----------------------------------------------------------------------------- -- -- (c) The University of Glasgow, 2004-2012 -- -- Parser for concrete Cmm. -- ----------------------------------------------------------------------------- {- ----------------------------------------------------------------------------- Note [Syntax of .cmm files] NOTE: You are very much on your own in .cmm. There is very little error checking at all: * Type errors are detected by the (optional) -dcmm-lint pass, if you don't turn this on then a type error will likely result in a panic from the native code generator. * Passing the wrong number of arguments or arguments of the wrong type is not detected. There are two ways to write .cmm code: (1) High-level Cmm code delegates the stack handling to GHC, and never explicitly mentions Sp or registers. (2) Low-level Cmm manages the stack itself, and must know about calling conventions. Whether you want high-level or low-level Cmm is indicated by the presence of an argument list on a procedure. For example: foo ( gcptr a, bits32 b ) { // this is high-level cmm code if (b > 0) { // we can make tail calls passing arguments: jump stg_ap_0_fast(a); } push (stg_upd_frame_info, a) { // stack frames can be explicitly pushed (x,y) = call wibble(a,b,3,4); // calls pass arguments and return results using the native // Haskell calling convention. The code generator will automatically // construct a stack frame and an info table for the continuation. return (x,y); // we can return multiple values from the current proc } } bar { // this is low-level cmm code, indicated by the fact that we did not // put an argument list on bar. x = R1; // the calling convention is explicit: better be careful // that this works on all platforms! jump %ENTRY_CODE(Sp(0)) } Here is a list of rules for high-level and low-level code. If you break the rules, you get a panic (for using a high-level construct in a low-level proc), or wrong code (when using low-level code in a high-level proc). This stuff isn't checked! (TODO!) High-level only: - tail-calls with arguments, e.g. jump stg_fun (arg1, arg2); - function calls: (ret1,ret2) = call stg_fun (arg1, arg2); This makes a call with the NativeNodeCall convention, and the values are returned to the following code using the NativeReturn convention. - returning: return (ret1, ret2) These use the NativeReturn convention to return zero or more results to the caller. - pushing stack frames: push (info_ptr, field1, ..., fieldN) { ... statements ... } - reserving temporary stack space: reserve N = x { ... } this reserves an area of size N (words) on the top of the stack, and binds its address to x (a local register). Typically this is used for allocating temporary storage for passing to foreign functions. Note that if you make any native calls or invoke the GC in the scope of the reserve block, you are responsible for ensuring that the stack you reserved is laid out correctly with an info table. Low-level only: - References to Sp, R1-R8, F1-F4 etc. NB. foreign calls may clobber the argument registers R1-R8, F1-F4 etc., so ensure they are saved into variables around foreign calls. - SAVE_THREAD_STATE() and LOAD_THREAD_STATE(), which modify Sp directly. Both high-level and low-level code can use a raw tail-call: jump stg_fun [R1,R2] NB. you *must* specify the list of GlobalRegs that are passed via a jump, otherwise the register allocator will assume that all the GlobalRegs are dead at the jump. Calling Conventions ------------------- High-level procedures use the NativeNode calling convention, or the NativeReturn convention if the 'return' keyword is used (see Stack Frames below). Low-level procedures implement their own calling convention, so it can be anything at all. If a low-level procedure implements the NativeNode calling convention, then it can be called by high-level code using an ordinary function call. In general this is hard to arrange because the calling convention depends on the number of physical registers available for parameter passing, but there are two cases where the calling convention is platform-independent: - Zero arguments. - One argument of pointer or non-pointer word type; this is always passed in R1 according to the NativeNode convention. - Returning a single value; these conventions are fixed and platform independent. Stack Frames ------------ A stack frame is written like this: INFO_TABLE_RET ( label, FRAME_TYPE, info_ptr, field1, ..., fieldN ) return ( arg1, ..., argM ) { ... code ... } where field1 ... fieldN are the fields of the stack frame (with types) arg1...argN are the values returned to the stack frame (with types). The return values are assumed to be passed according to the NativeReturn convention. On entry to the code, the stack frame looks like: |----------| | fieldN | | ... | | field1 | |----------| | info_ptr | |----------| | argN | | ... | <- Sp and some of the args may be in registers. We prepend the code by a copyIn of the args, and assign all the stack frame fields to their formals. The initial "arg offset" for stack layout purposes consists of the whole stack frame plus any args that might be on the stack. A tail-call may pass a stack frame to the callee using the following syntax: jump f (info_ptr, field1,..,fieldN) (arg1,..,argN) where info_ptr and field1..fieldN describe the stack frame, and arg1..argN are the arguments passed to f using the NativeNodeCall convention. Note if a field is longer than a word (e.g. a D_ on a 32-bit machine) then the call will push as many words as necessary to the stack to accommodate it (e.g. 2). ----------------------------------------------------------------------------- -} { module CmmParse ( parseCmmFile ) where import StgCmmExtCode import CmmCallConv import StgCmmProf import StgCmmHeap import StgCmmMonad hiding ( getCode, getCodeR, getCodeScoped, emitLabel, emit, emitStore , emitAssign, emitOutOfLine, withUpdFrameOff , getUpdFrameOff ) import qualified StgCmmMonad as F import StgCmmUtils import StgCmmForeign import StgCmmExpr import StgCmmClosure import StgCmmLayout hiding (ArgRep(..)) import StgCmmTicky import StgCmmBind ( emitBlackHoleCode, emitUpdateFrame ) import CoreSyn ( Tickish(SourceNote) ) import CmmOpt import MkGraph import Cmm import CmmUtils import CmmSwitch ( mkSwitchTargets ) import CmmInfo import BlockId import CmmLex import CLabel import SMRep import Lexer import CostCentre import ForeignCall import Module import Platform import Literal import Unique import UniqFM import SrcLoc import DynFlags import StaticFlags import ErrUtils import StringBuffer import FastString import Panic import Constants import Outputable import BasicTypes import Bag ( emptyBag, unitBag ) import Var import Control.Monad import Data.Array import Data.Char ( ord ) import System.Exit import Data.Maybe import qualified Data.Map as M #include "HsVersions.h" } %expect 0 %token ':' { L _ (CmmT_SpecChar ':') } ';' { L _ (CmmT_SpecChar ';') } '{' { L _ (CmmT_SpecChar '{') } '}' { L _ (CmmT_SpecChar '}') } '[' { L _ (CmmT_SpecChar '[') } ']' { L _ (CmmT_SpecChar ']') } '(' { L _ (CmmT_SpecChar '(') } ')' { L _ (CmmT_SpecChar ')') } '=' { L _ (CmmT_SpecChar '=') } '`' { L _ (CmmT_SpecChar '`') } '~' { L _ (CmmT_SpecChar '~') } '/' { L _ (CmmT_SpecChar '/') } '*' { L _ (CmmT_SpecChar '*') } '%' { L _ (CmmT_SpecChar '%') } '-' { L _ (CmmT_SpecChar '-') } '+' { L _ (CmmT_SpecChar '+') } '&' { L _ (CmmT_SpecChar '&') } '^' { L _ (CmmT_SpecChar '^') } '|' { L _ (CmmT_SpecChar '|') } '>' { L _ (CmmT_SpecChar '>') } '<' { L _ (CmmT_SpecChar '<') } ',' { L _ (CmmT_SpecChar ',') } '!' { L _ (CmmT_SpecChar '!') } '..' { L _ (CmmT_DotDot) } '::' { L _ (CmmT_DoubleColon) } '>>' { L _ (CmmT_Shr) } '<<' { L _ (CmmT_Shl) } '>=' { L _ (CmmT_Ge) } '<=' { L _ (CmmT_Le) } '==' { L _ (CmmT_Eq) } '!=' { L _ (CmmT_Ne) } '&&' { L _ (CmmT_BoolAnd) } '||' { L _ (CmmT_BoolOr) } 'CLOSURE' { L _ (CmmT_CLOSURE) } 'INFO_TABLE' { L _ (CmmT_INFO_TABLE) } 'INFO_TABLE_RET'{ L _ (CmmT_INFO_TABLE_RET) } 'INFO_TABLE_FUN'{ L _ (CmmT_INFO_TABLE_FUN) } 'INFO_TABLE_CONSTR'{ L _ (CmmT_INFO_TABLE_CONSTR) } 'INFO_TABLE_SELECTOR'{ L _ (CmmT_INFO_TABLE_SELECTOR) } 'else' { L _ (CmmT_else) } 'export' { L _ (CmmT_export) } 'section' { L _ (CmmT_section) } 'goto' { L _ (CmmT_goto) } 'if' { L _ (CmmT_if) } 'call' { L _ (CmmT_call) } 'jump' { L _ (CmmT_jump) } 'foreign' { L _ (CmmT_foreign) } 'never' { L _ (CmmT_never) } 'prim' { L _ (CmmT_prim) } 'reserve' { L _ (CmmT_reserve) } 'return' { L _ (CmmT_return) } 'returns' { L _ (CmmT_returns) } 'import' { L _ (CmmT_import) } 'switch' { L _ (CmmT_switch) } 'case' { L _ (CmmT_case) } 'default' { L _ (CmmT_default) } 'push' { L _ (CmmT_push) } 'unwind' { L _ (CmmT_unwind) } 'bits8' { L _ (CmmT_bits8) } 'bits16' { L _ (CmmT_bits16) } 'bits32' { L _ (CmmT_bits32) } 'bits64' { L _ (CmmT_bits64) } 'bits128' { L _ (CmmT_bits128) } 'bits256' { L _ (CmmT_bits256) } 'bits512' { L _ (CmmT_bits512) } 'float32' { L _ (CmmT_float32) } 'float64' { L _ (CmmT_float64) } 'gcptr' { L _ (CmmT_gcptr) } GLOBALREG { L _ (CmmT_GlobalReg $$) } NAME { L _ (CmmT_Name $$) } STRING { L _ (CmmT_String $$) } INT { L _ (CmmT_Int $$) } FLOAT { L _ (CmmT_Float $$) } %monad { P } { >>= } { return } %lexer { cmmlex } { L _ CmmT_EOF } %name cmmParse cmm %tokentype { Located CmmToken } -- C-- operator precedences, taken from the C-- spec %right '||' -- non-std extension, called %disjoin in C-- %right '&&' -- non-std extension, called %conjoin in C-- %right '!' %nonassoc '>=' '>' '<=' '<' '!=' '==' %left '|' %left '^' %left '&' %left '>>' '<<' %left '-' '+' %left '/' '*' '%' %right '~' %% cmm :: { CmmParse () } : {- empty -} { return () } | cmmtop cmm { do $1; $2 } cmmtop :: { CmmParse () } : cmmproc { $1 } | cmmdata { $1 } | decl { $1 } | 'CLOSURE' '(' NAME ',' NAME lits ')' ';' {% withThisPackage $ \pkg -> do lits <- sequence $6; staticClosure pkg $3 $5 (map getLit lits) } -- The only static closures in the RTS are dummy closures like -- stg_END_TSO_QUEUE_closure and stg_dummy_ret. We don't need -- to provide the full generality of static closures here. -- In particular: -- * CCS can always be CCS_DONT_CARE -- * closure is always extern -- * payload is always empty -- * we can derive closure and info table labels from a single NAME cmmdata :: { CmmParse () } : 'section' STRING '{' data_label statics '}' { do lbl <- $4; ss <- sequence $5; code (emitDecl (CmmData (Section (section $2) lbl) (Statics lbl $ concat ss))) } data_label :: { CmmParse CLabel } : NAME ':' {% withThisPackage $ \pkg -> return (mkCmmDataLabel pkg $1) } statics :: { [CmmParse [CmmStatic]] } : {- empty -} { [] } | static statics { $1 : $2 } -- Strings aren't used much in the RTS HC code, so it doesn't seem -- worth allowing inline strings. C-- doesn't allow them anyway. static :: { CmmParse [CmmStatic] } : type expr ';' { do e <- $2; return [CmmStaticLit (getLit e)] } | type ';' { return [CmmUninitialised (widthInBytes (typeWidth $1))] } | 'bits8' '[' ']' STRING ';' { return [mkString $4] } | 'bits8' '[' INT ']' ';' { return [CmmUninitialised (fromIntegral $3)] } | typenot8 '[' INT ']' ';' { return [CmmUninitialised (widthInBytes (typeWidth $1) * fromIntegral $3)] } | 'CLOSURE' '(' NAME lits ')' { do { lits <- sequence $4 ; dflags <- getDynFlags ; return $ map CmmStaticLit $ mkStaticClosure dflags (mkForeignLabel $3 Nothing ForeignLabelInExternalPackage IsData) -- mkForeignLabel because these are only used -- for CHARLIKE and INTLIKE closures in the RTS. dontCareCCS (map getLit lits) [] [] [] } } -- arrays of closures required for the CHARLIKE & INTLIKE arrays lits :: { [CmmParse CmmExpr] } : {- empty -} { [] } | ',' expr lits { $2 : $3 } cmmproc :: { CmmParse () } : info maybe_conv maybe_formals maybe_body { do ((entry_ret_label, info, stk_formals, formals), agraph) <- getCodeScoped $ loopDecls $ do { (entry_ret_label, info, stk_formals) <- $1; dflags <- getDynFlags; formals <- sequence (fromMaybe [] $3); withName (showSDoc dflags (ppr entry_ret_label)) $4; return (entry_ret_label, info, stk_formals, formals) } let do_layout = isJust $3 code (emitProcWithStackFrame $2 info entry_ret_label stk_formals formals agraph do_layout ) } maybe_conv :: { Convention } : {- empty -} { NativeNodeCall } | 'return' { NativeReturn } maybe_body :: { CmmParse () } : ';' { return () } | '{' body '}' { withSourceNote $1 $3 $2 } info :: { CmmParse (CLabel, Maybe CmmInfoTable, [LocalReg]) } : NAME {% withThisPackage $ \pkg -> do newFunctionName $1 pkg return (mkCmmCodeLabel pkg $1, Nothing, []) } | 'INFO_TABLE' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ')' -- ptrs, nptrs, closure type, description, type {% withThisPackage $ \pkg -> do dflags <- getDynFlags let prof = profilingInfo dflags $11 $13 rep = mkRTSRep (fromIntegral $9) $ mkHeapRep dflags False (fromIntegral $5) (fromIntegral $7) Thunk -- not really Thunk, but that makes the info table -- we want. return (mkCmmEntryLabel pkg $3, Just $ CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } | 'INFO_TABLE_FUN' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ',' INT ')' -- ptrs, nptrs, closure type, description, type, fun type {% withThisPackage $ \pkg -> do dflags <- getDynFlags let prof = profilingInfo dflags $11 $13 ty = Fun 0 (ArgSpec (fromIntegral $15)) -- Arity zero, arg_type $15 rep = mkRTSRep (fromIntegral $9) $ mkHeapRep dflags False (fromIntegral $5) (fromIntegral $7) ty return (mkCmmEntryLabel pkg $3, Just $ CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } -- we leave most of the fields zero here. This is only used -- to generate the BCO info table in the RTS at the moment. | 'INFO_TABLE_CONSTR' '(' NAME ',' INT ',' INT ',' INT ',' INT ',' STRING ',' STRING ')' -- ptrs, nptrs, tag, closure type, description, type {% withThisPackage $ \pkg -> do dflags <- getDynFlags let prof = profilingInfo dflags $13 $15 ty = Constr (fromIntegral $9) -- Tag (stringToWord8s $13) rep = mkRTSRep (fromIntegral $11) $ mkHeapRep dflags False (fromIntegral $5) (fromIntegral $7) ty return (mkCmmEntryLabel pkg $3, Just $ CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } -- If profiling is on, this string gets duplicated, -- but that's the way the old code did it we can fix it some other time. | 'INFO_TABLE_SELECTOR' '(' NAME ',' INT ',' INT ',' STRING ',' STRING ')' -- selector, closure type, description, type {% withThisPackage $ \pkg -> do dflags <- getDynFlags let prof = profilingInfo dflags $9 $11 ty = ThunkSelector (fromIntegral $5) rep = mkRTSRep (fromIntegral $7) $ mkHeapRep dflags False 0 0 ty return (mkCmmEntryLabel pkg $3, Just $ CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } | 'INFO_TABLE_RET' '(' NAME ',' INT ')' -- closure type (no live regs) {% withThisPackage $ \pkg -> do let prof = NoProfilingInfo rep = mkRTSRep (fromIntegral $5) $ mkStackRep [] return (mkCmmRetLabel pkg $3, Just $ CmmInfoTable { cit_lbl = mkCmmRetInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, []) } | 'INFO_TABLE_RET' '(' NAME ',' INT ',' formals0 ')' -- closure type, live regs {% withThisPackage $ \pkg -> do dflags <- getDynFlags live <- sequence $7 let prof = NoProfilingInfo -- drop one for the info pointer bitmap = mkLiveness dflags (map Just (drop 1 live)) rep = mkRTSRep (fromIntegral $5) $ mkStackRep bitmap return (mkCmmRetLabel pkg $3, Just $ CmmInfoTable { cit_lbl = mkCmmRetInfoLabel pkg $3 , cit_rep = rep , cit_prof = prof, cit_srt = NoC_SRT }, live) } body :: { CmmParse () } : {- empty -} { return () } | decl body { do $1; $2 } | stmt body { do $1; $2 } decl :: { CmmParse () } : type names ';' { mapM_ (newLocal $1) $2 } | 'import' importNames ';' { mapM_ newImport $2 } | 'export' names ';' { return () } -- ignore exports -- an imported function name, with optional packageId importNames :: { [(FastString, CLabel)] } : importName { [$1] } | importName ',' importNames { $1 : $3 } importName :: { (FastString, CLabel) } -- A label imported without an explicit packageId. -- These are taken to come frome some foreign, unnamed package. : NAME { ($1, mkForeignLabel $1 Nothing ForeignLabelInExternalPackage IsFunction) } -- as previous 'NAME', but 'IsData' | 'CLOSURE' NAME { ($2, mkForeignLabel $2 Nothing ForeignLabelInExternalPackage IsData) } -- A label imported with an explicit packageId. | STRING NAME { ($2, mkCmmCodeLabel (fsToUnitId (mkFastString $1)) $2) } names :: { [FastString] } : NAME { [$1] } | NAME ',' names { $1 : $3 } stmt :: { CmmParse () } : ';' { return () } | NAME ':' { do l <- newLabel $1; emitLabel l } | lreg '=' expr ';' { do reg <- $1; e <- $3; emitAssign reg e } | type '[' expr ']' '=' expr ';' { doStore $1 $3 $6 } -- Gah! We really want to say "foreign_results" but that causes -- a shift/reduce conflict with assignment. We either -- we expand out the no-result and single result cases or -- we tweak the syntax to avoid the conflict. The later -- option is taken here because the other way would require -- multiple levels of expanding and get unwieldy. | foreign_results 'foreign' STRING foreignLabel '(' cmm_hint_exprs0 ')' safety opt_never_returns ';' {% foreignCall $3 $1 $4 $6 $8 $9 } | foreign_results 'prim' '%' NAME '(' exprs0 ')' ';' {% primCall $1 $4 $6 } -- stmt-level macros, stealing syntax from ordinary C-- function calls. -- Perhaps we ought to use the %%-form? | NAME '(' exprs0 ')' ';' {% stmtMacro $1 $3 } | 'switch' maybe_range expr '{' arms default '}' { do as <- sequence $5; doSwitch $2 $3 as $6 } | 'goto' NAME ';' { do l <- lookupLabel $2; emit (mkBranch l) } | 'return' '(' exprs0 ')' ';' { doReturn $3 } | 'jump' expr vols ';' { doRawJump $2 $3 } | 'jump' expr '(' exprs0 ')' ';' { doJumpWithStack $2 [] $4 } | 'jump' expr '(' exprs0 ')' '(' exprs0 ')' ';' { doJumpWithStack $2 $4 $7 } | 'call' expr '(' exprs0 ')' ';' { doCall $2 [] $4 } | '(' formals ')' '=' 'call' expr '(' exprs0 ')' ';' { doCall $6 $2 $8 } | 'if' bool_expr 'goto' NAME { do l <- lookupLabel $4; cmmRawIf $2 l } | 'if' bool_expr '{' body '}' else { cmmIfThenElse $2 (withSourceNote $3 $5 $4) $6 } | 'push' '(' exprs0 ')' maybe_body { pushStackFrame $3 $5 } | 'reserve' expr '=' lreg maybe_body { reserveStackFrame $2 $4 $5 } | 'unwind' GLOBALREG '=' expr { $4 >>= code . emitUnwind $2 } foreignLabel :: { CmmParse CmmExpr } : NAME { return (CmmLit (CmmLabel (mkForeignLabel $1 Nothing ForeignLabelInThisPackage IsFunction))) } opt_never_returns :: { CmmReturnInfo } : { CmmMayReturn } | 'never' 'returns' { CmmNeverReturns } bool_expr :: { CmmParse BoolExpr } : bool_op { $1 } | expr { do e <- $1; return (BoolTest e) } bool_op :: { CmmParse BoolExpr } : bool_expr '&&' bool_expr { do e1 <- $1; e2 <- $3; return (BoolAnd e1 e2) } | bool_expr '||' bool_expr { do e1 <- $1; e2 <- $3; return (BoolOr e1 e2) } | '!' bool_expr { do e <- $2; return (BoolNot e) } | '(' bool_op ')' { $2 } safety :: { Safety } : {- empty -} { PlayRisky } | STRING {% parseSafety $1 } vols :: { [GlobalReg] } : '[' ']' { [] } | '[' '*' ']' {% do df <- getDynFlags ; return (realArgRegsCover df) } -- All of them. See comment attached -- to realArgRegsCover | '[' globals ']' { $2 } globals :: { [GlobalReg] } : GLOBALREG { [$1] } | GLOBALREG ',' globals { $1 : $3 } maybe_range :: { Maybe (Integer,Integer) } : '[' INT '..' INT ']' { Just ($2, $4) } | {- empty -} { Nothing } arms :: { [CmmParse ([Integer],Either BlockId (CmmParse ()))] } : {- empty -} { [] } | arm arms { $1 : $2 } arm :: { CmmParse ([Integer],Either BlockId (CmmParse ())) } : 'case' ints ':' arm_body { do b <- $4; return ($2, b) } arm_body :: { CmmParse (Either BlockId (CmmParse ())) } : '{' body '}' { return (Right (withSourceNote $1 $3 $2)) } | 'goto' NAME ';' { do l <- lookupLabel $2; return (Left l) } ints :: { [Integer] } : INT { [ $1 ] } | INT ',' ints { $1 : $3 } default :: { Maybe (CmmParse ()) } : 'default' ':' '{' body '}' { Just (withSourceNote $3 $5 $4) } -- taking a few liberties with the C-- syntax here; C-- doesn't have -- 'default' branches | {- empty -} { Nothing } -- Note: OldCmm doesn't support a first class 'else' statement, though -- CmmNode does. else :: { CmmParse () } : {- empty -} { return () } | 'else' '{' body '}' { withSourceNote $2 $4 $3 } -- we have to write this out longhand so that Happy's precedence rules -- can kick in. expr :: { CmmParse CmmExpr } : expr '/' expr { mkMachOp MO_U_Quot [$1,$3] } | expr '*' expr { mkMachOp MO_Mul [$1,$3] } | expr '%' expr { mkMachOp MO_U_Rem [$1,$3] } | expr '-' expr { mkMachOp MO_Sub [$1,$3] } | expr '+' expr { mkMachOp MO_Add [$1,$3] } | expr '>>' expr { mkMachOp MO_U_Shr [$1,$3] } | expr '<<' expr { mkMachOp MO_Shl [$1,$3] } | expr '&' expr { mkMachOp MO_And [$1,$3] } | expr '^' expr { mkMachOp MO_Xor [$1,$3] } | expr '|' expr { mkMachOp MO_Or [$1,$3] } | expr '>=' expr { mkMachOp MO_U_Ge [$1,$3] } | expr '>' expr { mkMachOp MO_U_Gt [$1,$3] } | expr '<=' expr { mkMachOp MO_U_Le [$1,$3] } | expr '<' expr { mkMachOp MO_U_Lt [$1,$3] } | expr '!=' expr { mkMachOp MO_Ne [$1,$3] } | expr '==' expr { mkMachOp MO_Eq [$1,$3] } | '~' expr { mkMachOp MO_Not [$2] } | '-' expr { mkMachOp MO_S_Neg [$2] } | expr0 '`' NAME '`' expr0 {% do { mo <- nameToMachOp $3 ; return (mkMachOp mo [$1,$5]) } } | expr0 { $1 } expr0 :: { CmmParse CmmExpr } : INT maybe_ty { return (CmmLit (CmmInt $1 (typeWidth $2))) } | FLOAT maybe_ty { return (CmmLit (CmmFloat $1 (typeWidth $2))) } | STRING { do s <- code (newStringCLit $1); return (CmmLit s) } | reg { $1 } | type '[' expr ']' { do e <- $3; return (CmmLoad e $1) } | '%' NAME '(' exprs0 ')' {% exprOp $2 $4 } | '(' expr ')' { $2 } -- leaving out the type of a literal gives you the native word size in C-- maybe_ty :: { CmmType } : {- empty -} {% do dflags <- getDynFlags; return $ bWord dflags } | '::' type { $2 } cmm_hint_exprs0 :: { [CmmParse (CmmExpr, ForeignHint)] } : {- empty -} { [] } | cmm_hint_exprs { $1 } cmm_hint_exprs :: { [CmmParse (CmmExpr, ForeignHint)] } : cmm_hint_expr { [$1] } | cmm_hint_expr ',' cmm_hint_exprs { $1 : $3 } cmm_hint_expr :: { CmmParse (CmmExpr, ForeignHint) } : expr { do e <- $1; return (e, inferCmmHint e) } | expr STRING {% do h <- parseCmmHint $2; return $ do e <- $1; return (e, h) } exprs0 :: { [CmmParse CmmExpr] } : {- empty -} { [] } | exprs { $1 } exprs :: { [CmmParse CmmExpr] } : expr { [ $1 ] } | expr ',' exprs { $1 : $3 } reg :: { CmmParse CmmExpr } : NAME { lookupName $1 } | GLOBALREG { return (CmmReg (CmmGlobal $1)) } foreign_results :: { [CmmParse (LocalReg, ForeignHint)] } : {- empty -} { [] } | '(' foreign_formals ')' '=' { $2 } foreign_formals :: { [CmmParse (LocalReg, ForeignHint)] } : foreign_formal { [$1] } | foreign_formal ',' { [$1] } | foreign_formal ',' foreign_formals { $1 : $3 } foreign_formal :: { CmmParse (LocalReg, ForeignHint) } : local_lreg { do e <- $1; return (e, (inferCmmHint (CmmReg (CmmLocal e)))) } | STRING local_lreg {% do h <- parseCmmHint $1; return $ do e <- $2; return (e,h) } local_lreg :: { CmmParse LocalReg } : NAME { do e <- lookupName $1; return $ case e of CmmReg (CmmLocal r) -> r other -> pprPanic "CmmParse:" (ftext $1 <> text " not a local register") } lreg :: { CmmParse CmmReg } : NAME { do e <- lookupName $1; return $ case e of CmmReg r -> r other -> pprPanic "CmmParse:" (ftext $1 <> text " not a register") } | GLOBALREG { return (CmmGlobal $1) } maybe_formals :: { Maybe [CmmParse LocalReg] } : {- empty -} { Nothing } | '(' formals0 ')' { Just $2 } formals0 :: { [CmmParse LocalReg] } : {- empty -} { [] } | formals { $1 } formals :: { [CmmParse LocalReg] } : formal ',' { [$1] } | formal { [$1] } | formal ',' formals { $1 : $3 } formal :: { CmmParse LocalReg } : type NAME { newLocal $1 $2 } type :: { CmmType } : 'bits8' { b8 } | typenot8 { $1 } typenot8 :: { CmmType } : 'bits16' { b16 } | 'bits32' { b32 } | 'bits64' { b64 } | 'bits128' { b128 } | 'bits256' { b256 } | 'bits512' { b512 } | 'float32' { f32 } | 'float64' { f64 } | 'gcptr' {% do dflags <- getDynFlags; return $ gcWord dflags } { section :: String -> SectionType section "text" = Text section "data" = Data section "rodata" = ReadOnlyData section "relrodata" = RelocatableReadOnlyData section "bss" = UninitialisedData section s = OtherSection s mkString :: String -> CmmStatic mkString s = CmmString (map (fromIntegral.ord) s) -- | -- Given an info table, decide what the entry convention for the proc -- is. That is, for an INFO_TABLE_RET we want the return convention, -- otherwise it is a NativeNodeCall. -- infoConv :: Maybe CmmInfoTable -> Convention infoConv Nothing = NativeNodeCall infoConv (Just info) | isStackRep (cit_rep info) = NativeReturn | otherwise = NativeNodeCall -- mkMachOp infers the type of the MachOp from the type of its first -- argument. We assume that this is correct: for MachOps that don't have -- symmetrical args (e.g. shift ops), the first arg determines the type of -- the op. mkMachOp :: (Width -> MachOp) -> [CmmParse CmmExpr] -> CmmParse CmmExpr mkMachOp fn args = do dflags <- getDynFlags arg_exprs <- sequence args return (CmmMachOp (fn (typeWidth (cmmExprType dflags (head arg_exprs)))) arg_exprs) getLit :: CmmExpr -> CmmLit getLit (CmmLit l) = l getLit (CmmMachOp (MO_S_Neg _) [CmmLit (CmmInt i r)]) = CmmInt (negate i) r getLit _ = panic "invalid literal" -- TODO messy failure nameToMachOp :: FastString -> P (Width -> MachOp) nameToMachOp name = case lookupUFM machOps name of Nothing -> fail ("unknown primitive " ++ unpackFS name) Just m -> return m exprOp :: FastString -> [CmmParse CmmExpr] -> P (CmmParse CmmExpr) exprOp name args_code = do dflags <- getDynFlags case lookupUFM (exprMacros dflags) name of Just f -> return $ do args <- sequence args_code return (f args) Nothing -> do mo <- nameToMachOp name return $ mkMachOp mo args_code exprMacros :: DynFlags -> UniqFM ([CmmExpr] -> CmmExpr) exprMacros dflags = listToUFM [ ( fsLit "ENTRY_CODE", \ [x] -> entryCode dflags x ), ( fsLit "INFO_PTR", \ [x] -> closureInfoPtr dflags x ), ( fsLit "STD_INFO", \ [x] -> infoTable dflags x ), ( fsLit "FUN_INFO", \ [x] -> funInfoTable dflags x ), ( fsLit "GET_ENTRY", \ [x] -> entryCode dflags (closureInfoPtr dflags x) ), ( fsLit "GET_STD_INFO", \ [x] -> infoTable dflags (closureInfoPtr dflags x) ), ( fsLit "GET_FUN_INFO", \ [x] -> funInfoTable dflags (closureInfoPtr dflags x) ), ( fsLit "INFO_TYPE", \ [x] -> infoTableClosureType dflags x ), ( fsLit "INFO_PTRS", \ [x] -> infoTablePtrs dflags x ), ( fsLit "INFO_NPTRS", \ [x] -> infoTableNonPtrs dflags x ) ] -- we understand a subset of C-- primitives: machOps = listToUFM $ map (\(x, y) -> (mkFastString x, y)) [ ( "add", MO_Add ), ( "sub", MO_Sub ), ( "eq", MO_Eq ), ( "ne", MO_Ne ), ( "mul", MO_Mul ), ( "neg", MO_S_Neg ), ( "quot", MO_S_Quot ), ( "rem", MO_S_Rem ), ( "divu", MO_U_Quot ), ( "modu", MO_U_Rem ), ( "ge", MO_S_Ge ), ( "le", MO_S_Le ), ( "gt", MO_S_Gt ), ( "lt", MO_S_Lt ), ( "geu", MO_U_Ge ), ( "leu", MO_U_Le ), ( "gtu", MO_U_Gt ), ( "ltu", MO_U_Lt ), ( "and", MO_And ), ( "or", MO_Or ), ( "xor", MO_Xor ), ( "com", MO_Not ), ( "shl", MO_Shl ), ( "shrl", MO_U_Shr ), ( "shra", MO_S_Shr ), ( "fadd", MO_F_Add ), ( "fsub", MO_F_Sub ), ( "fneg", MO_F_Neg ), ( "fmul", MO_F_Mul ), ( "fquot", MO_F_Quot ), ( "feq", MO_F_Eq ), ( "fne", MO_F_Ne ), ( "fge", MO_F_Ge ), ( "fle", MO_F_Le ), ( "fgt", MO_F_Gt ), ( "flt", MO_F_Lt ), ( "lobits8", flip MO_UU_Conv W8 ), ( "lobits16", flip MO_UU_Conv W16 ), ( "lobits32", flip MO_UU_Conv W32 ), ( "lobits64", flip MO_UU_Conv W64 ), ( "zx16", flip MO_UU_Conv W16 ), ( "zx32", flip MO_UU_Conv W32 ), ( "zx64", flip MO_UU_Conv W64 ), ( "sx16", flip MO_SS_Conv W16 ), ( "sx32", flip MO_SS_Conv W32 ), ( "sx64", flip MO_SS_Conv W64 ), ( "f2f32", flip MO_FF_Conv W32 ), -- TODO; rounding mode ( "f2f64", flip MO_FF_Conv W64 ), -- TODO; rounding mode ( "f2i8", flip MO_FS_Conv W8 ), ( "f2i16", flip MO_FS_Conv W16 ), ( "f2i32", flip MO_FS_Conv W32 ), ( "f2i64", flip MO_FS_Conv W64 ), ( "i2f32", flip MO_SF_Conv W32 ), ( "i2f64", flip MO_SF_Conv W64 ) ] callishMachOps :: UniqFM ([CmmExpr] -> (CallishMachOp, [CmmExpr])) callishMachOps = listToUFM $ map (\(x, y) -> (mkFastString x, y)) [ ( "write_barrier", (,) MO_WriteBarrier ), ( "memcpy", memcpyLikeTweakArgs MO_Memcpy ), ( "memset", memcpyLikeTweakArgs MO_Memset ), ( "memmove", memcpyLikeTweakArgs MO_Memmove ), ("prefetch0", (,) $ MO_Prefetch_Data 0), ("prefetch1", (,) $ MO_Prefetch_Data 1), ("prefetch2", (,) $ MO_Prefetch_Data 2), ("prefetch3", (,) $ MO_Prefetch_Data 3), ( "popcnt8", (,) $ MO_PopCnt W8 ), ( "popcnt16", (,) $ MO_PopCnt W16 ), ( "popcnt32", (,) $ MO_PopCnt W32 ), ( "popcnt64", (,) $ MO_PopCnt W64 ) -- ToDo: the rest, maybe -- edit: which rest? -- also: how do we tell CMM Lint how to type check callish macops? ] where memcpyLikeTweakArgs :: (Int -> CallishMachOp) -> [CmmExpr] -> (CallishMachOp, [CmmExpr]) memcpyLikeTweakArgs op [] = pgmError "memcpy-like function requires at least one argument" memcpyLikeTweakArgs op args@(_:_) = (op align, args') where args' = init args align = case last args of CmmLit (CmmInt alignInteger _) -> fromInteger alignInteger e -> pprPgmError "Non-constant alignment in memcpy-like function:" (ppr e) -- The alignment of memcpy-ish operations must be a -- compile-time constant. We verify this here, passing it around -- in the MO_* constructor. In order to do this, however, we -- must intercept the arguments in primCall. parseSafety :: String -> P Safety parseSafety "safe" = return PlaySafe parseSafety "unsafe" = return PlayRisky parseSafety "interruptible" = return PlayInterruptible parseSafety str = fail ("unrecognised safety: " ++ str) parseCmmHint :: String -> P ForeignHint parseCmmHint "ptr" = return AddrHint parseCmmHint "signed" = return SignedHint parseCmmHint str = fail ("unrecognised hint: " ++ str) -- labels are always pointers, so we might as well infer the hint inferCmmHint :: CmmExpr -> ForeignHint inferCmmHint (CmmLit (CmmLabel _)) = AddrHint inferCmmHint (CmmReg (CmmGlobal g)) | isPtrGlobalReg g = AddrHint inferCmmHint _ = NoHint isPtrGlobalReg Sp = True isPtrGlobalReg SpLim = True isPtrGlobalReg Hp = True isPtrGlobalReg HpLim = True isPtrGlobalReg CCCS = True isPtrGlobalReg CurrentTSO = True isPtrGlobalReg CurrentNursery = True isPtrGlobalReg (VanillaReg _ VGcPtr) = True isPtrGlobalReg _ = False happyError :: P a happyError = srcParseFail -- ----------------------------------------------------------------------------- -- Statement-level macros stmtMacro :: FastString -> [CmmParse CmmExpr] -> P (CmmParse ()) stmtMacro fun args_code = do case lookupUFM stmtMacros fun of Nothing -> fail ("unknown macro: " ++ unpackFS fun) Just fcode -> return $ do args <- sequence args_code code (fcode args) stmtMacros :: UniqFM ([CmmExpr] -> FCode ()) stmtMacros = listToUFM [ ( fsLit "CCS_ALLOC", \[words,ccs] -> profAlloc words ccs ), ( fsLit "ENTER_CCS_THUNK", \[e] -> enterCostCentreThunk e ), ( fsLit "CLOSE_NURSERY", \[] -> emitCloseNursery ), ( fsLit "OPEN_NURSERY", \[] -> emitOpenNursery ), -- completely generic heap and stack checks, for use in high-level cmm. ( fsLit "HP_CHK_GEN", \[bytes] -> heapStackCheckGen Nothing (Just bytes) ), ( fsLit "STK_CHK_GEN", \[] -> heapStackCheckGen (Just (CmmLit CmmHighStackMark)) Nothing ), -- A stack check for a fixed amount of stack. Sounds a bit strange, but -- we use the stack for a bit of temporary storage in a couple of primops ( fsLit "STK_CHK_GEN_N", \[bytes] -> heapStackCheckGen (Just bytes) Nothing ), -- A stack check on entry to a thunk, where the argument is the thunk pointer. ( fsLit "STK_CHK_NP" , \[node] -> entryHeapCheck' False node 0 [] (return ())), ( fsLit "LOAD_THREAD_STATE", \[] -> emitLoadThreadState ), ( fsLit "SAVE_THREAD_STATE", \[] -> emitSaveThreadState ), ( fsLit "LDV_ENTER", \[e] -> ldvEnter e ), ( fsLit "LDV_RECORD_CREATE", \[e] -> ldvRecordCreate e ), ( fsLit "PUSH_UPD_FRAME", \[sp,e] -> emitPushUpdateFrame sp e ), ( fsLit "SET_HDR", \[ptr,info,ccs] -> emitSetDynHdr ptr info ccs ), ( fsLit "TICK_ALLOC_PRIM", \[hdr,goods,slop] -> tickyAllocPrim hdr goods slop ), ( fsLit "TICK_ALLOC_PAP", \[goods,slop] -> tickyAllocPAP goods slop ), ( fsLit "TICK_ALLOC_UP_THK", \[goods,slop] -> tickyAllocThunk goods slop ), ( fsLit "UPD_BH_UPDATABLE", \[reg] -> emitBlackHoleCode reg ) ] emitPushUpdateFrame :: CmmExpr -> CmmExpr -> FCode () emitPushUpdateFrame sp e = do dflags <- getDynFlags emitUpdateFrame dflags sp mkUpdInfoLabel e pushStackFrame :: [CmmParse CmmExpr] -> CmmParse () -> CmmParse () pushStackFrame fields body = do dflags <- getDynFlags exprs <- sequence fields updfr_off <- getUpdFrameOff let (new_updfr_off, _, g) = copyOutOflow dflags NativeReturn Ret Old [] updfr_off exprs emit g withUpdFrameOff new_updfr_off body reserveStackFrame :: CmmParse CmmExpr -> CmmParse CmmReg -> CmmParse () -> CmmParse () reserveStackFrame psize preg body = do dflags <- getDynFlags old_updfr_off <- getUpdFrameOff reg <- preg esize <- psize let size = case constantFoldExpr dflags esize of CmmLit (CmmInt n _) -> n _other -> pprPanic "CmmParse: not a compile-time integer: " (ppr esize) let frame = old_updfr_off + wORD_SIZE dflags * fromIntegral size emitAssign reg (CmmStackSlot Old frame) withUpdFrameOff frame body profilingInfo dflags desc_str ty_str = if not (gopt Opt_SccProfilingOn dflags) then NoProfilingInfo else ProfilingInfo (stringToWord8s desc_str) (stringToWord8s ty_str) staticClosure :: UnitId -> FastString -> FastString -> [CmmLit] -> CmmParse () staticClosure pkg cl_label info payload = do dflags <- getDynFlags let lits = mkStaticClosure dflags (mkCmmInfoLabel pkg info) dontCareCCS payload [] [] [] code $ emitDataLits (mkCmmDataLabel pkg cl_label) lits foreignCall :: String -> [CmmParse (LocalReg, ForeignHint)] -> CmmParse CmmExpr -> [CmmParse (CmmExpr, ForeignHint)] -> Safety -> CmmReturnInfo -> P (CmmParse ()) foreignCall conv_string results_code expr_code args_code safety ret = do conv <- case conv_string of "C" -> return CCallConv "stdcall" -> return StdCallConv _ -> fail ("unknown calling convention: " ++ conv_string) return $ do dflags <- getDynFlags results <- sequence results_code expr <- expr_code args <- sequence args_code let expr' = adjCallTarget dflags conv expr args (arg_exprs, arg_hints) = unzip args (res_regs, res_hints) = unzip results fc = ForeignConvention conv arg_hints res_hints ret target = ForeignTarget expr' fc _ <- code $ emitForeignCall safety res_regs target arg_exprs return () doReturn :: [CmmParse CmmExpr] -> CmmParse () doReturn exprs_code = do dflags <- getDynFlags exprs <- sequence exprs_code updfr_off <- getUpdFrameOff emit (mkReturnSimple dflags exprs updfr_off) mkReturnSimple :: DynFlags -> [CmmActual] -> UpdFrameOffset -> CmmAGraph mkReturnSimple dflags actuals updfr_off = mkReturn dflags e actuals updfr_off where e = entryCode dflags (CmmLoad (CmmStackSlot Old updfr_off) (gcWord dflags)) doRawJump :: CmmParse CmmExpr -> [GlobalReg] -> CmmParse () doRawJump expr_code vols = do dflags <- getDynFlags expr <- expr_code updfr_off <- getUpdFrameOff emit (mkRawJump dflags expr updfr_off vols) doJumpWithStack :: CmmParse CmmExpr -> [CmmParse CmmExpr] -> [CmmParse CmmExpr] -> CmmParse () doJumpWithStack expr_code stk_code args_code = do dflags <- getDynFlags expr <- expr_code stk_args <- sequence stk_code args <- sequence args_code updfr_off <- getUpdFrameOff emit (mkJumpExtra dflags NativeNodeCall expr args updfr_off stk_args) doCall :: CmmParse CmmExpr -> [CmmParse LocalReg] -> [CmmParse CmmExpr] -> CmmParse () doCall expr_code res_code args_code = do dflags <- getDynFlags expr <- expr_code args <- sequence args_code ress <- sequence res_code updfr_off <- getUpdFrameOff c <- code $ mkCall expr (NativeNodeCall,NativeReturn) ress args updfr_off [] emit c adjCallTarget :: DynFlags -> CCallConv -> CmmExpr -> [(CmmExpr, ForeignHint) ] -> CmmExpr -- On Windows, we have to add the '@N' suffix to the label when making -- a call with the stdcall calling convention. adjCallTarget dflags StdCallConv (CmmLit (CmmLabel lbl)) args | platformOS (targetPlatform dflags) == OSMinGW32 = CmmLit (CmmLabel (addLabelSize lbl (sum (map size args)))) where size (e, _) = max (wORD_SIZE dflags) (widthInBytes (typeWidth (cmmExprType dflags e))) -- c.f. CgForeignCall.emitForeignCall adjCallTarget _ _ expr _ = expr primCall :: [CmmParse (CmmFormal, ForeignHint)] -> FastString -> [CmmParse CmmExpr] -> P (CmmParse ()) primCall results_code name args_code = case lookupUFM callishMachOps name of Nothing -> fail ("unknown primitive " ++ unpackFS name) Just f -> return $ do results <- sequence results_code args <- sequence args_code let (p, args') = f args code (emitPrimCall (map fst results) p args') doStore :: CmmType -> CmmParse CmmExpr -> CmmParse CmmExpr -> CmmParse () doStore rep addr_code val_code = do dflags <- getDynFlags addr <- addr_code val <- val_code -- if the specified store type does not match the type of the expr -- on the rhs, then we insert a coercion that will cause the type -- mismatch to be flagged by cmm-lint. If we don't do this, then -- the store will happen at the wrong type, and the error will not -- be noticed. let val_width = typeWidth (cmmExprType dflags val) rep_width = typeWidth rep let coerce_val | val_width /= rep_width = CmmMachOp (MO_UU_Conv val_width rep_width) [val] | otherwise = val emitStore addr coerce_val -- ----------------------------------------------------------------------------- -- If-then-else and boolean expressions data BoolExpr = BoolExpr `BoolAnd` BoolExpr | BoolExpr `BoolOr` BoolExpr | BoolNot BoolExpr | BoolTest CmmExpr -- ToDo: smart constructors which simplify the boolean expression. cmmIfThenElse cond then_part else_part = do then_id <- newBlockId join_id <- newBlockId c <- cond emitCond c then_id else_part emit (mkBranch join_id) emitLabel then_id then_part -- fall through to join emitLabel join_id cmmRawIf cond then_id = do c <- cond emitCond c then_id -- 'emitCond cond true_id' emits code to test whether the cond is true, -- branching to true_id if so, and falling through otherwise. emitCond (BoolTest e) then_id = do else_id <- newBlockId emit (mkCbranch e then_id else_id Nothing) emitLabel else_id emitCond (BoolNot (BoolTest (CmmMachOp op args))) then_id | Just op' <- maybeInvertComparison op = emitCond (BoolTest (CmmMachOp op' args)) then_id emitCond (BoolNot e) then_id = do else_id <- newBlockId emitCond e else_id emit (mkBranch then_id) emitLabel else_id emitCond (e1 `BoolOr` e2) then_id = do emitCond e1 then_id emitCond e2 then_id emitCond (e1 `BoolAnd` e2) then_id = do -- we'd like to invert one of the conditionals here to avoid an -- extra branch instruction, but we can't use maybeInvertComparison -- here because we can't look too closely at the expression since -- we're in a loop. and_id <- newBlockId else_id <- newBlockId emitCond e1 and_id emit (mkBranch else_id) emitLabel and_id emitCond e2 then_id emitLabel else_id -- ----------------------------------------------------------------------------- -- Source code notes -- | Generate a source note spanning from "a" to "b" (inclusive), then -- proceed with parsing. This allows debugging tools to reason about -- locations in Cmm code. withSourceNote :: Located a -> Located b -> CmmParse c -> CmmParse c withSourceNote a b parse = do name <- getName case combineSrcSpans (getLoc a) (getLoc b) of RealSrcSpan span -> code (emitTick (SourceNote span name)) >> parse _other -> parse -- ----------------------------------------------------------------------------- -- Table jumps -- We use a simplified form of C-- switch statements for now. A -- switch statement always compiles to a table jump. Each arm can -- specify a list of values (not ranges), and there can be a single -- default branch. The range of the table is given either by the -- optional range on the switch (eg. switch [0..7] {...}), or by -- the minimum/maximum values from the branches. doSwitch :: Maybe (Integer,Integer) -> CmmParse CmmExpr -> [([Integer],Either BlockId (CmmParse ()))] -> Maybe (CmmParse ()) -> CmmParse () doSwitch mb_range scrut arms deflt = do -- Compile code for the default branch dflt_entry <- case deflt of Nothing -> return Nothing Just e -> do b <- forkLabelledCode e; return (Just b) -- Compile each case branch table_entries <- mapM emitArm arms let table = M.fromList (concat table_entries) dflags <- getDynFlags let range = fromMaybe (0, tARGET_MAX_WORD dflags) mb_range expr <- scrut -- ToDo: check for out of range and jump to default if necessary emit $ mkSwitch expr (mkSwitchTargets False range dflt_entry table) where emitArm :: ([Integer],Either BlockId (CmmParse ())) -> CmmParse [(Integer,BlockId)] emitArm (ints,Left blockid) = return [ (i,blockid) | i <- ints ] emitArm (ints,Right code) = do blockid <- forkLabelledCode code return [ (i,blockid) | i <- ints ] forkLabelledCode :: CmmParse () -> CmmParse BlockId forkLabelledCode p = do (_,ag) <- getCodeScoped p l <- newBlockId emitOutOfLine l ag return l -- ----------------------------------------------------------------------------- -- Putting it all together -- The initial environment: we define some constants that the compiler -- knows about here. initEnv :: DynFlags -> Env initEnv dflags = listToUFM [ ( fsLit "SIZEOF_StgHeader", VarN (CmmLit (CmmInt (fromIntegral (fixedHdrSize dflags)) (wordWidth dflags)) )), ( fsLit "SIZEOF_StgInfoTable", VarN (CmmLit (CmmInt (fromIntegral (stdInfoTableSizeB dflags)) (wordWidth dflags)) )) ] parseCmmFile :: DynFlags -> FilePath -> IO (Messages, Maybe CmmGroup) parseCmmFile dflags filename = do showPass dflags "ParseCmm" buf <- hGetStringBuffer filename let init_loc = mkRealSrcLoc (mkFastString filename) 1 1 init_state = (mkPState dflags buf init_loc) { lex_state = [0] } -- reset the lex_state: the Lexer monad leaves some stuff -- in there we don't want. case unP cmmParse init_state of PFailed span err -> do let msg = mkPlainErrMsg dflags span err return ((emptyBag, unitBag msg), Nothing) POk pst code -> do st <- initC let fcode = getCmm $ unEC code "global" (initEnv dflags) [] >> return () (cmm,_) = runC dflags no_module st fcode let ms = getMessages pst if (errorsFound dflags ms) then return (ms, Nothing) else do dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm" (ppr cmm) return (ms, Just cmm) where no_module = panic "parseCmmFile: no module" }