given the old StackMap. fixupStack :: StackMap -> StackMap -> [CmmNode O O] fixupStack old_stack new_stack = concatMap move new_locs where old_map :: Map LocalReg ByteOff old_map = Map.fromList (stackSlotRegs old_stack) new_locs = stackSlotRegs new_stack move (r,n) | Just m <- Map.lookup r old_map, n == m = [] | otherwise = [CmmStore (CmmStackSlot Old n) (CmmReg (CmmLocal r))] setupStackFrame :: BlockId -- label of continuation -> BlockEnv CmmLive -- liveness -> ByteOff -- updfr -> ByteOff -- bytes of return values on stack -> StackMap -- current StackMap -> (StackMap, [CmmNode O O]) setupStackFrame lbl liveness updfr_off ret_args stack0 = (cont_stack, assignments) where -- get the set of LocalRegs live in the continuation live = mapFindWithDefault Set.empty lbl liveness -- the stack from the base to updfr_off is off-limits. -- our new stack frame contains: -- * saved live variables -- * the return address [young(C) + 8] -- * the args for the call, -- which are replaced by the return values at the return -- point. -- everything up to updfr_off is off-limits -- stack1 contains updfr_off, plus everything we need to save (stack1, assignments) = allocate updfr_off live stack0 -- And the Sp at the continuation is: -- sm_sp stack1 + ret_args cont_stack = stack1{ sm_sp = sm_sp stack1 + ret_args , sm_args = ret_args , sm_ret_off = updfr_off } -- ----------------------------------------------------------------------------- -- Note [diamond proc point] -- -- This special case looks for the pattern we get from a typical -- tagged case expression: -- -- Sp[young(L1)] = L1 -- if (R1 & 7) != 0 goto L1 else goto L2 -- L2: -- call [R1] returns to L1 -- L1: live: {y} -- x = R1 -- -- If we let the generic case handle this, we get -- -- Sp[-16] = L1 -- if (R1 & 7) != 0 goto L1a else goto L2 -- L2: -- Sp[-8] = y -- Sp = Sp - 16 -- call [R1] returns to L1 -- L1a: -- Sp[-8] = y -- Sp = Sp - 16 -- goto L1 -- L1: -- x = R1 -- -- The code for saving the live vars is duplicated in each branch, and -- furthermore there is an extra jump in the fast path (assuming L1 is -- a proc point, which it probably is if there is a heap check). -- -- So to fix this we want to set up the stack frame before the -- conditional jump. How do we know when to do this, and when it is -- safe? The basic idea is, when we see the assignment -- -- Sp[young(L)] = L -- -- we know that -- * we are definitely heading for L -- * there can be no more reads from another stack area, because young(L) -- overlaps with it. -- -- We don't necessarily know that everything live at L is live now -- (some might be assigned between here and the jump to L). So we -- simplify and only do the optimisation when we see -- -- (1) a block containing an assignment of a return address L -- (2) ending in a branch where one (and only) continuation goes to L, -- and no other continuations go to proc points. -- -- then we allocate the stack frame for L at the end of the block, -- before the branch. -- -- We could generalise (2), but that would make it a bit more -- complicated to handle, and this currently catches the common case. futureContinuation :: Block CmmNode O O -> Maybe BlockId futureContinuation middle = foldBlockNodesB f middle Nothing where f :: CmmNode a b -> Maybe BlockId -> Maybe BlockId f (CmmStore (CmmStackSlot (Young l) _) (CmmLit (CmmBlock _))) _ = Just l f _ r = r -- ----------------------------------------------------------------------------- -- Saving live registers -- | Given a set of live registers and a StackMap, save all the registers -- on the stack and return the new StackMap and the assignments to do -- the saving. -- allocate :: ByteOff -> RegSet -> StackMap -> (StackMap, [CmmNode O O]) allocate ret_off live stackmap@StackMap{ sm_sp = sp0 , sm_regs = regs0 } = -- pprTrace "allocate" (ppr live $$ ppr stackmap) $ -- we only have to save regs that are not already in a slot let to_save = filter (not . (`elemUFM` regs0)) (Set.elems live) regs1 = filterUFM (\(r,_) -> elemRegSet r live) regs0 in -- make a map of the stack let stack = reverse $ Array.elems $ accumArray (\_ x -> x) Empty (1, toWords (max sp0 ret_off)) $ ret_words ++ live_words where ret_words = [ (x, Occupied) | x <- [ 1 .. toWords ret_off] ] live_words = [ (toWords x, Occupied) | (r,off) <- eltsUFM regs1, let w = localRegBytes r, x <- [ off, off-wORD_SIZE .. off - w + 1] ] in -- Pass over the stack: find slots to save all the new live variables, -- choosing the oldest slots first (hence a foldr). let save slot ([], stack, n, assigs, regs) -- no more regs to save = ([], slot:stack, n `plusW` 1, assigs, regs) save slot (to_save, stack, n, assigs, regs) = case slot of Occupied -> (to_save, Occupied:stack, n `plusW` 1, assigs, regs) Empty | Just (stack', r, to_save') <- select_save to_save (slot:stack) -> let assig = CmmStore (CmmStackSlot Old n') (CmmReg (CmmLocal r)) n' = n `plusW` 1 in (to_save', stack', n', assig : assigs, (r,(r,n')):regs) | otherwise -> (to_save, slot:stack, n `plusW` 1, assigs, regs) -- we should do better here: right now we'll fit the smallest first, -- but it would make more sense to fit the biggest first. select_save :: [LocalReg] -> [StackSlot] -> Maybe ([StackSlot], LocalReg, [LocalReg]) select_save regs stack = go regs [] where go [] _no_fit = Nothing go (r:rs) no_fit | Just rest <- dropEmpty words stack = Just (replicate words Occupied ++ rest, r, rs++no_fit) | otherwise = go rs (r:no_fit) where words = localRegWords r -- fill in empty slots as much as possible (still_to_save, save_stack, n, save_assigs, save_regs) = foldr save (to_save, [], 0, [], []) stack -- push any remaining live vars on the stack (push_sp, push_assigs, push_regs) = foldr push (n, [], []) still_to_save where push r (n, assigs, regs) = (n', assig : assigs, (r,(r,n')) : regs) where n' = n + localRegBytes r assig = CmmStore (CmmStackSlot Old n') (CmmReg (CmmLocal r)) trim_sp | not (null push_regs) = push_sp | otherwise = n `plusW` (- length (takeWhile isEmpty save_stack)) final_regs = regs1 `addListToUFM` push_regs `addListToUFM` save_regs in -- XXX should be an assert if ( n /= max sp0 ret_off ) then pprPanic "allocate" (ppr n <+> ppr sp0 <+> ppr ret_off) else if (trim_sp .&. (wORD_SIZE - 1)) /= 0 then pprPanic "allocate2" (ppr trim_sp <+> ppr final_regs <+> ppr push_sp) else ( stackmap { sm_regs = final_regs , sm_sp = trim_sp } , push_assigs ++ save_assigs ) -- ----------------------------------------------------------------------------- -- Manifesting Sp -- | Manifest Sp: turn all the CmmStackSlots into CmmLoads from Sp. The -- block looks like this: -- -- middle_pre -- the middle nodes -- Sp = Sp + sp_off -- Sp adjustment goes here -- last -- the last node -- -- And we have some extra blocks too (that don't contain Sp adjustments) -- -- The adjustment for middle_pre will be different from that for -- middle_post, because the Sp adjustment intervenes. -- manifestSp :: BlockEnv StackMap -- StackMaps for other blocks -> StackMap -- StackMap for this block -> ByteOff -- Sp on entry to the block -> ByteOff -- SpHigh -> CmmNode C O -- first node -> [CmmNode O O] -- middle -> ByteOff -- sp_off -> CmmNode O C -- last node -> [CmmBlock] -- new blocks -> [CmmBlock] -- final blocks with Sp manifest manifestSp stackmaps stack0 sp0 sp_high first middle_pre sp_off last fixup_blocks = final_block : fixup_blocks' where area_off = getAreaOff stackmaps adj_pre_sp, adj_post_sp :: CmmNode e x -> CmmNode e x adj_pre_sp = mapExpDeep (areaToSp sp0 sp_high area_off) adj_post_sp = mapExpDeep (areaToSp (sp0 - sp_off) sp_high area_off) final_middle = maybeAddSpAdj sp_off $ blockFromList $ map adj_pre_sp $ elimStackStores stack0 stackmaps area_off $ middle_pre final_last = optStackCheck (adj_post_sp last) final_block = blockJoin first final_middle final_last fixup_blocks' = map (mapBlock3' (id, adj_post_sp, id)) fixup_blocks getAreaOff :: BlockEnv StackMap -> (Area -> StackLoc) getAreaOff _ Old = 0 getAreaOff stackmaps (Young l) = case mapLookup l stackmaps of Just sm -> sm_sp sm - sm_args sm Nothing -> pprPanic "getAreaOff" (ppr l) maybeAddSpAdj :: ByteOff -> Block CmmNode O O -> Block CmmNode O O maybeAddSpAdj 0 block = block maybeAddSpAdj sp_off block = block `blockSnoc` CmmAssign spReg (cmmOffset (CmmReg spReg) sp_off) {- Sp(L) is the Sp offset on entry to block L relative to the base of the OLD area. SpArgs(L) is the size of the young area for L, i.e. the number of arguments. - in block L, each reference to [old + N] turns into [Sp + Sp(L) - N] - in block L, each reference to [young(L') + N] turns into [Sp + Sp(L) - Sp(L') + SpArgs(L') - N] - be careful with the last node of each block: Sp has already been adjusted to be Sp + Sp(L) - Sp(L') -} areaToSp :: ByteOff -> ByteOff -> (Area -> StackLoc) -> CmmExpr -> CmmExpr areaToSp sp_old _sp_hwm area_off (CmmStackSlot area n) = cmmOffset (CmmReg spReg) (sp_old - area_off area - n) areaToSp _ sp_hwm _ (CmmLit CmmHighStackMark) = CmmLit (mkIntCLit sp_hwm) areaToSp _ _ _ (CmmMachOp (MO_U_Lt _) -- Note [null stack check] [CmmMachOp (MO_Sub _) [ CmmReg (CmmGlobal Sp) , CmmLit (CmmInt 0 _)], CmmReg (CmmGlobal SpLim)]) = CmmLit (CmmInt 0 wordWidth) areaToSp _ _ _ other = other -- ----------------------------------------------------------------------------- -- Note [null stack check] -- -- If the high-water Sp is zero, then we end up with -- -- if (Sp - 0 < SpLim) then .. else .. -- -- and possibly some dead code for the failure case. Optimising this -- away depends on knowing that SpLim <= Sp, so it is really the job -- of the stack layout algorithm, hence we do it now. This is also -- convenient because control-flow optimisation later will drop the -- dead code. optStackCheck :: CmmNode O C -> CmmNode O C optStackCheck n = -- Note [null stack check] case n of CmmCondBranch (CmmLit (CmmInt 0 _)) _true false -> CmmBranch false other -> other -- ----------------------------------------------------------------------------- -- | Eliminate stores of the form -- -- Sp[area+n] = r -- -- when we know that r is already in the same slot as Sp[area+n]. We -- could do this in a later optimisation pass, but that would involve -- a separate analysis and we already have the information to hand -- here. It helps clean up some extra stack stores in common cases. -- -- Note that we may have to modify the StackMap as we walk through the -- code using procMiddle, since an assignment to a variable in the -- StackMap will invalidate its mapping there. -- elimStackStores :: StackMap -> BlockEnv StackMap -> (Area -> ByteOff) -> [CmmNode O O] -> [CmmNode O O] elimStackStores stackmap stackmaps area_off nodes = go stackmap nodes where go _stackmap [] = [] go stackmap (n:ns) = case n of CmmStore (CmmStackSlot area m) (CmmReg (CmmLocal r)) | Just (_,off) <- lookupUFM (sm_regs stackmap) r , area_off area + m == off -> -- pprTrace "eliminated a node!" (ppr r) $ go stackmap ns _otherwise -> n : go (procMiddle stackmaps n stackmap) ns -- ----------------------------------------------------------------------------- -- Update info tables to include stack liveness setInfoTableStackMap :: BlockEnv StackMap -> CmmDecl -> CmmDecl setInfoTableStackMap stackmaps (CmmProc top_info@TopInfo{..} l g) = CmmProc top_info{ info_tbls = mapMapWithKey fix_info info_tbls } l g where fix_info lbl info_tbl@CmmInfoTable{ cit_rep = StackRep _ } = info_tbl { cit_rep = StackRep (get_liveness lbl) } fix_info _ other = other get_liveness :: BlockId -> Liveness get_liveness lbl = case mapLookup lbl stackmaps of Nothing -> pprPanic "setInfoTableStackMap" (ppr lbl <+> ppr info_tbls) Just sm -> stackMapToLiveness sm setInfoTableStackMap _ d = d stackMapToLiveness :: StackMap -> Liveness stackMapToLiveness StackMap{..} = reverse $ Array.elems $ accumArray (\_ x -> x) True (toWords sm_ret_off + 1, toWords (sm_sp - sm_args)) live_words where live_words = [ (toWords off, False) | (r,off) <- eltsUFM sm_regs, isGcPtrType (localRegType r) ] -- ----------------------------------------------------------------------------- -- Lowering safe foreign calls {- Note [lower safe foreign calls] We start with Sp[young(L1)] = L1 ,----------------------- | r1 = foo(x,y,z) returns to L1 '----------------------- L1: R1 = r1 -- copyIn, inserted by mkSafeCall ... the stack layout algorithm will arrange to save and reload everything live across the call. Our job now is to expand the call so we get Sp[young(L1)] = L1 ,----------------------- | SAVE_THREAD_STATE() | token = suspendThread(BaseReg, interruptible) | r = foo(x,y,z) | BaseReg = resumeThread(token) | LOAD_THREAD_STATE() | R1 = r -- copyOut | jump Sp[0] '----------------------- L1: r = R1 -- copyIn, inserted by mkSafeCall ... Note the copyOut, which saves the results in the places that L1 is expecting them (see Note {safe foreign call convention]). -} lowerSafeForeignCall :: DynFlags -> CmmBlock -> UniqSM CmmBlock lowerSafeForeignCall dflags block | (entry, middle, CmmForeignCall { .. }) <- blockSplit block = do -- Both 'id' and 'new_base' are KindNonPtr because they're -- RTS-only objects and are not subject to garbage collection id <- newTemp bWord new_base <- newTemp (cmmRegType (CmmGlobal BaseReg)) let (caller_save, caller_load) = callerSaveVolatileRegs load_tso <- newTemp gcWord load_stack <- newTemp gcWord let suspend = saveThreadState dflags <*> caller_save <*> mkMiddle (callSuspendThread id intrbl) midCall = mkUnsafeCall tgt res args resume = mkMiddle (callResumeThread new_base id) <*> -- Assign the result to BaseReg: we -- might now have a different Capability! mkAssign (CmmGlobal BaseReg) (CmmReg (CmmLocal new_base)) <*> caller_load <*> loadThreadState dflags load_tso load_stack (ret_args, regs, copyout) = copyOutOflow NativeReturn Jump (Young succ) (map (CmmReg . CmmLocal) res) updfr (0, []) -- NB. after resumeThread returns, the top-of-stack probably contains -- the stack frame for succ, but it might not: if the current thread -- received an exception during the call, then the stack might be -- different. Hence we continue by jumping to the top stack frame, -- not by jumping to succ. jump = CmmCall { cml_target = CmmLoad (CmmReg spReg) bWord , cml_cont = Just succ , cml_args_regs = regs , cml_args = widthInBytes wordWidth , cml_ret_args = ret_args , cml_ret_off = updfr } graph' <- lgraphOfAGraph $ suspend <*> midCall <*> resume <*> copyout <*> mkLast jump case toBlockList graph' of [one] -> let (_, middle', last) = blockSplit one in return (blockJoin entry (middle `blockAppend` middle') last) _ -> panic "lowerSafeForeignCall0" -- Block doesn't end in a safe foreign call: | otherwise = return block foreignLbl :: FastString -> CmmExpr foreignLbl name = CmmLit (CmmLabel (mkCmmCodeLabel rtsPackageId name)) newTemp :: CmmType -> UniqSM LocalReg newTemp rep = getUniqueM >>= \u -> return (LocalReg u rep) callSuspendThread :: LocalReg -> Bool -> CmmNode O O callSuspendThread id intrbl = CmmUnsafeForeignCall (ForeignTarget (foreignLbl (fsLit "suspendThread")) (ForeignConvention CCallConv [AddrHint, NoHint] [AddrHint])) [id] [CmmReg (CmmGlobal BaseReg), CmmLit (mkIntCLit (fromEnum intrbl))] callResumeThread :: LocalReg -> LocalReg -> CmmNode O O callResumeThread new_base id = CmmUnsafeForeignCall (ForeignTarget (foreignLbl (fsLit "resumeThread")) (ForeignConvention CCallConv [AddrHint] [AddrHint])) [new_base] [CmmReg (CmmLocal id)] -- ----------------------------------------------------------------------------- plusW :: ByteOff -> WordOff -> ByteOff plusW b w = b + w * wORD_SIZE dropEmpty :: WordOff -> [StackSlot] -> Maybe [StackSlot] dropEmpty 0 ss = Just ss dropEmpty n (Empty : ss) = dropEmpty (n-1) ss dropEmpty _ _ = Nothing isEmpty :: StackSlot -> Bool isEmpty Empty = True isEmpty _ = False localRegBytes :: LocalReg -> ByteOff localRegBytes r = roundUpToWords (widthInBytes (typeWidth (localRegType r))) localRegWords :: LocalReg -> WordOff localRegWords = toWords . localRegBytes toWords :: ByteOff -> WordOff toWords x = x `quot` wORD_SIZE insertReloads :: StackMap -> [CmmNode O O] insertReloads stackmap = [ CmmAssign (CmmLocal r) (CmmLoad (CmmStackSlot Old sp) (localRegType r)) | (r,sp) <- stackSlotRegs stackmap ] stackSlotRegs :: StackMap -> [(LocalReg, StackLoc)] stackSlotRegs sm = eltsUFM (sm_regs sm)