----------------------------------------------------------------------------- -- -- (c) The University of Glasgow, 2004-2006 -- -- Parser for concrete Cmm. -- This doesn't just parse the Cmm file, we also do some code generation -- along the way for switches and foreign calls etc. -- ----------------------------------------------------------------------------- -- TODO: Add support for interruptible/uninterruptible foreign call specification { {-# LANGUAGE BangPatterns #-} -- required for versions of Happy before 1.18.6 {-# OPTIONS -Wwarn -w #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and fix -- any warnings in the module. See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings -- for details module CmmParse ( parseCmmFile ) where import CgMonad import CgExtCode import CgHeapery import CgUtils import CgProf import CgTicky import CgInfoTbls import CgForeignCall import CgTailCall import CgStackery import ClosureInfo import CgCallConv import CgClosure import CostCentre import BlockId import OldCmm import OldPprCmm() import CmmUtils import CmmLex import CLabel import SMRep import Lexer import ForeignCall import Module import Literal import Unique import UniqFM import SrcLoc import DynFlags import StaticFlags import ErrUtils import StringBuffer import FastString import Panic import Constants import Outputable import BasicTypes import Bag ( emptyBag, unitBag ) import Var import Control.Monad import Data.Array import Data.Char ( ord ) import System.Exit #include "HsVersions.h" } %expect 0 %token ':' { L _ (CmmT_SpecChar ':') } ';' { L _ (CmmT_SpecChar ';') } '{' { L _ (CmmT_SpecChar '{') } '}' { L _ (CmmT_SpecChar '}') } '[' { L _ (CmmT_SpecChar '[') } ']' { L _ (CmmT_SpecChar ']') } '(' { L _ (CmmT_SpecChar '(') } ')' { L _ (CmmT_SpecChar ')') } '=' { L _ (CmmT_SpecChar '=') } '`' { L _ (CmmT_SpecChar '`') } '~' { L _ (CmmT_SpecChar '~') } '/' { L _ (CmmT_SpecChar '/') } '*' { L _ (CmmT_SpecChar '*') } '%' { L _ (CmmT_SpecChar '%') } '-' { L _ (CmmT_SpecChar '-') } '+' { L _ (CmmT_SpecChar '+') } '&' { L _ (CmmT_SpecChar '&') } '^' { L _ (CmmT_SpecChar '^') } '|' { L _ (CmmT_SpecChar '|') } '>' { L _ (CmmT_SpecChar '>') } '<' { L _ (CmmT_SpecChar '<') } ',' { L _ (CmmT_SpecChar ',') } '!' { L _ (CmmT_SpecChar '!') } '..' { L _ (CmmT_DotDot) } '::' { L _ (CmmT_DoubleColon) } '>>' { L _ (CmmT_Shr) } '<<' { L _ (CmmT_Shl) } '>=' { L _ (CmmT_Ge) } '<=' { L _ (CmmT_Le) } '==' { L _ (CmmT_Eq) } '!=' { L _ (CmmT_Ne) } '&&' { L _ (CmmT_BoolAnd) } '||' { L _ (CmmT_BoolOr) } 'CLOSURE' { L _ (CmmT_CLOSURE) } 'INFO_TABLE' { L _ (CmmT_INFO_TABLE) } 'INFO_TABLE_RET'{ L _ (CmmT_INFO_TABLE_RET) } 'INFO_TABLE_FUN'{ L _ (CmmT_INFO_TABLE_FUN) } 'INFO_TABLE_CONSTR'{ L _ (CmmT_INFO_TABLE_CONSTR) } 'INFO_TABLE_SELECTOR'{ L _ (CmmT_INFO_TABLE_SELECTOR) } 'else' { L _ (CmmT_else) } 'export' { L _ (CmmT_export) } 'section' { L _ (CmmT_section) } 'align' { L _ (CmmT_align) } 'goto' { L _ (CmmT_goto) } 'if' { L _ (CmmT_if) } 'jump' { L _ (CmmT_jump) } 'foreign' { L _ (CmmT_foreign) } 'never' { L _ (CmmT_never) } 'prim' { L _ (CmmT_prim) } 'return' { L _ (CmmT_return) } 'returns' { L _ (CmmT_returns) } 'import' { L _ (CmmT_import) } 'switch' { L _ (CmmT_switch) } 'case' { L _ (CmmT_case) } 'default' { L _ (CmmT_default) } 'bits8' { L _ (CmmT_bits8) } 'bits16' { L _ (CmmT_bits16) } 'bits32' { L _ (CmmT_bits32) } 'bits64' { L _ (CmmT_bits64) } 'float32' { L _ (CmmT_float32) } 'float64' { L _ (CmmT_float64) } 'gcptr' { L _ (CmmT_gcptr) } GLOBALREG { L _ (CmmT_GlobalReg $$) } NAME { L _ (CmmT_Name $$) } STRING { L _ (CmmT_String $$) } INT { L _ (CmmT_Int $$) } FLOAT { L _ (CmmT_Float $$) } %monad { P } { >>= } { return } %lexer { cmmlex } { L _ CmmT_EOF } %name cmmParse cmm %tokentype { Located CmmToken } -- C-- operator precedences, taken from the C-- spec %right '||' -- non-std extension, called %disjoin in C-- %right '&&' -- non-std extension, called %conjoin in C-- %right '!' %nonassoc '>=' '>' '<=' '<' '!=' '==' %left '|' %left '^' %left '&' %left '>>' '<<' %left '-' '+' %left '/' '*' '%' %right '~' %% cmm :: { ExtCode } : {- empty -} { return () } | cmmtop cmm { do $1; $2 } cmmtop :: { ExtCode } : cmmproc { $1 } | cmmdata { $1 } | decl { $1 } | 'CLOSURE' '(' NAME ',' NAME lits ')' ';' {% withThisPackage $ \pkg -> do lits <- sequence $6; staticClosure pkg $3 $5 (map getLit lits) } -- The only static closures in the RTS are dummy closures like -- stg_END_TSO_QUEUE_closure and stg_dummy_ret. We don't need -- to provide the full generality of static closures here. -- In particular: -- * CCS can always be CCS_DONT_CARE -- * closure is always extern -- * payload is always empty -- * we can derive closure and info table labels from a single NAME cmmdata :: { ExtCode } : 'section' STRING '{' data_label statics '}' { do lbl <- $4; ss <- sequence $5; code (emitDecl (CmmData (section $2) (Statics lbl $ concat ss))) } data_label :: { ExtFCode CLabel } : NAME ':' {% withThisPackage $ \pkg -> return (mkCmmDataLabel pkg $1) } statics :: { [ExtFCode [CmmStatic]] } : {- empty -} { [] } | static statics { $1 : $2 } -- Strings aren't used much in the RTS HC code, so it doesn't seem -- worth allowing inline strings. C-- doesn't allow them anyway. static :: { ExtFCode [CmmStatic] } : type expr ';' { do e <- $2; return [CmmStaticLit (getLit e)] } | type ';' { return [CmmUninitialised (widthInBytes (typeWidth $1))] } | 'bits8' '[' ']' STRING ';' { return [mkString $4] } | 'bits8' '[' INT ']' ';' { return [CmmUninitialised (fromIntegral $3)] } | typenot8 '[' INT ']' ';' { return [CmmUninitialised (widthInBytes (typeWidth $1) * fromIntegral $3)] } | 'CLOSURE' '(' NAME lits ')' { do lits <- sequence $4; return $ map CmmStaticLit $ mkStaticClosure (mkForeignLabel $3 Nothing ForeignLabelInExternalPackage IsData) -- mkForeignLabel because these are only used -- for CHARLIKE and INTLIKE closures in the RTS. dontCareCCS (map getLit lits) [] [] [] } -- arrays of closures required for the CHARLIKE & INTLIKE arrays lits :: { [ExtFCode CmmExpr] } : {- empty -} { [] } | ',' expr lits { $2 : $3 } cmmproc :: { ExtCode } -- TODO: add real SRT/info tables to parsed Cmm : info maybe_formals_without_hints maybe_gc_block maybe_frame '{' body '}' { do ((entry_ret_label, info, live, formals, gc_block, frame), stmts) <- getCgStmtsEC' $ loopDecls $ do { (entry_ret_label, info, live) <- $1; formals <- sequence $2; gc_block <- $3; frame <- $4; $6; return (entry_ret_label, info, live, formals, gc_block, frame) } blks <- code (cgStmtsToBlocks stmts) code (emitInfoTableAndCode entry_ret_label (CmmInfo gc_block frame info) formals blks) } | info maybe_formals_without_hints ';' { do (entry_ret_label, info, live) <- $1; formals <- sequence $2; code (emitInfoTableAndCode entry_ret_label (CmmInfo Nothing Nothing info) formals []) } | NAME maybe_formals_without_hints maybe_gc_block maybe_frame '{' body '}' {% withThisPackage $ \pkg -> do newFunctionName $1 pkg ((formals, gc_block, frame), stmts) <- getCgStmtsEC' $ loopDecls $ do { formals <- sequence $2; gc_block <- $3; frame <- $4; $6; return (formals, gc_block, frame) } blks <- code (cgStmtsToBlocks stmts) code (emitProc (CmmInfo gc_block frame CmmNonInfoTable) (mkCmmCodeLabel pkg $1) formals blks) } info :: { ExtFCode (CLabel, CmmInfoTable, [Maybe LocalReg]) } : 'INFO_TABLE' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ')' -- ptrs, nptrs, closure type, description, type {% withThisPackage $ \pkg -> do let prof = profilingInfo $11 $13 rep = mkRTSRep (fromIntegral $9) $ mkHeapRep False (fromIntegral $5) (fromIntegral $7) Thunk -- not really Thunk, but that makes the info table -- we want. return (mkCmmEntryLabel pkg $3, CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } | 'INFO_TABLE_FUN' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ',' INT ')' -- ptrs, nptrs, closure type, description, type, fun type {% withThisPackage $ \pkg -> do let prof = profilingInfo $11 $13 ty = Fun 0 (ArgSpec (fromIntegral $15)) -- Arity zero, arg_type $15 rep = mkRTSRep (fromIntegral $9) $ mkHeapRep False (fromIntegral $5) (fromIntegral $7) ty return (mkCmmEntryLabel pkg $3, CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } -- we leave most of the fields zero here. This is only used -- to generate the BCO info table in the RTS at the moment. | 'INFO_TABLE_CONSTR' '(' NAME ',' INT ',' INT ',' INT ',' INT ',' STRING ',' STRING ')' -- ptrs, nptrs, tag, closure type, description, type {% withThisPackage $ \pkg -> do let prof = profilingInfo $13 $15 ty = Constr (fromIntegral $9) -- Tag (stringToWord8s $13) rep = mkRTSRep (fromIntegral $11) $ mkHeapRep False (fromIntegral $5) (fromIntegral $7) ty return (mkCmmEntryLabel pkg $3, CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } -- If profiling is on, this string gets duplicated, -- but that's the way the old code did it we can fix it some other time. | 'INFO_TABLE_SELECTOR' '(' NAME ',' INT ',' INT ',' STRING ',' STRING ')' -- selector, closure type, description, type {% withThisPackage $ \pkg -> do let prof = profilingInfo $9 $11 ty = ThunkSelector (fromIntegral $5) rep = mkRTSRep (fromIntegral $7) $ mkHeapRep False 0 0 ty return (mkCmmEntryLabel pkg $3, CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } | 'INFO_TABLE_RET' '(' NAME ',' INT ')' -- closure type (no live regs) {% withThisPackage $ \pkg -> do let prof = NoProfilingInfo rep = mkRTSRep (fromIntegral $5) $ mkStackRep [] return (mkCmmRetLabel pkg $3, CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } | 'INFO_TABLE_RET' '(' NAME ',' INT ',' formals_without_hints0 ')' -- closure type, live regs {% withThisPackage $ \pkg -> do live <- sequence (map (liftM Just) $7) let prof = NoProfilingInfo bitmap = mkLiveness live rep = mkRTSRep (fromIntegral $5) $ mkStackRep bitmap return (mkCmmRetLabel pkg $3, CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } body :: { ExtCode } : {- empty -} { return () } | decl body { do $1; $2 } | stmt body { do $1; $2 } decl :: { ExtCode } : type names ';' { mapM_ (newLocal $1) $2 } | 'import' importNames ';' { mapM_ newImport $2 } | 'export' names ';' { return () } -- ignore exports -- an imported function name, with optional packageId importNames :: { [(FastString, CLabel)] } : importName { [$1] } | importName ',' importNames { $1 : $3 } importName :: { (FastString, CLabel) } -- A label imported without an explicit packageId. -- These are taken to come frome some foreign, unnamed package. : NAME { ($1, mkForeignLabel $1 Nothing ForeignLabelInExternalPackage IsFunction) } -- A label imported with an explicit packageId. | STRING NAME { ($2, mkCmmCodeLabel (fsToPackageId (mkFastString $1)) $2) } names :: { [FastString] } : NAME { [$1] } | NAME ',' names { $1 : $3 } stmt :: { ExtCode } : ';' { nopEC } | NAME ':' { do l <- newLabel $1; code (labelC l) } | lreg '=' expr ';' { do reg <- $1; e <- $3; stmtEC (CmmAssign reg e) } | type '[' expr ']' '=' expr ';' { doStore $1 $3 $6 } -- Gah! We really want to say "maybe_results" but that causes -- a shift/reduce conflict with assignment. We either -- we expand out the no-result and single result cases or -- we tweak the syntax to avoid the conflict. The later -- option is taken here because the other way would require -- multiple levels of expanding and get unwieldy. | maybe_results 'foreign' STRING expr '(' cmm_hint_exprs0 ')' safety vols opt_never_returns ';' {% foreignCall $3 $1 $4 $6 $9 $8 $10 } | maybe_results 'prim' '%' NAME '(' cmm_hint_exprs0 ')' safety vols ';' {% primCall $1 $4 $6 $9 $8 } -- stmt-level macros, stealing syntax from ordinary C-- function calls. -- Perhaps we ought to use the %%-form? | NAME '(' exprs0 ')' ';' {% stmtMacro $1 $3 } | 'switch' maybe_range expr '{' arms default '}' { do as <- sequence $5; doSwitch $2 $3 as $6 } | 'goto' NAME ';' { do l <- lookupLabel $2; stmtEC (CmmBranch l) } | 'jump' expr vols ';' { do e <- $2; stmtEC (CmmJump e $3) } | 'return' ';' { stmtEC CmmReturn } | 'if' bool_expr 'goto' NAME { do l <- lookupLabel $4; cmmRawIf $2 l } | 'if' bool_expr '{' body '}' else { cmmIfThenElse $2 $4 $6 } opt_never_returns :: { CmmReturnInfo } : { CmmMayReturn } | 'never' 'returns' { CmmNeverReturns } bool_expr :: { ExtFCode BoolExpr } : bool_op { $1 } | expr { do e <- $1; return (BoolTest e) } bool_op :: { ExtFCode BoolExpr } : bool_expr '&&' bool_expr { do e1 <- $1; e2 <- $3; return (BoolAnd e1 e2) } | bool_expr '||' bool_expr { do e1 <- $1; e2 <- $3; return (BoolOr e1 e2) } | '!' bool_expr { do e <- $2; return (BoolNot e) } | '(' bool_op ')' { $2 } -- This is not C-- syntax. What to do? safety :: { CmmSafety } : {- empty -} { CmmUnsafe } -- Default may change soon | STRING {% parseSafety $1 } -- This is not C-- syntax. What to do? vols :: { Maybe [GlobalReg] } : {- empty -} { Nothing } | '[' ']' { Just [] } | '[' globals ']' { Just $2 } globals :: { [GlobalReg] } : GLOBALREG { [$1] } | GLOBALREG ',' globals { $1 : $3 } maybe_range :: { Maybe (Int,Int) } : '[' INT '..' INT ']' { Just (fromIntegral $2, fromIntegral $4) } | {- empty -} { Nothing } arms :: { [ExtFCode ([Int],Either BlockId ExtCode)] } : {- empty -} { [] } | arm arms { $1 : $2 } arm :: { ExtFCode ([Int],Either BlockId ExtCode) } : 'case' ints ':' arm_body { do b <- $4; return ($2, b) } arm_body :: { ExtFCode (Either BlockId ExtCode) } : '{' body '}' { return (Right $2) } | 'goto' NAME ';' { do l <- lookupLabel $2; return (Left l) } ints :: { [Int] } : INT { [ fromIntegral $1 ] } | INT ',' ints { fromIntegral $1 : $3 } default :: { Maybe ExtCode } : 'default' ':' '{' body '}' { Just $4 } -- taking a few liberties with the C-- syntax here; C-- doesn't have -- 'default' branches | {- empty -} { Nothing } -- Note: OldCmm doesn't support a first class 'else' statement, though -- CmmNode does. else :: { ExtCode } : {- empty -} { nopEC } | 'else' '{' body '}' { $3 } -- we have to write this out longhand so that Happy's precedence rules -- can kick in. expr :: { ExtFCode CmmExpr } : expr '/' expr { mkMachOp MO_U_Quot [$1,$3] } | expr '*' expr { mkMachOp MO_Mul [$1,$3] } | expr '%' expr { mkMachOp MO_U_Rem [$1,$3] } | expr '-' expr { mkMachOp MO_Sub [$1,$3] } | expr '+' expr { mkMachOp MO_Add [$1,$3] } | expr '>>' expr { mkMachOp MO_U_Shr [$1,$3] } | expr '<<' expr { mkMachOp MO_Shl [$1,$3] } | expr '&' expr { mkMachOp MO_And [$1,$3] } | expr '^' expr { mkMachOp MO_Xor [$1,$3] } | expr '|' expr { mkMachOp MO_Or [$1,$3] } | expr '>=' expr { mkMachOp MO_U_Ge [$1,$3] } | expr '>' expr { mkMachOp MO_U_Gt [$1,$3] } | expr '<=' expr { mkMachOp MO_U_Le [$1,$3] } | expr '<' expr { mkMachOp MO_U_Lt [$1,$3] } | expr '!=' expr { mkMachOp MO_Ne [$1,$3] } | expr '==' expr { mkMachOp MO_Eq [$1,$3] } | '~' expr { mkMachOp MO_Not [$2] } | '-' expr { mkMachOp MO_S_Neg [$2] } | expr0 '`' NAME '`' expr0 {% do { mo <- nameToMachOp $3 ; return (mkMachOp mo [$1,$5]) } } | expr0 { $1 } expr0 :: { ExtFCode CmmExpr } : INT maybe_ty { return (CmmLit (CmmInt $1 (typeWidth $2))) } | FLOAT maybe_ty { return (CmmLit (CmmFloat $1 (typeWidth $2))) } | STRING { do s <- code (newStringCLit $1); return (CmmLit s) } | reg { $1 } | type '[' expr ']' { do e <- $3; return (CmmLoad e $1) } | '%' NAME '(' exprs0 ')' {% exprOp $2 $4 } | '(' expr ')' { $2 } -- leaving out the type of a literal gives you the native word size in C-- maybe_ty :: { CmmType } : {- empty -} { bWord } | '::' type { $2 } maybe_actuals :: { [ExtFCode HintedCmmActual] } : {- empty -} { [] } | '(' cmm_hint_exprs0 ')' { $2 } cmm_hint_exprs0 :: { [ExtFCode HintedCmmActual] } : {- empty -} { [] } | cmm_hint_exprs { $1 } cmm_hint_exprs :: { [ExtFCode HintedCmmActual] } : cmm_hint_expr { [$1] } | cmm_hint_expr ',' cmm_hint_exprs { $1 : $3 } cmm_hint_expr :: { ExtFCode HintedCmmActual } : expr { do e <- $1; return (CmmHinted e (inferCmmHint e)) } | expr STRING {% do h <- parseCmmHint $2; return $ do e <- $1; return (CmmHinted e h) } exprs0 :: { [ExtFCode CmmExpr] } : {- empty -} { [] } | exprs { $1 } exprs :: { [ExtFCode CmmExpr] } : expr { [ $1 ] } | expr ',' exprs { $1 : $3 } reg :: { ExtFCode CmmExpr } : NAME { lookupName $1 } | GLOBALREG { return (CmmReg (CmmGlobal $1)) } maybe_results :: { [ExtFCode HintedCmmFormal] } : {- empty -} { [] } | '(' cmm_formals ')' '=' { $2 } cmm_formals :: { [ExtFCode HintedCmmFormal] } : cmm_formal { [$1] } | cmm_formal ',' { [$1] } | cmm_formal ',' cmm_formals { $1 : $3 } cmm_formal :: { ExtFCode HintedCmmFormal } : local_lreg { do e <- $1; return (CmmHinted e (inferCmmHint (CmmReg (CmmLocal e)))) } | STRING local_lreg {% do h <- parseCmmHint $1; return $ do e <- $2; return (CmmHinted e h) } local_lreg :: { ExtFCode LocalReg } : NAME { do e <- lookupName $1; return $ case e of CmmReg (CmmLocal r) -> r other -> pprPanic "CmmParse:" (ftext $1 <> text " not a local register") } lreg :: { ExtFCode CmmReg } : NAME { do e <- lookupName $1; return $ case e of CmmReg r -> r other -> pprPanic "CmmParse:" (ftext $1 <> text " not a register") } | GLOBALREG { return (CmmGlobal $1) } maybe_formals_without_hints :: { [ExtFCode LocalReg] } : {- empty -} { [] } | '(' formals_without_hints0 ')' { $2 } formals_without_hints0 :: { [ExtFCode LocalReg] } : {- empty -} { [] } | formals_without_hints { $1 } formals_without_hints :: { [ExtFCode LocalReg] } : formal_without_hint ',' { [$1] } | formal_without_hint { [$1] } | formal_without_hint ',' formals_without_hints { $1 : $3 } formal_without_hint :: { ExtFCode LocalReg } : type NAME { newLocal $1 $2 } maybe_frame :: { ExtFCode (Maybe UpdateFrame) } : {- empty -} { return Nothing } | 'jump' expr '(' exprs0 ')' { do { target <- $2; args <- sequence $4; return $ Just (UpdateFrame target args) } } maybe_gc_block :: { ExtFCode (Maybe BlockId) } : {- empty -} { return Nothing } | 'goto' NAME { do l <- lookupLabel $2; return (Just l) } type :: { CmmType } : 'bits8' { b8 } | typenot8 { $1 } typenot8 :: { CmmType } : 'bits16' { b16 } | 'bits32' { b32 } | 'bits64' { b64 } | 'float32' { f32 } | 'float64' { f64 } | 'gcptr' { gcWord } { section :: String -> Section section "text" = Text section "data" = Data section "rodata" = ReadOnlyData section "relrodata" = RelocatableReadOnlyData section "bss" = UninitialisedData section s = OtherSection s mkString :: String -> CmmStatic mkString s = CmmString (map (fromIntegral.ord) s) -- mkMachOp infers the type of the MachOp from the type of its first -- argument. We assume that this is correct: for MachOps that don't have -- symmetrical args (e.g. shift ops), the first arg determines the type of -- the op. mkMachOp :: (Width -> MachOp) -> [ExtFCode CmmExpr] -> ExtFCode CmmExpr mkMachOp fn args = do arg_exprs <- sequence args return (CmmMachOp (fn (typeWidth (cmmExprType (head arg_exprs)))) arg_exprs) getLit :: CmmExpr -> CmmLit getLit (CmmLit l) = l getLit (CmmMachOp (MO_S_Neg _) [CmmLit (CmmInt i r)]) = CmmInt (negate i) r getLit _ = panic "invalid literal" -- TODO messy failure nameToMachOp :: FastString -> P (Width -> MachOp) nameToMachOp name = case lookupUFM machOps name of Nothing -> fail ("unknown primitive " ++ unpackFS name) Just m -> return m exprOp :: FastString -> [ExtFCode CmmExpr] -> P (ExtFCode CmmExpr) exprOp name args_code = case lookupUFM exprMacros name of Just f -> return $ do args <- sequence args_code return (f args) Nothing -> do mo <- nameToMachOp name return $ mkMachOp mo args_code exprMacros :: UniqFM ([CmmExpr] -> CmmExpr) exprMacros = listToUFM [ ( fsLit "ENTRY_CODE", \ [x] -> entryCode x ), ( fsLit "INFO_PTR", \ [x] -> closureInfoPtr x ), ( fsLit "STD_INFO", \ [x] -> infoTable x ), ( fsLit "FUN_INFO", \ [x] -> funInfoTable x ), ( fsLit "GET_ENTRY", \ [x] -> entryCode (closureInfoPtr x) ), ( fsLit "GET_STD_INFO", \ [x] -> infoTable (closureInfoPtr x) ), ( fsLit "GET_FUN_INFO", \ [x] -> funInfoTable (closureInfoPtr x) ), ( fsLit "INFO_TYPE", \ [x] -> infoTableClosureType x ), ( fsLit "INFO_PTRS", \ [x] -> infoTablePtrs x ), ( fsLit "INFO_NPTRS", \ [x] -> infoTableNonPtrs x ) ] -- we understand a subset of C-- primitives: machOps = listToUFM $ map (\(x, y) -> (mkFastString x, y)) [ ( "add", MO_Add ), ( "sub", MO_Sub ), ( "eq", MO_Eq ), ( "ne", MO_Ne ), ( "mul", MO_Mul ), ( "neg", MO_S_Neg ), ( "quot", MO_S_Quot ), ( "rem", MO_S_Rem ), ( "divu", MO_U_Quot ), ( "modu", MO_U_Rem ), ( "ge", MO_S_Ge ), ( "le", MO_S_Le ), ( "gt", MO_S_Gt ), ( "lt", MO_S_Lt ), ( "geu", MO_U_Ge ), ( "leu", MO_U_Le ), ( "gtu", MO_U_Gt ), ( "ltu", MO_U_Lt ), ( "and", MO_And ), ( "or", MO_Or ), ( "xor", MO_Xor ), ( "com", MO_Not ), ( "shl", MO_Shl ), ( "shrl", MO_U_Shr ), ( "shra", MO_S_Shr ), ( "fadd", MO_F_Add ), ( "fsub", MO_F_Sub ), ( "fneg", MO_F_Neg ), ( "fmul", MO_F_Mul ), ( "fquot", MO_F_Quot ), ( "feq", MO_F_Eq ), ( "fne", MO_F_Ne ), ( "fge", MO_F_Ge ), ( "fle", MO_F_Le ), ( "fgt", MO_F_Gt ), ( "flt", MO_F_Lt ), ( "lobits8", flip MO_UU_Conv W8 ), ( "lobits16", flip MO_UU_Conv W16 ), ( "lobits32", flip MO_UU_Conv W32 ), ( "lobits64", flip MO_UU_Conv W64 ), ( "zx16", flip MO_UU_Conv W16 ), ( "zx32", flip MO_UU_Conv W32 ), ( "zx64", flip MO_UU_Conv W64 ), ( "sx16", flip MO_SS_Conv W16 ), ( "sx32", flip MO_SS_Conv W32 ), ( "sx64", flip MO_SS_Conv W64 ), ( "f2f32", flip MO_FF_Conv W32 ), -- TODO; rounding mode ( "f2f64", flip MO_FF_Conv W64 ), -- TODO; rounding mode ( "f2i8", flip MO_FS_Conv W8 ), ( "f2i16", flip MO_FS_Conv W16 ), ( "f2i32", flip MO_FS_Conv W32 ), ( "f2i64", flip MO_FS_Conv W64 ), ( "i2f32", flip MO_SF_Conv W32 ), ( "i2f64", flip MO_SF_Conv W64 ) ] callishMachOps = listToUFM $ map (\(x, y) -> (mkFastString x, y)) [ ( "write_barrier", MO_WriteBarrier ), ( "memcpy", MO_Memcpy ), ( "memset", MO_Memset ), ( "memmove", MO_Memmove ) -- ToDo: the rest, maybe ] parseSafety :: String -> P CmmSafety parseSafety "safe" = return (CmmSafe NoC_SRT) parseSafety "unsafe" = return CmmUnsafe parseSafety "interruptible" = return CmmInterruptible parseSafety str = fail ("unrecognised safety: " ++ str) parseCmmHint :: String -> P ForeignHint parseCmmHint "ptr" = return AddrHint parseCmmHint "signed" = return SignedHint parseCmmHint str = fail ("unrecognised hint: " ++ str) -- labels are always pointers, so we might as well infer the hint inferCmmHint :: CmmExpr -> ForeignHint inferCmmHint (CmmLit (CmmLabel _)) = AddrHint inferCmmHint (CmmReg (CmmGlobal g)) | isPtrGlobalReg g = AddrHint inferCmmHint _ = NoHint isPtrGlobalReg Sp = True isPtrGlobalReg SpLim = True isPtrGlobalReg Hp = True isPtrGlobalReg HpLim = True isPtrGlobalReg CCCS = True isPtrGlobalReg CurrentTSO = True isPtrGlobalReg CurrentNursery = True isPtrGlobalReg (VanillaReg _ VGcPtr) = True isPtrGlobalReg _ = False happyError :: P a happyError = srcParseFail -- ----------------------------------------------------------------------------- -- Statement-level macros stmtMacro :: FastString -> [ExtFCode CmmExpr] -> P ExtCode stmtMacro fun args_code = do case lookupUFM stmtMacros fun of Nothing -> fail ("unknown macro: " ++ unpackFS fun) Just fcode -> return $ do args <- sequence args_code code (fcode args) stmtMacros :: UniqFM ([CmmExpr] -> Code) stmtMacros = listToUFM [ ( fsLit "CCS_ALLOC", \[words,ccs] -> profAlloc words ccs ), ( fsLit "CLOSE_NURSERY", \[] -> emitCloseNursery ), ( fsLit "ENTER_CCS_THUNK", \[e] -> enterCostCentreThunk e ), ( fsLit "HP_CHK_GEN", \[words,liveness,reentry] -> hpChkGen words liveness reentry ), ( fsLit "HP_CHK_NP_ASSIGN_SP0", \[e,f] -> hpChkNodePointsAssignSp0 e f ), ( fsLit "LOAD_THREAD_STATE", \[] -> emitLoadThreadState ), ( fsLit "LDV_ENTER", \[e] -> ldvEnter e ), ( fsLit "LDV_RECORD_CREATE", \[e] -> ldvRecordCreate e ), ( fsLit "OPEN_NURSERY", \[] -> emitOpenNursery ), ( fsLit "PUSH_UPD_FRAME", \[sp,e] -> emitPushUpdateFrame sp e ), ( fsLit "SAVE_THREAD_STATE", \[] -> emitSaveThreadState ), ( fsLit "SET_HDR", \[ptr,info,ccs] -> emitSetDynHdr ptr info ccs ), ( fsLit "STK_CHK_GEN", \[words,liveness,reentry] -> stkChkGen words liveness reentry ), ( fsLit "STK_CHK_NP", \[e] -> stkChkNodePoints e ), ( fsLit "TICK_ALLOC_PRIM", \[hdr,goods,slop] -> tickyAllocPrim hdr goods slop ), ( fsLit "TICK_ALLOC_PAP", \[goods,slop] -> tickyAllocPAP goods slop ), ( fsLit "TICK_ALLOC_UP_THK", \[goods,slop] -> tickyAllocThunk goods slop ), ( fsLit "UPD_BH_UPDATABLE", \[] -> emitBlackHoleCode False ), ( fsLit "UPD_BH_SINGLE_ENTRY", \[] -> emitBlackHoleCode True ), ( fsLit "RET_P", \[a] -> emitRetUT [(PtrArg,a)]), ( fsLit "RET_N", \[a] -> emitRetUT [(NonPtrArg,a)]), ( fsLit "RET_PP", \[a,b] -> emitRetUT [(PtrArg,a),(PtrArg,b)]), ( fsLit "RET_NN", \[a,b] -> emitRetUT [(NonPtrArg,a),(NonPtrArg,b)]), ( fsLit "RET_NP", \[a,b] -> emitRetUT [(NonPtrArg,a),(PtrArg,b)]), ( fsLit "RET_PPP", \[a,b,c] -> emitRetUT [(PtrArg,a),(PtrArg,b),(PtrArg,c)]), ( fsLit "RET_NPP", \[a,b,c] -> emitRetUT [(NonPtrArg,a),(PtrArg,b),(PtrArg,c)]), ( fsLit "RET_NNP", \[a,b,c] -> emitRetUT [(NonPtrArg,a),(NonPtrArg,b),(PtrArg,c)]), ( fsLit "RET_NNN", \[a,b,c] -> emitRetUT [(NonPtrArg,a),(NonPtrArg,b),(NonPtrArg,c)]), ( fsLit "RET_NNNN", \[a,b,c,d] -> emitRetUT [(NonPtrArg,a),(NonPtrArg,b),(NonPtrArg,c),(NonPtrArg,d)]), ( fsLit "RET_NNNP", \[a,b,c,d] -> emitRetUT [(NonPtrArg,a),(NonPtrArg,b),(NonPtrArg,c),(PtrArg,d)]), ( fsLit "RET_NPNP", \[a,b,c,d] -> emitRetUT [(NonPtrArg,a),(PtrArg,b),(NonPtrArg,c),(PtrArg,d)]) ] profilingInfo desc_str ty_str | not opt_SccProfilingOn = NoProfilingInfo | otherwise = ProfilingInfo (stringToWord8s desc_str) (stringToWord8s ty_str) staticClosure :: PackageId -> FastString -> FastString -> [CmmLit] -> ExtCode staticClosure pkg cl_label info payload = code $ emitDataLits (mkCmmDataLabel pkg cl_label) lits where lits = mkStaticClosure (mkCmmInfoLabel pkg info) dontCareCCS payload [] [] [] foreignCall :: String -> [ExtFCode HintedCmmFormal] -> ExtFCode CmmExpr -> [ExtFCode HintedCmmActual] -> Maybe [GlobalReg] -> CmmSafety -> CmmReturnInfo -> P ExtCode foreignCall conv_string results_code expr_code args_code vols safety ret = do convention <- case conv_string of "C" -> return CCallConv "stdcall" -> return StdCallConv "C--" -> return CmmCallConv _ -> fail ("unknown calling convention: " ++ conv_string) return $ do results <- sequence results_code expr <- expr_code args <- sequence args_code case convention of -- Temporary hack so at least some functions are CmmSafe CmmCallConv -> code (stmtC (CmmCall (CmmCallee expr convention) results args ret)) _ -> let expr' = adjCallTarget convention expr args in case safety of CmmUnsafe -> code (emitForeignCall' PlayRisky results (CmmCallee expr' convention) args vols NoC_SRT ret) CmmSafe srt -> code (emitForeignCall' PlaySafe results (CmmCallee expr' convention) args vols NoC_SRT ret) where CmmInterruptible -> code (emitForeignCall' PlayInterruptible results (CmmCallee expr' convention) args vols NoC_SRT ret) adjCallTarget :: CCallConv -> CmmExpr -> [CmmHinted CmmExpr] -> CmmExpr #ifdef mingw32_TARGET_OS -- On Windows, we have to add the '@N' suffix to the label when making -- a call with the stdcall calling convention. adjCallTarget StdCallConv (CmmLit (CmmLabel lbl)) args = CmmLit (CmmLabel (addLabelSize lbl (sum (map size args)))) where size (CmmHinted e _) = max wORD_SIZE (widthInBytes (typeWidth (cmmExprType e))) -- c.f. CgForeignCall.emitForeignCall #endif adjCallTarget _ expr _ = expr primCall :: [ExtFCode HintedCmmFormal] -> FastString -> [ExtFCode HintedCmmActual] -> Maybe [GlobalReg] -> CmmSafety -> P ExtCode primCall results_code name args_code vols safety = case lookupUFM callishMachOps name of Nothing -> fail ("unknown primitive " ++ unpackFS name) Just p -> return $ do results <- sequence results_code args <- sequence args_code case safety of CmmUnsafe -> code (emitForeignCall' PlayRisky results (CmmPrim p Nothing) args vols NoC_SRT CmmMayReturn) CmmSafe srt -> code (emitForeignCall' PlaySafe results (CmmPrim p Nothing) args vols NoC_SRT CmmMayReturn) where CmmInterruptible -> code (emitForeignCall' PlayInterruptible results (CmmPrim p Nothing) args vols NoC_SRT CmmMayReturn) doStore :: CmmType -> ExtFCode CmmExpr -> ExtFCode CmmExpr -> ExtCode doStore rep addr_code val_code = do addr <- addr_code val <- val_code -- if the specified store type does not match the type of the expr -- on the rhs, then we insert a coercion that will cause the type -- mismatch to be flagged by cmm-lint. If we don't do this, then -- the store will happen at the wrong type, and the error will not -- be noticed. let val_width = typeWidth (cmmExprType val) rep_width = typeWidth rep let coerce_val | val_width /= rep_width = CmmMachOp (MO_UU_Conv val_width rep_width) [val] | otherwise = val stmtEC (CmmStore addr coerce_val) -- Return an unboxed tuple. emitRetUT :: [(CgRep,CmmExpr)] -> Code emitRetUT args = do tickyUnboxedTupleReturn (length args) -- TICK (sp, stmts, live) <- pushUnboxedTuple 0 args emitSimultaneously stmts -- NB. the args might overlap with the stack slots -- or regs that we assign to, so better use -- simultaneous assignments here (#3546) when (sp /= 0) $ stmtC (CmmAssign spReg (cmmRegOffW spReg (-sp))) stmtC $ CmmJump (entryCode (CmmLoad (cmmRegOffW spReg sp) bWord)) (Just live) -- ----------------------------------------------------------------------------- -- If-then-else and boolean expressions data BoolExpr = BoolExpr `BoolAnd` BoolExpr | BoolExpr `BoolOr` BoolExpr | BoolNot BoolExpr | BoolTest CmmExpr -- ToDo: smart constructors which simplify the boolean expression. cmmIfThenElse cond then_part else_part = do then_id <- code newLabelC join_id <- code newLabelC c <- cond emitCond c then_id else_part stmtEC (CmmBranch join_id) code (labelC then_id) then_part -- fall through to join code (labelC join_id) cmmRawIf cond then_id = do c <- cond emitCond c then_id -- 'emitCond cond true_id' emits code to test whether the cond is true, -- branching to true_id if so, and falling through otherwise. emitCond (BoolTest e) then_id = do stmtEC (CmmCondBranch e then_id) emitCond (BoolNot (BoolTest (CmmMachOp op args))) then_id | Just op' <- maybeInvertComparison op = emitCond (BoolTest (CmmMachOp op' args)) then_id emitCond (BoolNot e) then_id = do else_id <- code newLabelC emitCond e else_id stmtEC (CmmBranch then_id) code (labelC else_id) emitCond (e1 `BoolOr` e2) then_id = do emitCond e1 then_id emitCond e2 then_id emitCond (e1 `BoolAnd` e2) then_id = do -- we'd like to invert one of the conditionals here to avoid an -- extra branch instruction, but we can't use maybeInvertComparison -- here because we can't look too closely at the expression since -- we're in a loop. and_id <- code newLabelC else_id <- code newLabelC emitCond e1 and_id stmtEC (CmmBranch else_id) code (labelC and_id) emitCond e2 then_id code (labelC else_id) -- ----------------------------------------------------------------------------- -- Table jumps -- We use a simplified form of C-- switch statements for now. A -- switch statement always compiles to a table jump. Each arm can -- specify a list of values (not ranges), and there can be a single -- default branch. The range of the table is given either by the -- optional range on the switch (eg. switch [0..7] {...}), or by -- the minimum/maximum values from the branches. doSwitch :: Maybe (Int,Int) -> ExtFCode CmmExpr -> [([Int],Either BlockId ExtCode)] -> Maybe ExtCode -> ExtCode doSwitch mb_range scrut arms deflt = do -- Compile code for the default branch dflt_entry <- case deflt of Nothing -> return Nothing Just e -> do b <- forkLabelledCodeEC e; return (Just b) -- Compile each case branch table_entries <- mapM emitArm arms -- Construct the table let all_entries = concat table_entries ixs = map fst all_entries (min,max) | Just (l,u) <- mb_range = (l,u) | otherwise = (minimum ixs, maximum ixs) entries = elems (accumArray (\_ a -> Just a) dflt_entry (min,max) all_entries) expr <- scrut -- ToDo: check for out of range and jump to default if necessary stmtEC (CmmSwitch expr entries) where emitArm :: ([Int],Either BlockId ExtCode) -> ExtFCode [(Int,BlockId)] emitArm (ints,Left blockid) = return [ (i,blockid) | i <- ints ] emitArm (ints,Right code) = do blockid <- forkLabelledCodeEC code return [ (i,blockid) | i <- ints ] -- ----------------------------------------------------------------------------- -- Putting it all together -- The initial environment: we define some constants that the compiler -- knows about here. initEnv :: Env initEnv = listToUFM [ ( fsLit "SIZEOF_StgHeader", VarN (CmmLit (CmmInt (fromIntegral (fixedHdrSize * wORD_SIZE)) wordWidth) )), ( fsLit "SIZEOF_StgInfoTable", VarN (CmmLit (CmmInt (fromIntegral stdInfoTableSizeB) wordWidth) )) ] parseCmmFile :: DynFlags -> FilePath -> IO (Messages, Maybe CmmGroup) parseCmmFile dflags filename = do showPass dflags "ParseCmm" buf <- hGetStringBuffer filename let init_loc = mkRealSrcLoc (mkFastString filename) 1 1 init_state = (mkPState dflags buf init_loc) { lex_state = [0] } -- reset the lex_state: the Lexer monad leaves some stuff -- in there we don't want. case unP cmmParse init_state of PFailed span err -> do let msg = mkPlainErrMsg span err return ((emptyBag, unitBag msg), Nothing) POk pst code -> do cmm <- initC dflags no_module (getCmm (unEC code initEnv [] >> return ())) let ms = getMessages pst if (errorsFound dflags ms) then return (ms, Nothing) else do dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm" (pprPlatform (targetPlatform dflags) cmm) return (ms, Just cmm) where no_module = panic "parseCmmFile: no module" }