{-# LANGUAGE CPP #-} ----------------------------------------------------------------------------- -- -- Code generator utilities; mostly monadic -- -- (c) The University of Glasgow 2004-2006 -- ----------------------------------------------------------------------------- module StgCmmUtils ( cgLit, mkSimpleLit, emitDataLits, mkDataLits, emitRODataLits, mkRODataLits, emitRtsCall, emitRtsCallWithResult, emitRtsCallGen, assignTemp, newTemp, newUnboxedTupleRegs, emitMultiAssign, emitCmmLitSwitch, emitSwitch, tagToClosure, mkTaggedObjectLoad, callerSaves, callerSaveVolatileRegs, get_GlobalReg_addr, cmmAndWord, cmmOrWord, cmmNegate, cmmEqWord, cmmNeWord, cmmUGtWord, cmmSubWord, cmmMulWord, cmmAddWord, cmmUShrWord, cmmOffsetExprW, cmmOffsetExprB, cmmRegOffW, cmmRegOffB, cmmLabelOffW, cmmLabelOffB, cmmOffsetW, cmmOffsetB, cmmOffsetLitW, cmmOffsetLitB, cmmLoadIndexW, cmmConstrTag1, cmmUntag, cmmIsTagged, addToMem, addToMemE, addToMemLblE, addToMemLbl, mkWordCLit, newStringCLit, newByteStringCLit, blankWord ) where #include "HsVersions.h" import StgCmmMonad import StgCmmClosure import Cmm import BlockId import MkGraph import CodeGen.Platform import CLabel import CmmUtils import ForeignCall import IdInfo import Type import TyCon import SMRep import Module import Literal import Digraph import ListSetOps import Util import Unique import DynFlags import FastString import Outputable import qualified Data.ByteString as BS import Data.Char import Data.List import Data.Ord import Data.Word import Data.Maybe ------------------------------------------------------------------------- -- -- Literals -- ------------------------------------------------------------------------- cgLit :: Literal -> FCode CmmLit cgLit (MachStr s) = newByteStringCLit (BS.unpack s) -- not unpackFS; we want the UTF-8 byte stream. cgLit other_lit = do dflags <- getDynFlags return (mkSimpleLit dflags other_lit) mkLtOp :: DynFlags -> Literal -> MachOp -- On signed literals we must do a signed comparison mkLtOp dflags (MachInt _) = MO_S_Lt (wordWidth dflags) mkLtOp _ (MachFloat _) = MO_F_Lt W32 mkLtOp _ (MachDouble _) = MO_F_Lt W64 mkLtOp dflags lit = MO_U_Lt (typeWidth (cmmLitType dflags (mkSimpleLit dflags lit))) -- ToDo: seems terribly indirect! mkSimpleLit :: DynFlags -> Literal -> CmmLit mkSimpleLit dflags (MachChar c) = CmmInt (fromIntegral (ord c)) (wordWidth dflags) mkSimpleLit dflags MachNullAddr = zeroCLit dflags mkSimpleLit dflags (MachInt i) = CmmInt i (wordWidth dflags) mkSimpleLit _ (MachInt64 i) = CmmInt i W64 mkSimpleLit dflags (MachWord i) = CmmInt i (wordWidth dflags) mkSimpleLit _ (MachWord64 i) = CmmInt i W64 mkSimpleLit _ (MachFloat r) = CmmFloat r W32 mkSimpleLit _ (MachDouble r) = CmmFloat r W64 mkSimpleLit _ (MachLabel fs ms fod) = CmmLabel (mkForeignLabel fs ms labelSrc fod) where -- TODO: Literal labels might not actually be in the current package... labelSrc = ForeignLabelInThisPackage mkSimpleLit _ other = pprPanic "mkSimpleLit" (ppr other) -------------------------------------------------------------------------- -- -- Incrementing a memory location -- -------------------------------------------------------------------------- addToMemLbl :: CmmType -> CLabel -> Int -> CmmAGraph addToMemLbl rep lbl n = addToMem rep (CmmLit (CmmLabel lbl)) n addToMemLblE :: CmmType -> CLabel -> CmmExpr -> CmmAGraph addToMemLblE rep lbl = addToMemE rep (CmmLit (CmmLabel lbl)) addToMem :: CmmType -- rep of the counter -> CmmExpr -- Address -> Int -- What to add (a word) -> CmmAGraph addToMem rep ptr n = addToMemE rep ptr (CmmLit (CmmInt (toInteger n) (typeWidth rep))) addToMemE :: CmmType -- rep of the counter -> CmmExpr -- Address -> CmmExpr -- What to add (a word-typed expression) -> CmmAGraph addToMemE rep ptr n = mkStore ptr (CmmMachOp (MO_Add (typeWidth rep)) [CmmLoad ptr rep, n]) ------------------------------------------------------------------------- -- -- Loading a field from an object, -- where the object pointer is itself tagged -- ------------------------------------------------------------------------- mkTaggedObjectLoad :: DynFlags -> LocalReg -> LocalReg -> ByteOff -> DynTag -> CmmAGraph -- (loadTaggedObjectField reg base off tag) generates assignment -- reg = bitsK[ base + off - tag ] -- where K is fixed by 'reg' mkTaggedObjectLoad dflags reg base offset tag = mkAssign (CmmLocal reg) (CmmLoad (cmmOffsetB dflags (CmmReg (CmmLocal base)) (offset - tag)) (localRegType reg)) ------------------------------------------------------------------------- -- -- Converting a closure tag to a closure for enumeration types -- (this is the implementation of tagToEnum#). -- ------------------------------------------------------------------------- tagToClosure :: DynFlags -> TyCon -> CmmExpr -> CmmExpr tagToClosure dflags tycon tag = CmmLoad (cmmOffsetExprW dflags closure_tbl tag) (bWord dflags) where closure_tbl = CmmLit (CmmLabel lbl) lbl = mkClosureTableLabel (tyConName tycon) NoCafRefs ------------------------------------------------------------------------- -- -- Conditionals and rts calls -- ------------------------------------------------------------------------- emitRtsCall :: PackageKey -> FastString -> [(CmmExpr,ForeignHint)] -> Bool -> FCode () emitRtsCall pkg fun args safe = emitRtsCallGen [] (mkCmmCodeLabel pkg fun) args safe emitRtsCallWithResult :: LocalReg -> ForeignHint -> PackageKey -> FastString -> [(CmmExpr,ForeignHint)] -> Bool -> FCode () emitRtsCallWithResult res hint pkg fun args safe = emitRtsCallGen [(res,hint)] (mkCmmCodeLabel pkg fun) args safe -- Make a call to an RTS C procedure emitRtsCallGen :: [(LocalReg,ForeignHint)] -> CLabel -> [(CmmExpr,ForeignHint)] -> Bool -- True <=> CmmSafe call -> FCode () emitRtsCallGen res lbl args safe = do { dflags <- getDynFlags ; updfr_off <- getUpdFrameOff ; let (caller_save, caller_load) = callerSaveVolatileRegs dflags ; emit caller_save ; call updfr_off ; emit caller_load } where call updfr_off = if safe then emit =<< mkCmmCall fun_expr res' args' updfr_off else do let conv = ForeignConvention CCallConv arg_hints res_hints CmmMayReturn emit $ mkUnsafeCall (ForeignTarget fun_expr conv) res' args' (args', arg_hints) = unzip args (res', res_hints) = unzip res fun_expr = mkLblExpr lbl ----------------------------------------------------------------------------- -- -- Caller-Save Registers -- ----------------------------------------------------------------------------- -- Here we generate the sequence of saves/restores required around a -- foreign call instruction. -- TODO: reconcile with includes/Regs.h -- * Regs.h claims that BaseReg should be saved last and loaded first -- * This might not have been tickled before since BaseReg is callee save -- * Regs.h saves SparkHd, ParkT1, SparkBase and SparkLim -- -- This code isn't actually used right now, because callerSaves -- only ever returns true in the current universe for registers NOT in -- system_regs (just do a grep for CALLER_SAVES in -- includes/stg/MachRegs.h). It's all one giant no-op, and for -- good reason: having to save system registers on every foreign call -- would be very expensive, so we avoid assigning them to those -- registers when we add support for an architecture. -- -- Note that the old code generator actually does more work here: it -- also saves other global registers. We can't (nor want) to do that -- here, as we don't have liveness information. And really, we -- shouldn't be doing the workaround at this point in the pipeline, see -- Note [Register parameter passing] and the ToDo on CmmCall in -- cmm/CmmNode.hs. Right now the workaround is to avoid inlining across -- unsafe foreign calls in rewriteAssignments, but this is strictly -- temporary. callerSaveVolatileRegs :: DynFlags -> (CmmAGraph, CmmAGraph) callerSaveVolatileRegs dflags = (caller_save, caller_load) where platform = targetPlatform dflags caller_save = catAGraphs (map callerSaveGlobalReg regs_to_save) caller_load = catAGraphs (map callerRestoreGlobalReg regs_to_save) system_regs = [ Sp,SpLim,Hp,HpLim,CCCS,CurrentTSO,CurrentNursery {- ,SparkHd,SparkTl,SparkBase,SparkLim -} , BaseReg ] regs_to_save = filter (callerSaves platform) system_regs callerSaveGlobalReg reg = mkStore (get_GlobalReg_addr dflags reg) (CmmReg (CmmGlobal reg)) callerRestoreGlobalReg reg = mkAssign (CmmGlobal reg) (CmmLoad (get_GlobalReg_addr dflags reg) (globalRegType dflags reg)) -- ----------------------------------------------------------------------------- -- Global registers -- We map STG registers onto appropriate CmmExprs. Either they map -- to real machine registers or stored as offsets from BaseReg. Given -- a GlobalReg, get_GlobalReg_addr always produces the -- register table address for it. -- (See also get_GlobalReg_reg_or_addr in MachRegs) get_GlobalReg_addr :: DynFlags -> GlobalReg -> CmmExpr get_GlobalReg_addr dflags BaseReg = regTableOffset dflags 0 get_GlobalReg_addr dflags mid = get_Regtable_addr_from_offset dflags (globalRegType dflags mid) (baseRegOffset dflags mid) -- Calculate a literal representing an offset into the register table. -- Used when we don't have an actual BaseReg to offset from. regTableOffset :: DynFlags -> Int -> CmmExpr regTableOffset dflags n = CmmLit (CmmLabelOff mkMainCapabilityLabel (oFFSET_Capability_r dflags + n)) get_Regtable_addr_from_offset :: DynFlags -> CmmType -> Int -> CmmExpr get_Regtable_addr_from_offset dflags _rep offset = if haveRegBase (targetPlatform dflags) then CmmRegOff (CmmGlobal BaseReg) offset else regTableOffset dflags offset -- ----------------------------------------------------------------------------- -- Information about global registers baseRegOffset :: DynFlags -> GlobalReg -> Int baseRegOffset dflags Sp = oFFSET_StgRegTable_rSp dflags baseRegOffset dflags SpLim = oFFSET_StgRegTable_rSpLim dflags baseRegOffset dflags (LongReg 1) = oFFSET_StgRegTable_rL1 dflags baseRegOffset dflags Hp = oFFSET_StgRegTable_rHp dflags baseRegOffset dflags HpLim = oFFSET_StgRegTable_rHpLim dflags baseRegOffset dflags CCCS = oFFSET_StgRegTable_rCCCS dflags baseRegOffset dflags CurrentTSO = oFFSET_StgRegTable_rCurrentTSO dflags baseRegOffset dflags CurrentNursery = oFFSET_StgRegTable_rCurrentNursery dflags baseRegOffset dflags HpAlloc = oFFSET_StgRegTable_rHpAlloc dflags baseRegOffset dflags GCEnter1 = oFFSET_stgGCEnter1 dflags baseRegOffset dflags GCFun = oFFSET_stgGCFun dflags baseRegOffset _ reg = pprPanic "baseRegOffset:" (ppr reg) ------------------------------------------------------------------------- -- -- Strings generate a top-level data block -- ------------------------------------------------------------------------- emitDataLits :: CLabel -> [CmmLit] -> FCode () -- Emit a data-segment data block emitDataLits lbl lits = emitDecl (mkDataLits Data lbl lits) emitRODataLits :: CLabel -> [CmmLit] -> FCode () -- Emit a read-only data block emitRODataLits lbl lits = emitDecl (mkRODataLits lbl lits) newStringCLit :: String -> FCode CmmLit -- Make a global definition for the string, -- and return its label newStringCLit str = newByteStringCLit (map (fromIntegral . ord) str) newByteStringCLit :: [Word8] -> FCode CmmLit newByteStringCLit bytes = do { uniq <- newUnique ; let (lit, decl) = mkByteStringCLit uniq bytes ; emitDecl decl ; return lit } ------------------------------------------------------------------------- -- -- Assigning expressions to temporaries -- ------------------------------------------------------------------------- assignTemp :: CmmExpr -> FCode LocalReg -- Make sure the argument is in a local register. -- We don't bother being particularly aggressive with avoiding -- unnecessary local registers, since we can rely on a later -- optimization pass to inline as necessary (and skipping out -- on things like global registers can be a little dangerous -- due to them being trashed on foreign calls--though it means -- the optimization pass doesn't have to do as much work) assignTemp (CmmReg (CmmLocal reg)) = return reg assignTemp e = do { dflags <- getDynFlags ; uniq <- newUnique ; let reg = LocalReg uniq (cmmExprType dflags e) ; emitAssign (CmmLocal reg) e ; return reg } newTemp :: CmmType -> FCode LocalReg newTemp rep = do { uniq <- newUnique ; return (LocalReg uniq rep) } newUnboxedTupleRegs :: Type -> FCode ([LocalReg], [ForeignHint]) -- Choose suitable local regs to use for the components -- of an unboxed tuple that we are about to return to -- the Sequel. If the Sequel is a join point, using the -- regs it wants will save later assignments. newUnboxedTupleRegs res_ty = ASSERT( isUnboxedTupleType res_ty ) do { dflags <- getDynFlags ; sequel <- getSequel ; regs <- choose_regs dflags sequel ; ASSERT( regs `equalLength` reps ) return (regs, map primRepForeignHint reps) } where UbxTupleRep ty_args = repType res_ty reps = [ rep | ty <- ty_args , let rep = typePrimRep ty , not (isVoidRep rep) ] choose_regs _ (AssignTo regs _) = return regs choose_regs dflags _ = mapM (newTemp . primRepCmmType dflags) reps ------------------------------------------------------------------------- -- emitMultiAssign ------------------------------------------------------------------------- emitMultiAssign :: [LocalReg] -> [CmmExpr] -> FCode () -- Emit code to perform the assignments in the -- input simultaneously, using temporary variables when necessary. type Key = Int type Vrtx = (Key, Stmt) -- Give each vertex a unique number, -- for fast comparison type Stmt = (LocalReg, CmmExpr) -- r := e -- We use the strongly-connected component algorithm, in which -- * the vertices are the statements -- * an edge goes from s1 to s2 iff -- s1 assigns to something s2 uses -- that is, if s1 should *follow* s2 in the final order emitMultiAssign [] [] = return () emitMultiAssign [reg] [rhs] = emitAssign (CmmLocal reg) rhs emitMultiAssign regs rhss = ASSERT( equalLength regs rhss ) unscramble ([1..] `zip` (regs `zip` rhss)) unscramble :: [Vrtx] -> FCode () unscramble vertices = mapM_ do_component components where edges :: [ (Vrtx, Key, [Key]) ] edges = [ (vertex, key1, edges_from stmt1) | vertex@(key1, stmt1) <- vertices ] edges_from :: Stmt -> [Key] edges_from stmt1 = [ key2 | (key2, stmt2) <- vertices, stmt1 `mustFollow` stmt2 ] components :: [SCC Vrtx] components = stronglyConnCompFromEdgedVertices edges -- do_components deal with one strongly-connected component -- Not cyclic, or singleton? Just do it do_component :: SCC Vrtx -> FCode () do_component (AcyclicSCC (_,stmt)) = mk_graph stmt do_component (CyclicSCC []) = panic "do_component" do_component (CyclicSCC [(_,stmt)]) = mk_graph stmt -- Cyclic? Then go via temporaries. Pick one to -- break the loop and try again with the rest. do_component (CyclicSCC ((_,first_stmt) : rest)) = do dflags <- getDynFlags u <- newUnique let (to_tmp, from_tmp) = split dflags u first_stmt mk_graph to_tmp unscramble rest mk_graph from_tmp split :: DynFlags -> Unique -> Stmt -> (Stmt, Stmt) split dflags uniq (reg, rhs) = ((tmp, rhs), (reg, CmmReg (CmmLocal tmp))) where rep = cmmExprType dflags rhs tmp = LocalReg uniq rep mk_graph :: Stmt -> FCode () mk_graph (reg, rhs) = emitAssign (CmmLocal reg) rhs mustFollow :: Stmt -> Stmt -> Bool (reg, _) `mustFollow` (_, rhs) = CmmLocal reg `regUsedIn` rhs ------------------------------------------------------------------------- -- mkSwitch ------------------------------------------------------------------------- emitSwitch :: CmmExpr -- Tag to switch on -> [(ConTagZ, CmmAGraph)] -- Tagged branches -> Maybe CmmAGraph -- Default branch (if any) -> ConTagZ -> ConTagZ -- Min and Max possible values; behaviour -- outside this range is undefined -> FCode () emitSwitch tag_expr branches mb_deflt lo_tag hi_tag = do { dflags <- getDynFlags ; mkCmmSwitch (via_C dflags) tag_expr branches mb_deflt lo_tag hi_tag } where via_C dflags | HscC <- hscTarget dflags = True | otherwise = False mkCmmSwitch :: Bool -- True <=> never generate a -- conditional tree -> CmmExpr -- Tag to switch on -> [(ConTagZ, CmmAGraph)] -- Tagged branches -> Maybe CmmAGraph -- Default branch (if any) -> ConTagZ -> ConTagZ -- Min and Max possible values; behaviour -- outside this range is undefined -> FCode () -- First, two rather common cases in which there is no work to do mkCmmSwitch _ _ [] (Just code) _ _ = emit code mkCmmSwitch _ _ [(_,code)] Nothing _ _ = emit code -- Right, off we go mkCmmSwitch via_C tag_expr branches mb_deflt lo_tag hi_tag = do join_lbl <- newLabelC mb_deflt_lbl <- label_default join_lbl mb_deflt branches_lbls <- label_branches join_lbl branches tag_expr' <- assignTemp' tag_expr emit =<< mk_switch tag_expr' (sortBy (comparing fst) branches_lbls) mb_deflt_lbl lo_tag hi_tag via_C -- Sort the branches before calling mk_switch emitLabel join_lbl mk_switch :: CmmExpr -> [(ConTagZ, BlockId)] -> Maybe BlockId -> ConTagZ -> ConTagZ -> Bool -> FCode CmmAGraph -- SINGLETON TAG RANGE: no case analysis to do mk_switch _tag_expr [(tag, lbl)] _ lo_tag hi_tag _via_C | lo_tag == hi_tag = ASSERT( tag == lo_tag ) return (mkBranch lbl) -- SINGLETON BRANCH, NO DEFAULT: no case analysis to do mk_switch _tag_expr [(_tag,lbl)] Nothing _ _ _ = return (mkBranch lbl) -- The simplifier might have eliminated a case -- so we may have e.g. case xs of -- [] -> e -- In that situation we can be sure the (:) case -- can't happen, so no need to test -- SINGLETON BRANCH: one equality check to do mk_switch tag_expr [(tag,lbl)] (Just deflt) _ _ _ = do dflags <- getDynFlags let cond = cmmNeWord dflags tag_expr (mkIntExpr dflags tag) -- We have lo_tag < hi_tag, but there's only one branch, -- so there must be a default return (mkCbranch cond deflt lbl) -- ToDo: we might want to check for the two branch case, where one of -- the branches is the tag 0, because comparing '== 0' is likely to be -- more efficient than other kinds of comparison. -- DENSE TAG RANGE: use a switch statment. -- -- We also use a switch uncoditionally when compiling via C, because -- this will get emitted as a C switch statement and the C compiler -- should do a good job of optimising it. Also, older GCC versions -- (2.95 in particular) have problems compiling the complicated -- if-trees generated by this code, so compiling to a switch every -- time works around that problem. -- mk_switch tag_expr branches mb_deflt lo_tag hi_tag via_C | use_switch -- Use a switch = do let find_branch :: ConTagZ -> Maybe BlockId find_branch i = case (assocMaybe branches i) of Just lbl -> Just lbl Nothing -> mb_deflt -- NB. we have eliminated impossible branches at -- either end of the range (see below), so the first -- tag of a real branch is real_lo_tag (not lo_tag). arms :: [Maybe BlockId] arms = [ find_branch i | i <- [real_lo_tag..real_hi_tag]] dflags <- getDynFlags return (mkSwitch (cmmOffset dflags tag_expr (- real_lo_tag)) arms) -- if we can knock off a bunch of default cases with one if, then do so | Just deflt <- mb_deflt, (lowest_branch - lo_tag) >= n_branches = do dflags <- getDynFlags stmts <- mk_switch tag_expr branches mb_deflt lowest_branch hi_tag via_C mkCmmIfThenElse (cmmULtWord dflags tag_expr (mkIntExpr dflags lowest_branch)) (mkBranch deflt) stmts | Just deflt <- mb_deflt, (hi_tag - highest_branch) >= n_branches = do dflags <- getDynFlags stmts <- mk_switch tag_expr branches mb_deflt lo_tag highest_branch via_C mkCmmIfThenElse (cmmUGtWord dflags tag_expr (mkIntExpr dflags highest_branch)) (mkBranch deflt) stmts | otherwise -- Use an if-tree = do dflags <- getDynFlags lo_stmts <- mk_switch tag_expr lo_branches mb_deflt lo_tag (mid_tag-1) via_C hi_stmts <- mk_switch tag_expr hi_branches mb_deflt mid_tag hi_tag via_C mkCmmIfThenElse (cmmUGeWord dflags tag_expr (mkIntExpr dflags mid_tag)) hi_stmts lo_stmts -- we test (e >= mid_tag) rather than (e < mid_tag), because -- the former works better when e is a comparison, and there -- are two tags 0 & 1 (mid_tag == 1). In this case, the code -- generator can reduce the condition to e itself without -- having to reverse the sense of the comparison: comparisons -- can't always be easily reversed (eg. floating -- pt. comparisons). where use_switch = {- pprTrace "mk_switch" ( ppr tag_expr <+> text "n_tags:" <+> int n_tags <+> text "branches:" <+> ppr (map fst branches) <+> text "n_branches:" <+> int n_branches <+> text "lo_tag:" <+> int lo_tag <+> text "hi_tag:" <+> int hi_tag <+> text "real_lo_tag:" <+> int real_lo_tag <+> text "real_hi_tag:" <+> int real_hi_tag) $ -} ASSERT( n_branches > 1 && n_tags > 1 ) n_tags > 2 && (via_C || (dense && big_enough)) -- up to 4 branches we use a decision tree, otherwise -- a switch (== jump table in the NCG). This seems to be -- optimal, and corresponds with what gcc does. big_enough = n_branches > 4 dense = n_branches > (n_tags `div` 2) n_branches = length branches -- ignore default slots at each end of the range if there's -- no default branch defined. lowest_branch = fst (head branches) highest_branch = fst (last branches) real_lo_tag | isNothing mb_deflt = lowest_branch | otherwise = lo_tag real_hi_tag | isNothing mb_deflt = highest_branch | otherwise = hi_tag n_tags = real_hi_tag - real_lo_tag + 1 -- INVARIANT: Provided hi_tag > lo_tag (which is true) -- lo_tag <= mid_tag < hi_tag -- lo_branches have tags < mid_tag -- hi_branches have tags >= mid_tag (mid_tag,_) = branches !! (n_branches `div` 2) -- 2 branches => n_branches `div` 2 = 1 -- => branches !! 1 give the *second* tag -- There are always at least 2 branches here (lo_branches, hi_branches) = span is_lo branches is_lo (t,_) = t < mid_tag -------------- emitCmmLitSwitch :: CmmExpr -- Tag to switch on -> [(Literal, CmmAGraph)] -- Tagged branches -> CmmAGraph -- Default branch (always) -> FCode () -- Emit the code -- Used for general literals, whose size might not be a word, -- where there is always a default case, and where we don't know -- the range of values for certain. For simplicity we always generate a tree. -- -- ToDo: for integers we could do better here, perhaps by generalising -- mk_switch and using that. --SDM 15/09/2004 emitCmmLitSwitch _scrut [] deflt = emit deflt emitCmmLitSwitch scrut branches deflt = do scrut' <- assignTemp' scrut join_lbl <- newLabelC deflt_lbl <- label_code join_lbl deflt branches_lbls <- label_branches join_lbl branches emit =<< mk_lit_switch scrut' deflt_lbl (sortBy (comparing fst) branches_lbls) emitLabel join_lbl mk_lit_switch :: CmmExpr -> BlockId -> [(Literal,BlockId)] -> FCode CmmAGraph mk_lit_switch scrut deflt [(lit,blk)] = do dflags <- getDynFlags let cmm_lit = mkSimpleLit dflags lit cmm_ty = cmmLitType dflags cmm_lit rep = typeWidth cmm_ty ne = if isFloatType cmm_ty then MO_F_Ne rep else MO_Ne rep return (mkCbranch (CmmMachOp ne [scrut, CmmLit cmm_lit]) deflt blk) mk_lit_switch scrut deflt_blk_id branches = do dflags <- getDynFlags lo_blk <- mk_lit_switch scrut deflt_blk_id lo_branches hi_blk <- mk_lit_switch scrut deflt_blk_id hi_branches mkCmmIfThenElse (cond dflags) lo_blk hi_blk where n_branches = length branches (mid_lit,_) = branches !! (n_branches `div` 2) -- See notes above re mid_tag (lo_branches, hi_branches) = span is_lo branches is_lo (t,_) = t < mid_lit cond dflags = CmmMachOp (mkLtOp dflags mid_lit) [scrut, CmmLit (mkSimpleLit dflags mid_lit)] -------------- label_default :: BlockId -> Maybe CmmAGraph -> FCode (Maybe BlockId) label_default _ Nothing = return Nothing label_default join_lbl (Just code) = do lbl <- label_code join_lbl code return (Just lbl) -------------- label_branches :: BlockId -> [(a,CmmAGraph)] -> FCode [(a,BlockId)] label_branches _join_lbl [] = return [] label_branches join_lbl ((tag,code):branches) = do lbl <- label_code join_lbl code branches' <- label_branches join_lbl branches return ((tag,lbl):branches') -------------- label_code :: BlockId -> CmmAGraph -> FCode BlockId -- label_code J code -- generates -- [L: code; goto J] -- and returns L label_code join_lbl code = do lbl <- newLabelC emitOutOfLine lbl (code MkGraph.<*> mkBranch join_lbl) return lbl -------------- assignTemp' :: CmmExpr -> FCode CmmExpr assignTemp' e | isTrivialCmmExpr e = return e | otherwise = do dflags <- getDynFlags lreg <- newTemp (cmmExprType dflags e) let reg = CmmLocal lreg emitAssign reg e return (CmmReg reg)