% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % The Code Generator This module says how things get going at the top level. @codeGen@ is the interface to the outside world. The \tr{cgTop*} functions drive the mangling of top-level bindings. \begin{code} module CodeGen ( codeGen ) where #include "HsVersions.h" -- Required so that CgExpr is reached via at least one non-SOURCE -- import. Before, that wasn't the case, and CM therefore didn't -- bother to compile it. import CgExpr ( {-NOTHING!-} ) -- DO NOT DELETE THIS IMPORT import CgProf import CgMonad import CgBindery import CgClosure import CgCon import CgUtils import CgHpc import CLabel import OldCmm import OldPprCmm () import StgSyn import PrelNames import DynFlags import HscTypes import CostCentre import Id import Name import TyCon import Module import ErrUtils import Panic import Outputable import Util import OrdList import Stream (Stream, liftIO) import qualified Stream import Data.IORef codeGen :: DynFlags -> Module -- Module we are compiling -> [TyCon] -- Type constructors -> CollectedCCs -- (Local/global) cost-centres needing declaring/registering. -> [(StgBinding,[(Id,[Id])])] -- Bindings to convert, with SRTs -> HpcInfo -- Profiling info -> Stream IO CmmGroup () -- N.B. returning '[Cmm]' and not 'Cmm' here makes it -- possible for object splitting to split up the -- pieces later. codeGen dflags this_mod data_tycons cost_centre_info stg_binds hpc_info = do { liftIO $ showPass dflags "CodeGen" ; cgref <- liftIO $ newIORef =<< initC ; let cg :: FCode CmmGroup -> Stream IO CmmGroup () cg fcode = do cmm <- liftIO $ do st <- readIORef cgref let (a,st') = runC dflags this_mod st fcode dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm" $ ppr a -- NB. stub-out cgs_tops and cgs_stmts. This fixes -- a big space leak. DO NOT REMOVE! writeIORef cgref $! st'{ cgs_tops = nilOL, cgs_stmts = nilOL } return a Stream.yield cmm ; cg (getCmm $ mkModuleInit dflags cost_centre_info this_mod hpc_info) ; mapM_ (cg . getCmm . cgTopBinding dflags) stg_binds ; mapM_ (cg . cgTyCon) data_tycons } mkModuleInit :: DynFlags -> CollectedCCs -- cost centre info -> Module -> HpcInfo -> Code mkModuleInit dflags cost_centre_info this_mod hpc_info = do { -- Allocate the static boolean that records if this ; whenC (dopt Opt_Hpc dflags) $ hpcTable this_mod hpc_info ; whenC (dopt Opt_SccProfilingOn dflags) $ do initCostCentres cost_centre_info -- For backwards compatibility: user code may refer to this -- label for calling hs_add_root(). ; emitDecl (CmmData Data (Statics (mkPlainModuleInitLabel this_mod) [])) ; whenC (this_mod == mainModIs dflags) $ emitSimpleProc (mkPlainModuleInitLabel rOOT_MAIN) $ return () } \end{code} Cost-centre profiling: Besides the usual stuff, we must produce declarations for the cost-centres defined in this module; (The local cost-centres involved in this are passed into the code-generator.) \begin{code} initCostCentres :: CollectedCCs -> Code -- Emit the declarations, and return code to register them initCostCentres (local_CCs, ___extern_CCs, singleton_CCSs) = do dflags <- getDynFlags if not (dopt Opt_SccProfilingOn dflags) then nopC else do mapM_ emitCostCentreDecl local_CCs mapM_ emitCostCentreStackDecl singleton_CCSs \end{code} %************************************************************************ %* * \subsection[codegen-top-bindings]{Converting top-level STG bindings} %* * %************************************************************************ @cgTopBinding@ is only used for top-level bindings, since they need to be allocated statically (not in the heap) and need to be labelled. No unboxed bindings can happen at top level. In the code below, the static bindings are accumulated in the @MkCgState@, and transferred into the ``statics'' slot by @forkStatics@. This is so that we can write the top level processing in a compositional style, with the increasing static environment being plumbed as a state variable. \begin{code} cgTopBinding :: DynFlags -> (StgBinding,[(Id,[Id])]) -> Code cgTopBinding dflags (StgNonRec id rhs, srts) = do { id' <- maybeExternaliseId dflags id ; mapM_ (mkSRT [id']) srts ; (id,info) <- cgTopRhs id' rhs ; addBindC id info -- Add the *un-externalised* Id to the envt, -- so we find it when we look up occurrences } cgTopBinding dflags (StgRec pairs, srts) = do { let (bndrs, rhss) = unzip pairs ; bndrs' <- mapFCs (maybeExternaliseId dflags) bndrs ; let pairs' = zip bndrs' rhss ; mapM_ (mkSRT bndrs') srts ; _new_binds <- fixC (\ new_binds -> do { addBindsC new_binds ; mapFCs ( \ (b,e) -> cgTopRhs b e ) pairs' }) ; nopC } mkSRT :: [Id] -> (Id,[Id]) -> Code mkSRT _ (_,[]) = nopC mkSRT these (id,ids) = do { ids <- mapFCs remap ids ; id <- remap id ; emitRODataLits "CodeGen.mkSRT" (mkSRTLabel (idName id) (idCafInfo id)) (map (\id -> CmmLabel $ mkClosureLabel (idName id) (idCafInfo id)) ids) } where -- Sigh, better map all the ids against the environment in -- case they've been externalised (see maybeExternaliseId below). remap id = case filter (==id) these of (id':_) -> returnFC id' [] -> do { info <- getCgIdInfo id; return (cgIdInfoId info) } -- Urgh! I tried moving the forkStatics call from the rhss of cgTopRhs -- to enclose the listFCs in cgTopBinding, but that tickled the -- statics "error" call in initC. I DON'T UNDERSTAND WHY! cgTopRhs :: Id -> StgRhs -> FCode (Id, CgIdInfo) -- The Id is passed along for setting up a binding... -- It's already been externalised if necessary cgTopRhs bndr (StgRhsCon _cc con args) = forkStatics (cgTopRhsCon bndr con args) cgTopRhs bndr (StgRhsClosure cc bi fvs upd_flag srt args body) = ASSERT(null fvs) -- There should be no free variables setSRTLabel (mkSRTLabel (idName bndr) (idCafInfo bndr)) $ setSRT srt $ forkStatics (cgTopRhsClosure bndr cc bi upd_flag args body) \end{code} %************************************************************************ %* * \subsection{Stuff to support splitting} %* * %************************************************************************ If we're splitting the object, we need to externalise all the top-level names (and then make sure we only use the externalised one in any C label we use which refers to this name). \begin{code} maybeExternaliseId :: DynFlags -> Id -> FCode Id maybeExternaliseId dflags id | dopt Opt_SplitObjs dflags, -- Externalise the name for -split-objs isInternalName name = do { mod <- getModuleName ; returnFC (setIdName id (externalise mod)) } | otherwise = returnFC id where externalise mod = mkExternalName uniq mod new_occ loc name = idName id uniq = nameUnique name new_occ = mkLocalOcc uniq (nameOccName name) loc = nameSrcSpan name -- We want to conjure up a name that can't clash with any -- existing name. So we generate -- Mod_$L243foo -- where 243 is the unique. \end{code}