{-# OPTIONS -w #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and fix -- any warnings in the module. See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings -- for details ----------------------------------------------------------------------------- -- -- Cmm optimisation -- -- (c) The University of Glasgow 2006 -- ----------------------------------------------------------------------------- module CmmOpt ( cmmMiniInline, cmmMachOpFold, cmmLoopifyForC, ) where #include "HsVersions.h" import Cmm import CmmExpr import CmmUtils import CLabel import MachOp import StaticFlags import UniqFM import Unique import FastTypes import Outputable import Data.Bits import Data.Word import Data.Int -- ----------------------------------------------------------------------------- -- The mini-inliner {- This pass inlines assignments to temporaries that are used just once. It works as follows: - count uses of each temporary - for each temporary that occurs just once: - attempt to push it forward to the statement that uses it - only push forward past assignments to other temporaries (assumes that temporaries are single-assignment) - if we reach the statement that uses it, inline the rhs and delete the original assignment. [N.B. In the Quick C-- compiler, this optimization is achieved by a combination of two dataflow passes: forward substitution (peephole optimization) and dead-assignment elimination. ---NR] Possible generalisations: here is an example from factorial Fac_zdwfac_entry: cmG: _smi = R2; if (_smi != 0) goto cmK; R1 = R3; jump I64[Sp]; cmK: _smn = _smi * R3; R2 = _smi + (-1); R3 = _smn; jump Fac_zdwfac_info; We want to inline _smi and _smn. To inline _smn: - we must be able to push forward past assignments to global regs. We can do this if the rhs of the assignment we are pushing forward doesn't refer to the global reg being assigned to; easy to test. To inline _smi: - It is a trivial replacement, reg for reg, but it occurs more than once. - We can inline trivial assignments even if the temporary occurs more than once, as long as we don't eliminate the original assignment (this doesn't help much on its own). - We need to be able to propagate the assignment forward through jumps; if we did this, we would find that it can be inlined safely in all its occurrences. -} countUses :: UserOfLocalRegs a => a -> UniqFM Int countUses a = foldRegsUsed (\m r -> addToUFM m r (count m r + 1)) emptyUFM a where count m r = lookupWithDefaultUFM m (0::Int) r cmmMiniInline :: [CmmBasicBlock] -> [CmmBasicBlock] cmmMiniInline blocks = map do_inline blocks where do_inline (BasicBlock id stmts) = BasicBlock id (cmmMiniInlineStmts (countUses blocks) stmts) cmmMiniInlineStmts :: UniqFM Int -> [CmmStmt] -> [CmmStmt] cmmMiniInlineStmts uses [] = [] cmmMiniInlineStmts uses (stmt@(CmmAssign (CmmLocal (LocalReg u _ _)) expr) : stmts) -- not used at all: just discard this assignment | Nothing <- lookupUFM uses u = cmmMiniInlineStmts uses stmts -- used once: try to inline at the use site | Just 1 <- lookupUFM uses u, Just stmts' <- lookForInline u expr stmts = #ifdef NCG_DEBUG trace ("nativeGen: inlining " ++ showSDoc (pprStmt stmt)) $ #endif cmmMiniInlineStmts uses stmts' cmmMiniInlineStmts uses (stmt:stmts) = stmt : cmmMiniInlineStmts uses stmts -- Try to inline a temporary assignment. We can skip over assignments to -- other tempoararies, because we know that expressions aren't side-effecting -- and temporaries are single-assignment. lookForInline u expr (stmt@(CmmAssign (CmmLocal (LocalReg u' _ _)) rhs) : rest) | u /= u' = case lookupUFM (countUses rhs) u of Just 1 -> Just (inlineStmt u expr stmt : rest) _other -> case lookForInline u expr rest of Nothing -> Nothing Just stmts -> Just (stmt:stmts) lookForInline u expr (CmmNop : rest) = lookForInline u expr rest lookForInline _ _ [] = Nothing lookForInline u expr (stmt:stmts) = case lookupUFM (countUses stmt) u of Just 1 | ok_to_inline -> Just (inlineStmt u expr stmt : stmts) _other -> Nothing where -- we don't inline into CmmCall if the expression refers to global -- registers. This is a HACK to avoid global registers clashing with -- C argument-passing registers, really the back-end ought to be able -- to handle it properly, but currently neither PprC nor the NCG can -- do it. See also CgForeignCall:load_args_into_temps. ok_to_inline = case stmt of CmmCall{} -> hasNoGlobalRegs expr _ -> True inlineStmt :: Unique -> CmmExpr -> CmmStmt -> CmmStmt inlineStmt u a (CmmAssign r e) = CmmAssign r (inlineExpr u a e) inlineStmt u a (CmmStore e1 e2) = CmmStore (inlineExpr u a e1) (inlineExpr u a e2) inlineStmt u a (CmmCall target regs es srt ret) = CmmCall (infn target) regs es' srt ret where infn (CmmCallee fn cconv) = CmmCallee fn cconv infn (CmmPrim p) = CmmPrim p es' = [ (CmmKinded (inlineExpr u a e) hint) | (CmmKinded e hint) <- es ] inlineStmt u a (CmmCondBranch e d) = CmmCondBranch (inlineExpr u a e) d inlineStmt u a (CmmSwitch e d) = CmmSwitch (inlineExpr u a e) d inlineStmt u a (CmmJump e d) = CmmJump (inlineExpr u a e) d inlineStmt u a other_stmt = other_stmt inlineExpr :: Unique -> CmmExpr -> CmmExpr -> CmmExpr inlineExpr u a e@(CmmReg (CmmLocal (LocalReg u' _ _))) | u == u' = a | otherwise = e inlineExpr u a e@(CmmRegOff (CmmLocal (LocalReg u' rep _)) off) | u == u' = CmmMachOp (MO_Add rep) [a, CmmLit (CmmInt (fromIntegral off) rep)] | otherwise = e inlineExpr u a (CmmLoad e rep) = CmmLoad (inlineExpr u a e) rep inlineExpr u a (CmmMachOp op es) = CmmMachOp op (map (inlineExpr u a) es) inlineExpr u a other_expr = other_expr -- ----------------------------------------------------------------------------- -- MachOp constant folder -- Now, try to constant-fold the MachOps. The arguments have already -- been optimized and folded. cmmMachOpFold :: MachOp -- The operation from an CmmMachOp -> [CmmExpr] -- The optimized arguments -> CmmExpr cmmMachOpFold op arg@[CmmLit (CmmInt x rep)] = case op of MO_S_Neg r -> CmmLit (CmmInt (-x) rep) MO_Not r -> CmmLit (CmmInt (complement x) rep) -- these are interesting: we must first narrow to the -- "from" type, in order to truncate to the correct size. -- The final narrow/widen to the destination type -- is implicit in the CmmLit. MO_S_Conv from to | isFloatingRep to -> CmmLit (CmmFloat (fromInteger x) to) | otherwise -> CmmLit (CmmInt (narrowS from x) to) MO_U_Conv from to -> CmmLit (CmmInt (narrowU from x) to) _ -> panic "cmmMachOpFold: unknown unary op" -- Eliminate conversion NOPs cmmMachOpFold (MO_S_Conv rep1 rep2) [x] | rep1 == rep2 = x cmmMachOpFold (MO_U_Conv rep1 rep2) [x] | rep1 == rep2 = x -- Eliminate nested conversions where possible cmmMachOpFold conv_outer args@[CmmMachOp conv_inner [x]] | Just (rep1,rep2,signed1) <- isIntConversion conv_inner, Just (_, rep3,signed2) <- isIntConversion conv_outer = case () of -- widen then narrow to the same size is a nop _ | rep1 < rep2 && rep1 == rep3 -> x -- Widen then narrow to different size: collapse to single conversion -- but remember to use the signedness from the widening, just in case -- the final conversion is a widen. | rep1 < rep2 && rep2 > rep3 -> cmmMachOpFold (intconv signed1 rep1 rep3) [x] -- Nested widenings: collapse if the signedness is the same | rep1 < rep2 && rep2 < rep3 && signed1 == signed2 -> cmmMachOpFold (intconv signed1 rep1 rep3) [x] -- Nested narrowings: collapse | rep1 > rep2 && rep2 > rep3 -> cmmMachOpFold (MO_U_Conv rep1 rep3) [x] | otherwise -> CmmMachOp conv_outer args where isIntConversion (MO_U_Conv rep1 rep2) | not (isFloatingRep rep1) && not (isFloatingRep rep2) = Just (rep1,rep2,False) isIntConversion (MO_S_Conv rep1 rep2) | not (isFloatingRep rep1) && not (isFloatingRep rep2) = Just (rep1,rep2,True) isIntConversion _ = Nothing intconv True = MO_S_Conv intconv False = MO_U_Conv -- ToDo: a narrow of a load can be collapsed into a narrow load, right? -- but what if the architecture only supports word-sized loads, should -- we do the transformation anyway? cmmMachOpFold mop args@[CmmLit (CmmInt x xrep), CmmLit (CmmInt y _)] = case mop of -- for comparisons: don't forget to narrow the arguments before -- comparing, since they might be out of range. MO_Eq r -> CmmLit (CmmInt (if x_u == y_u then 1 else 0) wordRep) MO_Ne r -> CmmLit (CmmInt (if x_u /= y_u then 1 else 0) wordRep) MO_U_Gt r -> CmmLit (CmmInt (if x_u > y_u then 1 else 0) wordRep) MO_U_Ge r -> CmmLit (CmmInt (if x_u >= y_u then 1 else 0) wordRep) MO_U_Lt r -> CmmLit (CmmInt (if x_u < y_u then 1 else 0) wordRep) MO_U_Le r -> CmmLit (CmmInt (if x_u <= y_u then 1 else 0) wordRep) MO_S_Gt r -> CmmLit (CmmInt (if x_s > y_s then 1 else 0) wordRep) MO_S_Ge r -> CmmLit (CmmInt (if x_s >= y_s then 1 else 0) wordRep) MO_S_Lt r -> CmmLit (CmmInt (if x_s < y_s then 1 else 0) wordRep) MO_S_Le r -> CmmLit (CmmInt (if x_s <= y_s then 1 else 0) wordRep) MO_Add r -> CmmLit (CmmInt (x + y) r) MO_Sub r -> CmmLit (CmmInt (x - y) r) MO_Mul r -> CmmLit (CmmInt (x * y) r) MO_S_Quot r | y /= 0 -> CmmLit (CmmInt (x `quot` y) r) MO_S_Rem r | y /= 0 -> CmmLit (CmmInt (x `rem` y) r) MO_And r -> CmmLit (CmmInt (x .&. y) r) MO_Or r -> CmmLit (CmmInt (x .|. y) r) MO_Xor r -> CmmLit (CmmInt (x `xor` y) r) MO_Shl r -> CmmLit (CmmInt (x `shiftL` fromIntegral y) r) MO_U_Shr r -> CmmLit (CmmInt (x_u `shiftR` fromIntegral y) r) MO_S_Shr r -> CmmLit (CmmInt (x `shiftR` fromIntegral y) r) other -> CmmMachOp mop args where x_u = narrowU xrep x y_u = narrowU xrep y x_s = narrowS xrep x y_s = narrowS xrep y -- When possible, shift the constants to the right-hand side, so that we -- can match for strength reductions. Note that the code generator will -- also assume that constants have been shifted to the right when -- possible. cmmMachOpFold op [x@(CmmLit _), y] | not (isLit y) && isCommutableMachOp op = cmmMachOpFold op [y, x] -- Turn (a+b)+c into a+(b+c) where possible. Because literals are -- moved to the right, it is more likely that we will find -- opportunities for constant folding when the expression is -- right-associated. -- -- ToDo: this appears to introduce a quadratic behaviour due to the -- nested cmmMachOpFold. Can we fix this? -- -- Why do we check isLit arg1? If arg1 is a lit, it means that arg2 -- is also a lit (otherwise arg1 would be on the right). If we -- put arg1 on the left of the rearranged expression, we'll get into a -- loop: (x1+x2)+x3 => x1+(x2+x3) => (x2+x3)+x1 => x2+(x3+x1) ... -- -- Also don't do it if arg1 is PicBaseReg, so that we don't separate the -- PicBaseReg from the corresponding label (or label difference). -- cmmMachOpFold mop1 [CmmMachOp mop2 [arg1,arg2], arg3] | mop1 == mop2 && isAssociativeMachOp mop1 && not (isLit arg1) && not (isPicReg arg1) = cmmMachOpFold mop1 [arg1, cmmMachOpFold mop2 [arg2,arg3]] -- Make a RegOff if we can cmmMachOpFold (MO_Add _) [CmmReg reg, CmmLit (CmmInt n rep)] = CmmRegOff reg (fromIntegral (narrowS rep n)) cmmMachOpFold (MO_Add _) [CmmRegOff reg off, CmmLit (CmmInt n rep)] = CmmRegOff reg (off + fromIntegral (narrowS rep n)) cmmMachOpFold (MO_Sub _) [CmmReg reg, CmmLit (CmmInt n rep)] = CmmRegOff reg (- fromIntegral (narrowS rep n)) cmmMachOpFold (MO_Sub _) [CmmRegOff reg off, CmmLit (CmmInt n rep)] = CmmRegOff reg (off - fromIntegral (narrowS rep n)) -- Fold label(+/-)offset into a CmmLit where possible cmmMachOpFold (MO_Add _) [CmmLit (CmmLabel lbl), CmmLit (CmmInt i rep)] = CmmLit (CmmLabelOff lbl (fromIntegral (narrowU rep i))) cmmMachOpFold (MO_Add _) [CmmLit (CmmInt i rep), CmmLit (CmmLabel lbl)] = CmmLit (CmmLabelOff lbl (fromIntegral (narrowU rep i))) cmmMachOpFold (MO_Sub _) [CmmLit (CmmLabel lbl), CmmLit (CmmInt i rep)] = CmmLit (CmmLabelOff lbl (fromIntegral (negate (narrowU rep i)))) -- Comparison of literal with widened operand: perform the comparison -- at the smaller width, as long as the literal is within range. -- We can't do the reverse trick, when the operand is narrowed: -- narrowing throws away bits from the operand, there's no way to do -- the same comparison at the larger size. #if i386_TARGET_ARCH || x86_64_TARGET_ARCH -- powerPC NCG has a TODO for I8/I16 comparisons, so don't try cmmMachOpFold cmp [CmmMachOp conv [x], CmmLit (CmmInt i _)] | -- if the operand is widened: Just (rep, signed, narrow_fn) <- maybe_conversion conv, -- and this is a comparison operation: Just narrow_cmp <- maybe_comparison cmp rep signed, -- and the literal fits in the smaller size: i == narrow_fn rep i -- then we can do the comparison at the smaller size = cmmMachOpFold narrow_cmp [x, CmmLit (CmmInt i rep)] where maybe_conversion (MO_U_Conv from to) | to > from = Just (from, False, narrowU) maybe_conversion (MO_S_Conv from to) | to > from, not (isFloatingRep from) = Just (from, True, narrowS) -- don't attempt to apply this optimisation when the source -- is a float; see #1916 maybe_conversion _ = Nothing -- careful (#2080): if the original comparison was signed, but -- we were doing an unsigned widen, then we must do an -- unsigned comparison at the smaller size. maybe_comparison (MO_U_Gt _) rep _ = Just (MO_U_Gt rep) maybe_comparison (MO_U_Ge _) rep _ = Just (MO_U_Ge rep) maybe_comparison (MO_U_Lt _) rep _ = Just (MO_U_Lt rep) maybe_comparison (MO_U_Le _) rep _ = Just (MO_U_Le rep) maybe_comparison (MO_Eq _) rep _ = Just (MO_Eq rep) maybe_comparison (MO_S_Gt _) rep True = Just (MO_S_Gt rep) maybe_comparison (MO_S_Ge _) rep True = Just (MO_S_Ge rep) maybe_comparison (MO_S_Lt _) rep True = Just (MO_S_Lt rep) maybe_comparison (MO_S_Le _) rep True = Just (MO_S_Le rep) maybe_comparison (MO_S_Gt _) rep False = Just (MO_U_Gt rep) maybe_comparison (MO_S_Ge _) rep False = Just (MO_U_Ge rep) maybe_comparison (MO_S_Lt _) rep False = Just (MO_U_Lt rep) maybe_comparison (MO_S_Le _) rep False = Just (MO_U_Le rep) maybe_comparison _ _ _ = Nothing #endif -- We can often do something with constants of 0 and 1 ... cmmMachOpFold mop args@[x, y@(CmmLit (CmmInt 0 _))] = case mop of MO_Add r -> x MO_Sub r -> x MO_Mul r -> y MO_And r -> y MO_Or r -> x MO_Xor r -> x MO_Shl r -> x MO_S_Shr r -> x MO_U_Shr r -> x MO_Ne r | isComparisonExpr x -> x MO_Eq r | Just x' <- maybeInvertCmmExpr x -> x' MO_U_Gt r | isComparisonExpr x -> x MO_S_Gt r | isComparisonExpr x -> x MO_U_Lt r | isComparisonExpr x -> CmmLit (CmmInt 0 wordRep) MO_S_Lt r | isComparisonExpr x -> CmmLit (CmmInt 0 wordRep) MO_U_Ge r | isComparisonExpr x -> CmmLit (CmmInt 1 wordRep) MO_S_Ge r | isComparisonExpr x -> CmmLit (CmmInt 1 wordRep) MO_U_Le r | Just x' <- maybeInvertCmmExpr x -> x' MO_S_Le r | Just x' <- maybeInvertCmmExpr x -> x' other -> CmmMachOp mop args cmmMachOpFold mop args@[x, y@(CmmLit (CmmInt 1 rep))] = case mop of MO_Mul r -> x MO_S_Quot r -> x MO_U_Quot r -> x MO_S_Rem r -> CmmLit (CmmInt 0 rep) MO_U_Rem r -> CmmLit (CmmInt 0 rep) MO_Ne r | Just x' <- maybeInvertCmmExpr x -> x' MO_Eq r | isComparisonExpr x -> x MO_U_Lt r | Just x' <- maybeInvertCmmExpr x -> x' MO_S_Lt r | Just x' <- maybeInvertCmmExpr x -> x' MO_U_Gt r | isComparisonExpr x -> CmmLit (CmmInt 0 wordRep) MO_S_Gt r | isComparisonExpr x -> CmmLit (CmmInt 0 wordRep) MO_U_Le r | isComparisonExpr x -> CmmLit (CmmInt 1 wordRep) MO_S_Le r | isComparisonExpr x -> CmmLit (CmmInt 1 wordRep) MO_U_Ge r | isComparisonExpr x -> x MO_S_Ge r | isComparisonExpr x -> x other -> CmmMachOp mop args -- Now look for multiplication/division by powers of 2 (integers). cmmMachOpFold mop args@[x, y@(CmmLit (CmmInt n _))] = case mop of MO_Mul rep | Just p <- exactLog2 n -> CmmMachOp (MO_Shl rep) [x, CmmLit (CmmInt p rep)] MO_S_Quot rep | Just p <- exactLog2 n, CmmReg _ <- x -> -- We duplicate x below, hence require -- it is a reg. FIXME: remove this restriction. -- shift right is not the same as quot, because it rounds -- to minus infinity, whereasq uot rounds toward zero. -- To fix this up, we add one less than the divisor to the -- dividend if it is a negative number. -- -- to avoid a test/jump, we use the following sequence: -- x1 = x >> word_size-1 (all 1s if -ve, all 0s if +ve) -- x2 = y & (divisor-1) -- result = (x+x2) >>= log2(divisor) -- this could be done a bit more simply using conditional moves, -- but we're processor independent here. -- -- we optimise the divide by 2 case slightly, generating -- x1 = x >> word_size-1 (unsigned) -- return = (x + x1) >>= log2(divisor) let bits = fromIntegral (machRepBitWidth rep) - 1 shr = if p == 1 then MO_U_Shr rep else MO_S_Shr rep x1 = CmmMachOp shr [x, CmmLit (CmmInt bits rep)] x2 = if p == 1 then x1 else CmmMachOp (MO_And rep) [x1, CmmLit (CmmInt (n-1) rep)] x3 = CmmMachOp (MO_Add rep) [x, x2] in CmmMachOp (MO_S_Shr rep) [x3, CmmLit (CmmInt p rep)] other -> unchanged where unchanged = CmmMachOp mop args -- Anything else is just too hard. cmmMachOpFold mop args = CmmMachOp mop args -- ----------------------------------------------------------------------------- -- exactLog2 -- This algorithm for determining the $\log_2$ of exact powers of 2 comes -- from GCC. It requires bit manipulation primitives, and we use GHC -- extensions. Tough. -- -- Used to be in MachInstrs --SDM. -- ToDo: remove use of unboxery --SDM. -- Unboxery removed in favor of FastInt; but is the function supposed to fail -- on inputs >= 2147483648, or was that just an implementation artifact? -- And is this speed-critical, or can we just use Integer operations -- (including Data.Bits)? -- --Isaac Dupree exactLog2 :: Integer -> Maybe Integer exactLog2 x_ = if (x_ <= 0 || x_ >= 2147483648) then Nothing else case iUnbox (fromInteger x_) of { x -> if (x `bitAndFastInt` negateFastInt x) /=# x then Nothing else Just (toInteger (iBox (pow2 x))) } where pow2 x | x ==# _ILIT(1) = _ILIT(0) | otherwise = _ILIT(1) +# pow2 (x `shiftR_FastInt` _ILIT(1)) -- ----------------------------------------------------------------------------- -- widening / narrowing narrowU :: MachRep -> Integer -> Integer narrowU I8 x = fromIntegral (fromIntegral x :: Word8) narrowU I16 x = fromIntegral (fromIntegral x :: Word16) narrowU I32 x = fromIntegral (fromIntegral x :: Word32) narrowU I64 x = fromIntegral (fromIntegral x :: Word64) narrowU _ _ = panic "narrowTo" narrowS :: MachRep -> Integer -> Integer narrowS I8 x = fromIntegral (fromIntegral x :: Int8) narrowS I16 x = fromIntegral (fromIntegral x :: Int16) narrowS I32 x = fromIntegral (fromIntegral x :: Int32) narrowS I64 x = fromIntegral (fromIntegral x :: Int64) narrowS _ _ = panic "narrowTo" -- ----------------------------------------------------------------------------- -- Loopify for C {- This is a simple pass that replaces tail-recursive functions like this: fac() { ... jump fac(); } with this: fac() { L: ... goto L; } the latter generates better C code, because the C compiler treats it like a loop, and brings full loop optimisation to bear. In my measurements this makes little or no difference to anything except factorial, but what the hell. -} cmmLoopifyForC :: RawCmmTop -> RawCmmTop cmmLoopifyForC p@(CmmProc info entry_lbl [] (ListGraph blocks@(BasicBlock top_id _ : _))) | null info = p -- only if there's an info table, ignore case alts | otherwise = -- pprTrace "jump_lbl" (ppr jump_lbl <+> ppr entry_lbl) $ CmmProc info entry_lbl [] (ListGraph blocks') where blocks' = [ BasicBlock id (map do_stmt stmts) | BasicBlock id stmts <- blocks ] do_stmt (CmmJump (CmmLit (CmmLabel lbl)) _) | lbl == jump_lbl = CmmBranch top_id do_stmt stmt = stmt jump_lbl | tablesNextToCode = entryLblToInfoLbl entry_lbl | otherwise = entry_lbl cmmLoopifyForC top = top -- ----------------------------------------------------------------------------- -- Utils isLit (CmmLit _) = True isLit _ = False isComparisonExpr :: CmmExpr -> Bool isComparisonExpr (CmmMachOp op _) = isComparisonMachOp op isComparisonExpr _other = False isPicReg (CmmReg (CmmGlobal PicBaseReg)) = True isPicReg _ = False