{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1993-1998 A ``lint'' pass to check for Core correctness. See Note [Core Lint guarantee]. -} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveFunctor #-} module CoreLint ( lintCoreBindings, lintUnfolding, lintPassResult, lintInteractiveExpr, lintExpr, lintAnnots, lintTypes, -- ** Debug output endPass, endPassIO, dumpPassResult, CoreLint.dumpIfSet, ) where #include "HsVersions.h" import GhcPrelude import CoreSyn import CoreFVs import CoreUtils import CoreStats ( coreBindsStats ) import CoreMonad import Bag import Literal import DataCon import TysWiredIn import TysPrim import TcType ( isFloatingTy ) import Var import VarEnv import VarSet import Name import Id import IdInfo import PprCore import ErrUtils import Coercion import SrcLoc import Type import GHC.Types.RepType import TyCoRep -- checks validity of types/coercions import TyCoSubst import TyCoFVs import TyCoPpr ( pprTyVar ) import TyCon import CoAxiom import BasicTypes import ErrUtils as Err import ListSetOps import PrelNames import Outputable import FastString import Util import InstEnv ( instanceDFunId ) import OptCoercion ( checkAxInstCo ) import CoreArity ( typeArity ) import Demand ( splitStrictSig, isBotDiv ) import HscTypes import DynFlags import Control.Monad import qualified Control.Monad.Fail as MonadFail import MonadUtils import Data.Foldable ( toList ) import Data.List.NonEmpty ( NonEmpty ) import Data.Maybe import Pair import qualified GHC.LanguageExtensions as LangExt {- Note [Core Lint guarantee] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Core Lint is the type-checker for Core. Using it, we get the following guarantee: If all of: 1. Core Lint passes, 2. there are no unsafe coercions (i.e. unsafeEqualityProof), 3. all plugin-supplied coercions (i.e. PluginProv) are valid, and 4. all case-matches are complete then running the compiled program will not seg-fault, assuming no bugs downstream (e.g. in the code generator). This guarantee is quite powerful, in that it allows us to decouple the safety of the resulting program from the type inference algorithm. However, do note point (4) above. Core Lint does not check for incomplete case-matches; see Note [Case expression invariants] in CoreSyn, invariant (4). As explained there, an incomplete case-match might slip by Core Lint and cause trouble at runtime. Note [GHC Formalism] ~~~~~~~~~~~~~~~~~~~~ This file implements the type-checking algorithm for System FC, the "official" name of the Core language. Type safety of FC is heart of the claim that executables produced by GHC do not have segmentation faults. Thus, it is useful to be able to reason about System FC independently of reading the code. To this purpose, there is a document core-spec.pdf built in docs/core-spec that contains a formalism of the types and functions dealt with here. If you change just about anything in this file or you change other types/functions throughout the Core language (all signposted to this note), you should update that formalism. See docs/core-spec/README for more info about how to do so. Note [check vs lint] ~~~~~~~~~~~~~~~~~~~~ This file implements both a type checking algorithm and also general sanity checking. For example, the "sanity checking" checks for TyConApp on the left of an AppTy, which should never happen. These sanity checks don't really affect any notion of type soundness. Yet, it is convenient to do the sanity checks at the same time as the type checks. So, we use the following naming convention: - Functions that begin with 'lint'... are involved in type checking. These functions might also do some sanity checking. - Functions that begin with 'check'... are *not* involved in type checking. They exist only for sanity checking. Issues surrounding variable naming, shadowing, and such are considered *not* to be part of type checking, as the formalism omits these details. Summary of checks ~~~~~~~~~~~~~~~~~ Checks that a set of core bindings is well-formed. The PprStyle and String just control what we print in the event of an error. The Bool value indicates whether we have done any specialisation yet (in which case we do some extra checks). We check for (a) type errors (b) Out-of-scope type variables (c) Out-of-scope local variables (d) Ill-kinded types (e) Incorrect unsafe coercions If we have done specialisation the we check that there are (a) No top-level bindings of primitive (unboxed type) Outstanding issues: -- Things are *not* OK if: -- -- * Unsaturated type app before specialisation has been done; -- -- * Oversaturated type app after specialisation (eta reduction -- may well be happening...); Note [Linting function types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As described in Note [Representation of function types], all saturated applications of funTyCon are represented with the FunTy constructor. We check this invariant in lintType. Note [Linting type lets] ~~~~~~~~~~~~~~~~~~~~~~~~ In the desugarer, it's very very convenient to be able to say (in effect) let a = Type Int in That is, use a type let. See Note [Type let] in CoreSyn. However, when linting we need to remember that a=Int, else we might reject a correct program. So we carry a type substitution (in this example [a -> Int]) and apply this substitution before comparing types. The function lintInTy :: Type -> LintM (Type, Kind) returns a substituted type. When we encounter a binder (like x::a) we must apply the substitution to the type of the binding variable. lintBinders does this. For Ids, the type-substituted Id is added to the in_scope set (which itself is part of the TCvSubst we are carrying down), and when we find an occurrence of an Id, we fetch it from the in-scope set. Note [Bad unsafe coercion] ~~~~~~~~~~~~~~~~~~~~~~~~~~ For discussion see https://gitlab.haskell.org/ghc/ghc/wikis/bad-unsafe-coercions Linter introduces additional rules that checks improper coercion between different types, called bad coercions. Following coercions are forbidden: (a) coercions between boxed and unboxed values; (b) coercions between unlifted values of the different sizes, here active size is checked, i.e. size of the actual value but not the space allocated for value; (c) coercions between floating and integral boxed values, this check is not yet supported for unboxed tuples, as no semantics were specified for that; (d) coercions from / to vector type (e) If types are unboxed tuples then tuple (# A_1,..,A_n #) can be coerced to (# B_1,..,B_m #) if n=m and for each pair A_i, B_i rules (a-e) holds. Note [Join points] ~~~~~~~~~~~~~~~~~~ We check the rules listed in Note [Invariants on join points] in CoreSyn. The only one that causes any difficulty is the first: All occurrences must be tail calls. To this end, along with the in-scope set, we remember in le_joins the subset of in-scope Ids that are valid join ids. For example: join j x = ... in case e of A -> jump j y -- good B -> case (jump j z) of -- BAD C -> join h = jump j w in ... -- good D -> let x = jump j v in ... -- BAD A join point remains valid in case branches, so when checking the A branch, j is still valid. When we check the scrutinee of the inner case, however, we set le_joins to empty, and catch the error. Similarly, join points can occur free in RHSes of other join points but not the RHSes of value bindings (thunks and functions). ************************************************************************ * * Beginning and ending passes * * ************************************************************************ These functions are not CoreM monad stuff, but they probably ought to be, and it makes a convenient place for them. They print out stuff before and after core passes, and do Core Lint when necessary. -} endPass :: CoreToDo -> CoreProgram -> [CoreRule] -> CoreM () endPass pass binds rules = do { hsc_env <- getHscEnv ; print_unqual <- getPrintUnqualified ; liftIO $ endPassIO hsc_env print_unqual pass binds rules } endPassIO :: HscEnv -> PrintUnqualified -> CoreToDo -> CoreProgram -> [CoreRule] -> IO () -- Used by the IO-is CorePrep too endPassIO hsc_env print_unqual pass binds rules = do { dumpPassResult dflags print_unqual mb_flag (ppr pass) (pprPassDetails pass) binds rules ; lintPassResult hsc_env pass binds } where dflags = hsc_dflags hsc_env mb_flag = case coreDumpFlag pass of Just flag | dopt flag dflags -> Just flag | dopt Opt_D_verbose_core2core dflags -> Just flag _ -> Nothing dumpIfSet :: DynFlags -> Bool -> CoreToDo -> SDoc -> SDoc -> IO () dumpIfSet dflags dump_me pass extra_info doc = Err.dumpIfSet dflags dump_me (showSDoc dflags (ppr pass <+> extra_info)) doc dumpPassResult :: DynFlags -> PrintUnqualified -> Maybe DumpFlag -- Just df => show details in a file whose -- name is specified by df -> SDoc -- Header -> SDoc -- Extra info to appear after header -> CoreProgram -> [CoreRule] -> IO () dumpPassResult dflags unqual mb_flag hdr extra_info binds rules = do { forM_ mb_flag $ \flag -> do let sty = mkDumpStyle dflags unqual dumpAction dflags sty (dumpOptionsFromFlag flag) (showSDoc dflags hdr) FormatCore dump_doc -- Report result size -- This has the side effect of forcing the intermediate to be evaluated -- if it's not already forced by a -ddump flag. ; Err.debugTraceMsg dflags 2 size_doc } where size_doc = sep [text "Result size of" <+> hdr, nest 2 (equals <+> ppr (coreBindsStats binds))] dump_doc = vcat [ nest 2 extra_info , size_doc , blankLine , pprCoreBindingsWithSize binds , ppUnless (null rules) pp_rules ] pp_rules = vcat [ blankLine , text "------ Local rules for imported ids --------" , pprRules rules ] coreDumpFlag :: CoreToDo -> Maybe DumpFlag coreDumpFlag (CoreDoSimplify {}) = Just Opt_D_verbose_core2core coreDumpFlag (CoreDoPluginPass {}) = Just Opt_D_verbose_core2core coreDumpFlag CoreDoFloatInwards = Just Opt_D_verbose_core2core coreDumpFlag (CoreDoFloatOutwards {}) = Just Opt_D_verbose_core2core coreDumpFlag CoreLiberateCase = Just Opt_D_verbose_core2core coreDumpFlag CoreDoStaticArgs = Just Opt_D_verbose_core2core coreDumpFlag CoreDoCallArity = Just Opt_D_dump_call_arity coreDumpFlag CoreDoExitify = Just Opt_D_dump_exitify coreDumpFlag CoreDoDemand = Just Opt_D_dump_stranal coreDumpFlag CoreDoCpr = Just Opt_D_dump_cpranal coreDumpFlag CoreDoWorkerWrapper = Just Opt_D_dump_worker_wrapper coreDumpFlag CoreDoSpecialising = Just Opt_D_dump_spec coreDumpFlag CoreDoSpecConstr = Just Opt_D_dump_spec coreDumpFlag CoreCSE = Just Opt_D_dump_cse coreDumpFlag CoreDesugar = Just Opt_D_dump_ds_preopt coreDumpFlag CoreDesugarOpt = Just Opt_D_dump_ds coreDumpFlag CoreTidy = Just Opt_D_dump_simpl coreDumpFlag CorePrep = Just Opt_D_dump_prep coreDumpFlag CoreOccurAnal = Just Opt_D_dump_occur_anal coreDumpFlag CoreDoPrintCore = Nothing coreDumpFlag (CoreDoRuleCheck {}) = Nothing coreDumpFlag CoreDoNothing = Nothing coreDumpFlag (CoreDoPasses {}) = Nothing {- ************************************************************************ * * Top-level interfaces * * ************************************************************************ -} lintPassResult :: HscEnv -> CoreToDo -> CoreProgram -> IO () lintPassResult hsc_env pass binds | not (gopt Opt_DoCoreLinting dflags) = return () | otherwise = do { let (warns, errs) = lintCoreBindings dflags pass (interactiveInScope hsc_env) binds ; Err.showPass dflags ("Core Linted result of " ++ showPpr dflags pass) ; displayLintResults dflags pass warns errs binds } where dflags = hsc_dflags hsc_env displayLintResults :: DynFlags -> CoreToDo -> Bag Err.MsgDoc -> Bag Err.MsgDoc -> CoreProgram -> IO () displayLintResults dflags pass warns errs binds | not (isEmptyBag errs) = do { putLogMsg dflags NoReason Err.SevDump noSrcSpan (defaultDumpStyle dflags) (vcat [ lint_banner "errors" (ppr pass), Err.pprMessageBag errs , text "*** Offending Program ***" , pprCoreBindings binds , text "*** End of Offense ***" ]) ; Err.ghcExit dflags 1 } | not (isEmptyBag warns) , not (hasNoDebugOutput dflags) , showLintWarnings pass -- If the Core linter encounters an error, output to stderr instead of -- stdout (#13342) = putLogMsg dflags NoReason Err.SevInfo noSrcSpan (defaultDumpStyle dflags) (lint_banner "warnings" (ppr pass) $$ Err.pprMessageBag (mapBag ($$ blankLine) warns)) | otherwise = return () where lint_banner :: String -> SDoc -> SDoc lint_banner string pass = text "*** Core Lint" <+> text string <+> text ": in result of" <+> pass <+> text "***" showLintWarnings :: CoreToDo -> Bool -- Disable Lint warnings on the first simplifier pass, because -- there may be some INLINE knots still tied, which is tiresomely noisy showLintWarnings (CoreDoSimplify _ (SimplMode { sm_phase = InitialPhase })) = False showLintWarnings _ = True lintInteractiveExpr :: String -> HscEnv -> CoreExpr -> IO () lintInteractiveExpr what hsc_env expr | not (gopt Opt_DoCoreLinting dflags) = return () | Just err <- lintExpr dflags (interactiveInScope hsc_env) expr = do { display_lint_err err ; Err.ghcExit dflags 1 } | otherwise = return () where dflags = hsc_dflags hsc_env display_lint_err err = do { putLogMsg dflags NoReason Err.SevDump noSrcSpan (defaultDumpStyle dflags) (vcat [ lint_banner "errors" (text what) , err , text "*** Offending Program ***" , pprCoreExpr expr , text "*** End of Offense ***" ]) ; Err.ghcExit dflags 1 } interactiveInScope :: HscEnv -> [Var] -- In GHCi we may lint expressions, or bindings arising from 'deriving' -- clauses, that mention variables bound in the interactive context. -- These are Local things (see Note [Interactively-bound Ids in GHCi] in HscTypes). -- So we have to tell Lint about them, lest it reports them as out of scope. -- -- We do this by find local-named things that may appear free in interactive -- context. This function is pretty revolting and quite possibly not quite right. -- When we are not in GHCi, the interactive context (hsc_IC hsc_env) is empty -- so this is a (cheap) no-op. -- -- See #8215 for an example interactiveInScope hsc_env = tyvars ++ ids where -- C.f. TcRnDriver.setInteractiveContext, Desugar.deSugarExpr ictxt = hsc_IC hsc_env (cls_insts, _fam_insts) = ic_instances ictxt te1 = mkTypeEnvWithImplicits (ic_tythings ictxt) te = extendTypeEnvWithIds te1 (map instanceDFunId cls_insts) ids = typeEnvIds te tyvars = tyCoVarsOfTypesList $ map idType ids -- Why the type variables? How can the top level envt have free tyvars? -- I think it's because of the GHCi debugger, which can bind variables -- f :: [t] -> [t] -- where t is a RuntimeUnk (see TcType) -- | Type-check a 'CoreProgram'. See Note [Core Lint guarantee]. lintCoreBindings :: DynFlags -> CoreToDo -> [Var] -> CoreProgram -> (Bag MsgDoc, Bag MsgDoc) -- Returns (warnings, errors) -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintCoreBindings dflags pass local_in_scope binds = initL dflags flags in_scope_set $ addLoc TopLevelBindings $ lintLetBndrs TopLevel binders $ -- Put all the top-level binders in scope at the start -- This is because transformation rules can bring something -- into use 'unexpectedly' do { checkL (null dups) (dupVars dups) ; checkL (null ext_dups) (dupExtVars ext_dups) ; mapM lint_bind binds } where in_scope_set = mkInScopeSet (mkVarSet local_in_scope) flags = defaultLintFlags { lf_check_global_ids = check_globals , lf_check_inline_loop_breakers = check_lbs , lf_check_static_ptrs = check_static_ptrs } -- See Note [Checking for global Ids] check_globals = case pass of CoreTidy -> False CorePrep -> False _ -> True -- See Note [Checking for INLINE loop breakers] check_lbs = case pass of CoreDesugar -> False CoreDesugarOpt -> False _ -> True -- See Note [Checking StaticPtrs] check_static_ptrs | not (xopt LangExt.StaticPointers dflags) = AllowAnywhere | otherwise = case pass of CoreDoFloatOutwards _ -> AllowAtTopLevel CoreTidy -> RejectEverywhere CorePrep -> AllowAtTopLevel _ -> AllowAnywhere binders = bindersOfBinds binds (_, dups) = removeDups compare binders -- dups_ext checks for names with different uniques -- but but the same External name M.n. We don't -- allow this at top level: -- M.n{r3} = ... -- M.n{r29} = ... -- because they both get the same linker symbol ext_dups = snd (removeDups ord_ext (map Var.varName binders)) ord_ext n1 n2 | Just m1 <- nameModule_maybe n1 , Just m2 <- nameModule_maybe n2 = compare (m1, nameOccName n1) (m2, nameOccName n2) | otherwise = LT -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lint_bind (Rec prs) = mapM_ (lintSingleBinding TopLevel Recursive) prs lint_bind (NonRec bndr rhs) = lintSingleBinding TopLevel NonRecursive (bndr,rhs) {- ************************************************************************ * * \subsection[lintUnfolding]{lintUnfolding} * * ************************************************************************ Note [Linting Unfoldings from Interfaces] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use this to check all top-level unfoldings that come in from interfaces (it is very painful to catch errors otherwise). We do not need to call lintUnfolding on unfoldings that are nested within top-level unfoldings; they are linted when we lint the top-level unfolding; hence the `TopLevelFlag` on `tcPragExpr` in GHC.IfaceToCore. -} lintUnfolding :: Bool -- True <=> is a compulsory unfolding -> DynFlags -> SrcLoc -> VarSet -- Treat these as in scope -> CoreExpr -> Maybe MsgDoc -- Nothing => OK lintUnfolding is_compulsory dflags locn vars expr | isEmptyBag errs = Nothing | otherwise = Just (pprMessageBag errs) where in_scope = mkInScopeSet vars (_warns, errs) = initL dflags defaultLintFlags in_scope $ if is_compulsory -- See Note [Checking for levity polymorphism] then noLPChecks linter else linter linter = addLoc (ImportedUnfolding locn) $ lintCoreExpr expr lintExpr :: DynFlags -> [Var] -- Treat these as in scope -> CoreExpr -> Maybe MsgDoc -- Nothing => OK lintExpr dflags vars expr | isEmptyBag errs = Nothing | otherwise = Just (pprMessageBag errs) where in_scope = mkInScopeSet (mkVarSet vars) (_warns, errs) = initL dflags defaultLintFlags in_scope linter linter = addLoc TopLevelBindings $ lintCoreExpr expr {- ************************************************************************ * * \subsection[lintCoreBinding]{lintCoreBinding} * * ************************************************************************ Check a core binding, returning the list of variables bound. -} lintSingleBinding :: TopLevelFlag -> RecFlag -> (Id, CoreExpr) -> LintM () -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintSingleBinding top_lvl_flag rec_flag (binder,rhs) = addLoc (RhsOf binder) $ -- Check the rhs do { ty <- lintRhs binder rhs ; binder_ty <- applySubstTy (idType binder) ; ensureEqTys binder_ty ty (mkRhsMsg binder (text "RHS") ty) -- If the binding is for a CoVar, the RHS should be (Coercion co) -- See Note [CoreSyn type and coercion invariant] in CoreSyn ; checkL (not (isCoVar binder) || isCoArg rhs) (mkLetErr binder rhs) -- Check that it's not levity-polymorphic -- Do this first, because otherwise isUnliftedType panics -- Annoyingly, this duplicates the test in lintIdBdr, -- because for non-rec lets we call lintSingleBinding first ; checkL (isJoinId binder || not (isTypeLevPoly binder_ty)) (badBndrTyMsg binder (text "levity-polymorphic")) -- Check the let/app invariant -- See Note [CoreSyn let/app invariant] in CoreSyn ; checkL ( isJoinId binder || not (isUnliftedType binder_ty) || (isNonRec rec_flag && exprOkForSpeculation rhs) || exprIsTickedString rhs) (badBndrTyMsg binder (text "unlifted")) -- Check that if the binder is top-level or recursive, it's not -- demanded. Primitive string literals are exempt as there is no -- computation to perform, see Note [CoreSyn top-level string literals]. ; checkL (not (isStrictId binder) || (isNonRec rec_flag && not (isTopLevel top_lvl_flag)) || exprIsTickedString rhs) (mkStrictMsg binder) -- Check that if the binder is at the top level and has type Addr#, -- that it is a string literal, see -- Note [CoreSyn top-level string literals]. ; checkL (not (isTopLevel top_lvl_flag && binder_ty `eqType` addrPrimTy) || exprIsTickedString rhs) (mkTopNonLitStrMsg binder) ; flags <- getLintFlags -- Check that a join-point binder has a valid type -- NB: lintIdBinder has checked that it is not top-level bound ; case isJoinId_maybe binder of Nothing -> return () Just arity -> checkL (isValidJoinPointType arity binder_ty) (mkInvalidJoinPointMsg binder binder_ty) ; when (lf_check_inline_loop_breakers flags && isStableUnfolding (realIdUnfolding binder) && isStrongLoopBreaker (idOccInfo binder) && isInlinePragma (idInlinePragma binder)) (addWarnL (text "INLINE binder is (non-rule) loop breaker:" <+> ppr binder)) -- Only non-rule loop breakers inhibit inlining -- We used to check that the dmdTypeDepth of a demand signature never -- exceeds idArity, but that is an unnecessary complication, see -- Note [idArity varies independently of dmdTypeDepth] in DmdAnal -- Check that the binder's arity is within the bounds imposed by -- the type and the strictness signature. See Note [exprArity invariant] -- and Note [Trimming arity] ; checkL (typeArity (idType binder) `lengthAtLeast` idArity binder) (text "idArity" <+> ppr (idArity binder) <+> text "exceeds typeArity" <+> ppr (length (typeArity (idType binder))) <> colon <+> ppr binder) ; case splitStrictSig (idStrictness binder) of (demands, result_info) | isBotDiv result_info -> checkL (demands `lengthAtLeast` idArity binder) (text "idArity" <+> ppr (idArity binder) <+> text "exceeds arity imposed by the strictness signature" <+> ppr (idStrictness binder) <> colon <+> ppr binder) _ -> return () ; mapM_ (lintCoreRule binder binder_ty) (idCoreRules binder) ; addLoc (UnfoldingOf binder) $ lintIdUnfolding binder binder_ty (idUnfolding binder) } -- We should check the unfolding, if any, but this is tricky because -- the unfolding is a SimplifiableCoreExpr. Give up for now. -- | Checks the RHS of bindings. It only differs from 'lintCoreExpr' -- in that it doesn't reject occurrences of the function 'makeStatic' when they -- appear at the top level and @lf_check_static_ptrs == AllowAtTopLevel@, and -- for join points, it skips the outer lambdas that take arguments to the -- join point. -- -- See Note [Checking StaticPtrs]. lintRhs :: Id -> CoreExpr -> LintM OutType lintRhs bndr rhs | Just arity <- isJoinId_maybe bndr = lint_join_lams arity arity True rhs | AlwaysTailCalled arity <- tailCallInfo (idOccInfo bndr) = lint_join_lams arity arity False rhs where lint_join_lams 0 _ _ rhs = lintCoreExpr rhs lint_join_lams n tot enforce (Lam var expr) = addLoc (LambdaBodyOf var) $ lintBinder LambdaBind var $ \ var' -> do { body_ty <- lint_join_lams (n-1) tot enforce expr ; return $ mkLamType var' body_ty } lint_join_lams n tot True _other = failWithL $ mkBadJoinArityMsg bndr tot (tot-n) rhs lint_join_lams _ _ False rhs = markAllJoinsBad $ lintCoreExpr rhs -- Future join point, not yet eta-expanded -- Body is not a tail position -- Allow applications of the data constructor @StaticPtr@ at the top -- but produce errors otherwise. lintRhs _bndr rhs = fmap lf_check_static_ptrs getLintFlags >>= go where -- Allow occurrences of 'makeStatic' at the top-level but produce errors -- otherwise. go AllowAtTopLevel | (binders0, rhs') <- collectTyBinders rhs , Just (fun, t, info, e) <- collectMakeStaticArgs rhs' = markAllJoinsBad $ foldr -- imitate @lintCoreExpr (Lam ...)@ (\var loopBinders -> addLoc (LambdaBodyOf var) $ lintBinder LambdaBind var $ \var' -> do { body_ty <- loopBinders ; return $ mkLamType var' body_ty } ) -- imitate @lintCoreExpr (App ...)@ (do fun_ty <- lintCoreExpr fun lintCoreArgs fun_ty [Type t, info, e] ) binders0 go _ = markAllJoinsBad $ lintCoreExpr rhs lintIdUnfolding :: Id -> Type -> Unfolding -> LintM () lintIdUnfolding bndr bndr_ty uf | isStableUnfolding uf , Just rhs <- maybeUnfoldingTemplate uf = do { ty <- if isCompulsoryUnfolding uf then noLPChecks $ lintRhs bndr rhs -- See Note [Checking for levity polymorphism] else lintRhs bndr rhs ; ensureEqTys bndr_ty ty (mkRhsMsg bndr (text "unfolding") ty) } lintIdUnfolding _ _ _ = return () -- Do not Lint unstable unfoldings, because that leads -- to exponential behaviour; c.f. CoreFVs.idUnfoldingVars {- Note [Checking for INLINE loop breakers] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It's very suspicious if a strong loop breaker is marked INLINE. However, the desugarer generates instance methods with INLINE pragmas that form a mutually recursive group. Only after a round of simplification are they unravelled. So we suppress the test for the desugarer. Note [Checking for levity polymorphism] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We ordinarily want to check for bad levity polymorphism. See Note [Levity polymorphism invariants] in CoreSyn. However, we do *not* want to do this in a compulsory unfolding. Compulsory unfoldings arise only internally, for things like newtype wrappers, dictionaries, and (notably) unsafeCoerce#. These might legitimately be levity-polymorphic; indeed levity-polyorphic unfoldings are a primary reason for the very existence of compulsory unfoldings (we can't compile code for the original, levity-poly, binding). It is vitally important that we do levity-polymorphism checks *after* performing the unfolding, but not beforehand. This is all safe because we will check any unfolding after it has been unfolded; checking the unfolding beforehand is merely an optimization, and one that actively hurts us here. ************************************************************************ * * \subsection[lintCoreExpr]{lintCoreExpr} * * ************************************************************************ -} -- For OutType, OutKind, the substitution has been applied, -- but has not been linted yet type LintedType = Type -- Substitution applied, and type is linted type LintedKind = Kind lintCoreExpr :: CoreExpr -> LintM OutType -- The returned type has the substitution from the monad -- already applied to it: -- lintCoreExpr e subst = exprType (subst e) -- -- The returned "type" can be a kind, if the expression is (Type ty) -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintCoreExpr (Var var) = lintVarOcc var 0 lintCoreExpr (Lit lit) = return (literalType lit) lintCoreExpr (Cast expr co) = do { expr_ty <- markAllJoinsBad $ lintCoreExpr expr ; co' <- applySubstCo co ; (_, k2, from_ty, to_ty, r) <- lintCoercion co' ; checkValueKind k2 (text "target of cast" <+> quotes (ppr co)) ; lintRole co' Representational r ; ensureEqTys from_ty expr_ty (mkCastErr expr co' from_ty expr_ty) ; return to_ty } lintCoreExpr (Tick tickish expr) = do case tickish of Breakpoint _ ids -> forM_ ids $ \id -> do checkDeadIdOcc id lookupIdInScope id _ -> return () markAllJoinsBadIf block_joins $ lintCoreExpr expr where block_joins = not (tickish `tickishScopesLike` SoftScope) -- TODO Consider whether this is the correct rule. It is consistent with -- the simplifier's behaviour - cost-centre-scoped ticks become part of -- the continuation, and thus they behave like part of an evaluation -- context, but soft-scoped and non-scoped ticks simply wrap the result -- (see Simplify.simplTick). lintCoreExpr (Let (NonRec tv (Type ty)) body) | isTyVar tv = -- See Note [Linting type lets] do { ty' <- applySubstTy ty ; lintTyBndr tv $ \ tv' -> do { addLoc (RhsOf tv) $ lintTyKind tv' ty' -- Now extend the substitution so we -- take advantage of it in the body ; extendSubstL tv ty' $ addLoc (BodyOfLetRec [tv]) $ lintCoreExpr body } } lintCoreExpr (Let (NonRec bndr rhs) body) | isId bndr = do { lintSingleBinding NotTopLevel NonRecursive (bndr,rhs) ; addLoc (BodyOfLetRec [bndr]) (lintBinder LetBind bndr $ \_ -> addGoodJoins [bndr] $ lintCoreExpr body) } | otherwise = failWithL (mkLetErr bndr rhs) -- Not quite accurate lintCoreExpr e@(Let (Rec pairs) body) = lintLetBndrs NotTopLevel bndrs $ addGoodJoins bndrs $ do { -- Check that the list of pairs is non-empty checkL (not (null pairs)) (emptyRec e) -- Check that there are no duplicated binders ; checkL (null dups) (dupVars dups) -- Check that either all the binders are joins, or none ; checkL (all isJoinId bndrs || all (not . isJoinId) bndrs) $ mkInconsistentRecMsg bndrs ; mapM_ (lintSingleBinding NotTopLevel Recursive) pairs ; addLoc (BodyOfLetRec bndrs) (lintCoreExpr body) } where bndrs = map fst pairs (_, dups) = removeDups compare bndrs lintCoreExpr e@(App _ _) = do { fun_ty <- lintCoreFun fun (length args) ; lintCoreArgs fun_ty args } where (fun, args) = collectArgs e lintCoreExpr (Lam var expr) = addLoc (LambdaBodyOf var) $ markAllJoinsBad $ lintBinder LambdaBind var $ \ var' -> do { body_ty <- lintCoreExpr expr ; return $ mkLamType var' body_ty } lintCoreExpr (Case scrut var alt_ty alts) = lintCaseExpr scrut var alt_ty alts -- This case can't happen; linting types in expressions gets routed through -- lintCoreArgs lintCoreExpr (Type ty) = failWithL (text "Type found as expression" <+> ppr ty) lintCoreExpr (Coercion co) = do { (k1, k2, ty1, ty2, role) <- lintInCo co ; return (mkHeteroCoercionType role k1 k2 ty1 ty2) } ---------------------- lintVarOcc :: Var -> Int -- Number of arguments (type or value) being passed -> LintM Type -- returns type of the *variable* lintVarOcc var nargs = do { checkL (isNonCoVarId var) (text "Non term variable" <+> ppr var) -- See CoreSyn Note [Variable occurrences in Core] -- Cneck that the type of the occurrence is the same -- as the type of the binding site ; ty <- applySubstTy (idType var) ; var' <- lookupIdInScope var ; let ty' = idType var' ; ensureEqTys ty ty' $ mkBndrOccTypeMismatchMsg var' var ty' ty -- Check for a nested occurrence of the StaticPtr constructor. -- See Note [Checking StaticPtrs]. ; lf <- getLintFlags ; when (nargs /= 0 && lf_check_static_ptrs lf /= AllowAnywhere) $ checkL (idName var /= makeStaticName) $ text "Found makeStatic nested in an expression" ; checkDeadIdOcc var ; checkJoinOcc var nargs ; return (idType var') } lintCoreFun :: CoreExpr -> Int -- Number of arguments (type or val) being passed -> LintM Type -- Returns type of the *function* lintCoreFun (Var var) nargs = lintVarOcc var nargs lintCoreFun (Lam var body) nargs -- Act like lintCoreExpr of Lam, but *don't* call markAllJoinsBad; see -- Note [Beta redexes] | nargs /= 0 = addLoc (LambdaBodyOf var) $ lintBinder LambdaBind var $ \ var' -> do { body_ty <- lintCoreFun body (nargs - 1) ; return $ mkLamType var' body_ty } lintCoreFun expr nargs = markAllJoinsBadIf (nargs /= 0) $ -- See Note [Join points are less general than the paper] lintCoreExpr expr ------------------ checkDeadIdOcc :: Id -> LintM () -- Occurrences of an Id should never be dead.... -- except when we are checking a case pattern checkDeadIdOcc id | isDeadOcc (idOccInfo id) = do { in_case <- inCasePat ; checkL in_case (text "Occurrence of a dead Id" <+> ppr id) } | otherwise = return () ------------------ checkJoinOcc :: Id -> JoinArity -> LintM () -- Check that if the occurrence is a JoinId, then so is the -- binding site, and it's a valid join Id checkJoinOcc var n_args | Just join_arity_occ <- isJoinId_maybe var = do { mb_join_arity_bndr <- lookupJoinId var ; case mb_join_arity_bndr of { Nothing -> -- Binder is not a join point addErrL (invalidJoinOcc var) ; Just join_arity_bndr -> do { checkL (join_arity_bndr == join_arity_occ) $ -- Arity differs at binding site and occurrence mkJoinBndrOccMismatchMsg var join_arity_bndr join_arity_occ ; checkL (n_args == join_arity_occ) $ -- Arity doesn't match #args mkBadJumpMsg var join_arity_occ n_args } } } | otherwise = return () {- Note [No alternatives lint check] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Case expressions with no alternatives are odd beasts, and it would seem like they would worth be looking at in the linter (cf #10180). We used to check two things: * exprIsHNF is false: it would *seem* to be terribly wrong if the scrutinee was already in head normal form. * exprIsBottom is true: we should be able to see why GHC believes the scrutinee is diverging for sure. It was already known that the second test was not entirely reliable. Unfortunately (#13990), the first test turned out not to be reliable either. Getting the checks right turns out to be somewhat complicated. For example, suppose we have (comment 8) data T a where TInt :: T Int absurdTBool :: T Bool -> a absurdTBool v = case v of data Foo = Foo !(T Bool) absurdFoo :: Foo -> a absurdFoo (Foo x) = absurdTBool x GHC initially accepts the empty case because of the GADT conditions. But then we inline absurdTBool, getting absurdFoo (Foo x) = case x of x is in normal form (because the Foo constructor is strict) but the case is empty. To avoid this problem, GHC would have to recognize that matching on Foo x is already absurd, which is not so easy. More generally, we don't really know all the ways that GHC can lose track of why an expression is bottom, so we shouldn't make too much fuss when that happens. Note [Beta redexes] ~~~~~~~~~~~~~~~~~~~ Consider: join j @x y z = ... in (\@x y z -> jump j @x y z) @t e1 e2 This is clearly ill-typed, since the jump is inside both an application and a lambda, either of which is enough to disqualify it as a tail call (see Note [Invariants on join points] in CoreSyn). However, strictly from a lambda-calculus perspective, the term doesn't go wrong---after the two beta reductions, the jump *is* a tail call and everything is fine. Why would we want to allow this when we have let? One reason is that a compound beta redex (that is, one with more than one argument) has different scoping rules: naively reducing the above example using lets will capture any free occurrence of y in e2. More fundamentally, type lets are tricky; many passes, such as Float Out, tacitly assume that the incoming program's type lets have all been dealt with by the simplifier. Thus we don't want to let-bind any types in, say, CoreSubst.simpleOptPgm, which in some circumstances can run immediately before Float Out. All that said, currently CoreSubst.simpleOptPgm is the only thing using this loophole, doing so to avoid re-traversing large functions (beta-reducing a type lambda without introducing a type let requires a substitution). TODO: Improve simpleOptPgm so that we can forget all this ever happened. ************************************************************************ * * \subsection[lintCoreArgs]{lintCoreArgs} * * ************************************************************************ The basic version of these functions checks that the argument is a subtype of the required type, as one would expect. -} lintCoreArgs :: OutType -> [CoreArg] -> LintM OutType lintCoreArgs fun_ty args = foldM lintCoreArg fun_ty args lintCoreArg :: OutType -> CoreArg -> LintM OutType lintCoreArg fun_ty (Type arg_ty) = do { checkL (not (isCoercionTy arg_ty)) (text "Unnecessary coercion-to-type injection:" <+> ppr arg_ty) ; arg_ty' <- applySubstTy arg_ty ; lintTyApp fun_ty arg_ty' } lintCoreArg fun_ty arg = do { arg_ty <- markAllJoinsBad $ lintCoreExpr arg -- See Note [Levity polymorphism invariants] in CoreSyn ; flags <- getLintFlags ; lintL (not (lf_check_levity_poly flags) || not (isTypeLevPoly arg_ty)) (text "Levity-polymorphic argument:" <+> (ppr arg <+> dcolon <+> parens (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty)))) -- check for levity polymorphism first, because otherwise isUnliftedType panics ; checkL (not (isUnliftedType arg_ty) || exprOkForSpeculation arg) (mkLetAppMsg arg) ; lintValApp arg fun_ty arg_ty } ----------------- lintAltBinders :: OutType -- Scrutinee type -> OutType -- Constructor type -> [OutVar] -- Binders -> LintM () -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintAltBinders scrut_ty con_ty [] = ensureEqTys con_ty scrut_ty (mkBadPatMsg con_ty scrut_ty) lintAltBinders scrut_ty con_ty (bndr:bndrs) | isTyVar bndr = do { con_ty' <- lintTyApp con_ty (mkTyVarTy bndr) ; lintAltBinders scrut_ty con_ty' bndrs } | otherwise = do { con_ty' <- lintValApp (Var bndr) con_ty (idType bndr) ; lintAltBinders scrut_ty con_ty' bndrs } ----------------- lintTyApp :: OutType -> OutType -> LintM OutType lintTyApp fun_ty arg_ty | Just (tv,body_ty) <- splitForAllTy_maybe fun_ty = do { lintTyKind tv arg_ty ; in_scope <- getInScope -- substTy needs the set of tyvars in scope to avoid generating -- uniques that are already in scope. -- See Note [The substitution invariant] in TyCoSubst ; return (substTyWithInScope in_scope [tv] [arg_ty] body_ty) } | otherwise = failWithL (mkTyAppMsg fun_ty arg_ty) ----------------- lintValApp :: CoreExpr -> OutType -> OutType -> LintM OutType lintValApp arg fun_ty arg_ty | Just (arg,res) <- splitFunTy_maybe fun_ty = do { ensureEqTys arg arg_ty err1 ; return res } | otherwise = failWithL err2 where err1 = mkAppMsg fun_ty arg_ty arg err2 = mkNonFunAppMsg fun_ty arg_ty arg lintTyKind :: OutTyVar -> OutType -> LintM () -- Both args have had substitution applied -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintTyKind tyvar arg_ty = do { arg_kind <- lintType arg_ty ; unless (arg_kind `eqType` tyvar_kind) (addErrL (mkKindErrMsg tyvar arg_ty $$ (text "Linted Arg kind:" <+> ppr arg_kind))) } where tyvar_kind = tyVarKind tyvar {- ************************************************************************ * * \subsection[lintCoreAlts]{lintCoreAlts} * * ************************************************************************ -} lintCaseExpr :: CoreExpr -> Id -> Type -> [CoreAlt] -> LintM OutType lintCaseExpr scrut var alt_ty alts = do { let e = Case scrut var alt_ty alts -- Just for error messages -- Check the scrutinee ; scrut_ty <- markAllJoinsBad $ lintCoreExpr scrut -- See Note [Join points are less general than the paper] -- in CoreSyn ; (alt_ty, _) <- addLoc (CaseTy scrut) $ lintInTy alt_ty ; (var_ty, _) <- addLoc (IdTy var) $ lintInTy (idType var) -- We used to try to check whether a case expression with no -- alternatives was legitimate, but this didn't work. -- See Note [No alternatives lint check] for details. -- Check that the scrutinee is not a floating-point type -- if there are any literal alternatives -- See CoreSyn Note [Case expression invariants] item (5) -- See Note [Rules for floating-point comparisons] in PrelRules ; let isLitPat (LitAlt _, _ , _) = True isLitPat _ = False ; checkL (not $ isFloatingTy scrut_ty && any isLitPat alts) (ptext (sLit $ "Lint warning: Scrutinising floating-point " ++ "expression with literal pattern in case " ++ "analysis (see #9238).") $$ text "scrut" <+> ppr scrut) ; case tyConAppTyCon_maybe (idType var) of Just tycon | debugIsOn , isAlgTyCon tycon , not (isAbstractTyCon tycon) , null (tyConDataCons tycon) , not (exprIsBottom scrut) -> pprTrace "Lint warning: case binder's type has no constructors" (ppr var <+> ppr (idType var)) -- This can legitimately happen for type families $ return () _otherwise -> return () -- Don't use lintIdBndr on var, because unboxed tuple is legitimate ; subst <- getTCvSubst ; ensureEqTys var_ty scrut_ty (mkScrutMsg var var_ty scrut_ty subst) -- See CoreSyn Note [Case expression invariants] item (7) ; lintBinder CaseBind var $ \_ -> do { -- Check the alternatives mapM_ (lintCoreAlt scrut_ty alt_ty) alts ; checkCaseAlts e scrut_ty alts ; return alt_ty } } checkCaseAlts :: CoreExpr -> OutType -> [CoreAlt] -> LintM () -- a) Check that the alts are non-empty -- b1) Check that the DEFAULT comes first, if it exists -- b2) Check that the others are in increasing order -- c) Check that there's a default for infinite types -- NB: Algebraic cases are not necessarily exhaustive, because -- the simplifier correctly eliminates case that can't -- possibly match. checkCaseAlts e ty alts = do { checkL (all non_deflt con_alts) (mkNonDefltMsg e) -- See CoreSyn Note [Case expression invariants] item (2) ; checkL (increasing_tag con_alts) (mkNonIncreasingAltsMsg e) -- See CoreSyn Note [Case expression invariants] item (3) -- For types Int#, Word# with an infinite (well, large!) number of -- possible values, there should usually be a DEFAULT case -- But (see Note [Empty case alternatives] in CoreSyn) it's ok to -- have *no* case alternatives. -- In effect, this is a kind of partial test. I suppose it's possible -- that we might *know* that 'x' was 1 or 2, in which case -- case x of { 1 -> e1; 2 -> e2 } -- would be fine. ; checkL (isJust maybe_deflt || not is_infinite_ty || null alts) (nonExhaustiveAltsMsg e) } where (con_alts, maybe_deflt) = findDefault alts -- Check that successive alternatives have strictly increasing tags increasing_tag (alt1 : rest@( alt2 : _)) = alt1 `ltAlt` alt2 && increasing_tag rest increasing_tag _ = True non_deflt (DEFAULT, _, _) = False non_deflt _ = True is_infinite_ty = case tyConAppTyCon_maybe ty of Nothing -> False Just tycon -> isPrimTyCon tycon lintAltExpr :: CoreExpr -> OutType -> LintM () lintAltExpr expr ann_ty = do { actual_ty <- lintCoreExpr expr ; ensureEqTys actual_ty ann_ty (mkCaseAltMsg expr actual_ty ann_ty) } -- See CoreSyn Note [Case expression invariants] item (6) lintCoreAlt :: OutType -- Type of scrutinee -> OutType -- Type of the alternative -> CoreAlt -> LintM () -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintCoreAlt _ alt_ty (DEFAULT, args, rhs) = do { lintL (null args) (mkDefaultArgsMsg args) ; lintAltExpr rhs alt_ty } lintCoreAlt scrut_ty alt_ty (LitAlt lit, args, rhs) | litIsLifted lit = failWithL integerScrutinisedMsg | otherwise = do { lintL (null args) (mkDefaultArgsMsg args) ; ensureEqTys lit_ty scrut_ty (mkBadPatMsg lit_ty scrut_ty) ; lintAltExpr rhs alt_ty } where lit_ty = literalType lit lintCoreAlt scrut_ty alt_ty alt@(DataAlt con, args, rhs) | isNewTyCon (dataConTyCon con) = addErrL (mkNewTyDataConAltMsg scrut_ty alt) | Just (tycon, tycon_arg_tys) <- splitTyConApp_maybe scrut_ty = addLoc (CaseAlt alt) $ do { -- First instantiate the universally quantified -- type variables of the data constructor -- We've already check lintL (tycon == dataConTyCon con) (mkBadConMsg tycon con) ; let con_payload_ty = piResultTys (dataConRepType con) tycon_arg_tys -- And now bring the new binders into scope ; lintBinders CasePatBind args $ \ args' -> do { addLoc (CasePat alt) (lintAltBinders scrut_ty con_payload_ty args') ; lintAltExpr rhs alt_ty } } | otherwise -- Scrut-ty is wrong shape = addErrL (mkBadAltMsg scrut_ty alt) {- ************************************************************************ * * \subsection[lint-types]{Types} * * ************************************************************************ -} -- When we lint binders, we (one at a time and in order): -- 1. Lint var types or kinds (possibly substituting) -- 2. Add the binder to the in scope set, and if its a coercion var, -- we may extend the substitution to reflect its (possibly) new kind lintBinders :: BindingSite -> [Var] -> ([Var] -> LintM a) -> LintM a lintBinders _ [] linterF = linterF [] lintBinders site (var:vars) linterF = lintBinder site var $ \var' -> lintBinders site vars $ \ vars' -> linterF (var':vars') -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintBinder :: BindingSite -> Var -> (Var -> LintM a) -> LintM a lintBinder site var linterF | isTyVar var = lintTyBndr var linterF | isCoVar var = lintCoBndr var linterF | otherwise = lintIdBndr NotTopLevel site var linterF lintTyBndr :: InTyVar -> (OutTyVar -> LintM a) -> LintM a lintTyBndr tv thing_inside = do { subst <- getTCvSubst ; let (subst', tv') = substTyVarBndr subst tv ; lintKind (varType tv') ; updateTCvSubst subst' (thing_inside tv') } lintCoBndr :: InCoVar -> (OutCoVar -> LintM a) -> LintM a lintCoBndr cv thing_inside = do { subst <- getTCvSubst ; let (subst', cv') = substCoVarBndr subst cv ; lintKind (varType cv') ; lintL (isCoVarType (varType cv')) (text "CoVar with non-coercion type:" <+> pprTyVar cv) ; updateTCvSubst subst' (thing_inside cv') } lintLetBndrs :: TopLevelFlag -> [Var] -> LintM a -> LintM a lintLetBndrs top_lvl ids linterF = go ids where go [] = linterF go (id:ids) = lintIdBndr top_lvl LetBind id $ \_ -> go ids lintIdBndr :: TopLevelFlag -> BindingSite -> InVar -> (OutVar -> LintM a) -> LintM a -- Do substitution on the type of a binder and add the var with this -- new type to the in-scope set of the second argument -- ToDo: lint its rules lintIdBndr top_lvl bind_site id linterF = ASSERT2( isId id, ppr id ) do { flags <- getLintFlags ; checkL (not (lf_check_global_ids flags) || isLocalId id) (text "Non-local Id binder" <+> ppr id) -- See Note [Checking for global Ids] -- Check that if the binder is nested, it is not marked as exported ; checkL (not (isExportedId id) || is_top_lvl) (mkNonTopExportedMsg id) -- Check that if the binder is nested, it does not have an external name ; checkL (not (isExternalName (Var.varName id)) || is_top_lvl) (mkNonTopExternalNameMsg id) ; (ty, k) <- addLoc (IdTy id) $ lintInTy (idType id) -- See Note [Levity polymorphism invariants] in CoreSyn ; lintL (isJoinId id || not (lf_check_levity_poly flags) || not (isKindLevPoly k)) (text "Levity-polymorphic binder:" <+> (ppr id <+> dcolon <+> parens (ppr ty <+> dcolon <+> ppr k))) -- Check that a join-id is a not-top-level let-binding ; when (isJoinId id) $ checkL (not is_top_lvl && is_let_bind) $ mkBadJoinBindMsg id -- Check that the Id does not have type (t1 ~# t2) or (t1 ~R# t2); -- if so, it should be a CoVar, and checked by lintCoVarBndr ; lintL (not (isCoVarType ty)) (text "Non-CoVar has coercion type" <+> ppr id <+> dcolon <+> ppr ty) ; let id' = setIdType id ty ; addInScopeVar id' $ (linterF id') } where is_top_lvl = isTopLevel top_lvl is_let_bind = case bind_site of LetBind -> True _ -> False {- %************************************************************************ %* * Types %* * %************************************************************************ -} lintTypes :: DynFlags -> [TyCoVar] -- Treat these as in scope -> [Type] -> Maybe MsgDoc -- Nothing => OK lintTypes dflags vars tys | isEmptyBag errs = Nothing | otherwise = Just (pprMessageBag errs) where in_scope = emptyInScopeSet (_warns, errs) = initL dflags defaultLintFlags in_scope linter linter = lintBinders LambdaBind vars $ \_ -> mapM_ lintInTy tys lintInTy :: InType -> LintM (LintedType, LintedKind) -- Types only, not kinds -- Check the type, and apply the substitution to it -- See Note [Linting type lets] lintInTy ty = addLoc (InType ty) $ do { ty' <- applySubstTy ty ; k <- lintType ty' ; lintKind k -- The kind returned by lintType is already -- a LintedKind but we also want to check that -- k :: *, which lintKind does ; return (ty', k) } checkTyCon :: TyCon -> LintM () checkTyCon tc = checkL (not (isTcTyCon tc)) (text "Found TcTyCon:" <+> ppr tc) ------------------- lintType :: OutType -> LintM LintedKind -- The returned Kind has itself been linted -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintType (TyVarTy tv) = do { checkL (isTyVar tv) (mkBadTyVarMsg tv) ; lintTyCoVarInScope tv ; return (tyVarKind tv) } -- We checked its kind when we added it to the envt lintType ty@(AppTy t1 t2) | TyConApp {} <- t1 = failWithL $ text "TyConApp to the left of AppTy:" <+> ppr ty | otherwise = do { k1 <- lintType t1 ; k2 <- lintType t2 ; lint_ty_app ty k1 [(t2,k2)] } lintType ty@(TyConApp tc tys) | isTypeSynonymTyCon tc || isTypeFamilyTyCon tc = do { report_unsat <- lf_report_unsat_syns <$> getLintFlags ; lintTySynFamApp report_unsat ty tc tys } | isFunTyCon tc , tys `lengthIs` 4 -- We should never see a saturated application of funTyCon; such -- applications should be represented with the FunTy constructor. -- See Note [Linting function types] and -- Note [Representation of function types]. = failWithL (hang (text "Saturated application of (->)") 2 (ppr ty)) | otherwise -- Data types, data families, primitive types = do { checkTyCon tc ; ks <- mapM lintType tys ; lint_ty_app ty (tyConKind tc) (tys `zip` ks) } -- arrows can related *unlifted* kinds, so this has to be separate from -- a dependent forall. lintType ty@(FunTy _ t1 t2) = do { k1 <- lintType t1 ; k2 <- lintType t2 ; lintArrow (text "type or kind" <+> quotes (ppr ty)) k1 k2 } lintType t@(ForAllTy (Bndr tv _vis) ty) -- forall over types | isTyVar tv = lintTyBndr tv $ \tv' -> do { k <- lintType ty ; checkValueKind k (text "the body of forall:" <+> ppr t) ; case occCheckExpand [tv'] k of -- See Note [Stupid type synonyms] Just k' -> return k' Nothing -> failWithL (hang (text "Variable escape in forall:") 2 (vcat [ text "type:" <+> ppr t , text "kind:" <+> ppr k ])) } lintType t@(ForAllTy (Bndr cv _vis) ty) -- forall over coercions = do { lintL (isCoVar cv) (text "Non-Tyvar or Non-Covar bound in type:" <+> ppr t) ; lintL (cv `elemVarSet` tyCoVarsOfType ty) (text "Covar does not occur in the body:" <+> ppr t) ; lintCoBndr cv $ \_ -> do { k <- lintType ty ; checkValueKind k (text "the body of forall:" <+> ppr t) ; return liftedTypeKind -- We don't check variable escape here. Namely, k could refer to cv' -- See Note [NthCo and newtypes] in TyCoRep }} lintType ty@(LitTy l) = lintTyLit l >> return (typeKind ty) lintType (CastTy ty co) = do { k1 <- lintType ty ; (k1', k2) <- lintStarCoercion co ; ensureEqTys k1 k1' (mkCastTyErr ty co k1' k1) ; return k2 } lintType (CoercionTy co) = do { (k1, k2, ty1, ty2, r) <- lintCoercion co ; return $ mkHeteroCoercionType r k1 k2 ty1 ty2 } {- Note [Stupid type synonyms] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider (#14939) type Alg cls ob = ob f :: forall (cls :: * -> Constraint) (b :: Alg cls *). b Here 'cls' appears free in b's kind, which would usually be illegal (because in (forall a. ty), ty's kind should not mention 'a'). But #in this case (Alg cls *) = *, so all is well. Currently we allow this, and make Lint expand synonyms where necessary to make it so. c.f. TcUnify.occCheckExpand and CoreUtils.coreAltsType which deal with the same problem. A single systematic solution eludes me. -} ----------------- lintTySynFamApp :: Bool -> Type -> TyCon -> [Type] -> LintM LintedKind -- The TyCon is a type synonym or a type family (not a data family) -- See Note [Linting type synonym applications] -- c.f. TcValidity.check_syn_tc_app lintTySynFamApp report_unsat ty tc tys | report_unsat -- Report unsaturated only if report_unsat is on , tys `lengthLessThan` tyConArity tc = failWithL (hang (text "Un-saturated type application") 2 (ppr ty)) -- Deal with type synonyms | Just (tenv, rhs, tys') <- expandSynTyCon_maybe tc tys , let expanded_ty = mkAppTys (substTy (mkTvSubstPrs tenv) rhs) tys' = do { -- Kind-check the argument types, but without reporting -- un-saturated type families/synonyms ks <- setReportUnsat False (mapM lintType tys) ; when report_unsat $ do { _ <- lintType expanded_ty ; return () } ; lint_ty_app ty (tyConKind tc) (tys `zip` ks) } -- Otherwise this must be a type family | otherwise = do { ks <- mapM lintType tys ; lint_ty_app ty (tyConKind tc) (tys `zip` ks) } ----------------- lintKind :: OutKind -> LintM () -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintKind k = do { sk <- lintType k ; unless (classifiesTypeWithValues sk) (addErrL (hang (text "Ill-kinded kind:" <+> ppr k) 2 (text "has kind:" <+> ppr sk))) } ----------------- -- Confirms that a type is really *, #, Constraint etc checkValueKind :: OutKind -> SDoc -> LintM () checkValueKind k doc = lintL (classifiesTypeWithValues k) (text "Non-*-like kind when *-like expected:" <+> ppr k $$ text "when checking" <+> doc) ----------------- lintArrow :: SDoc -> LintedKind -> LintedKind -> LintM LintedKind -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintArrow what k1 k2 -- Eg lintArrow "type or kind `blah'" k1 k2 -- or lintarrow "coercion `blah'" k1 k2 = do { unless (classifiesTypeWithValues k1) (addErrL (msg (text "argument") k1)) ; unless (classifiesTypeWithValues k2) (addErrL (msg (text "result") k2)) ; return liftedTypeKind } where msg ar k = vcat [ hang (text "Ill-kinded" <+> ar) 2 (text "in" <+> what) , what <+> text "kind:" <+> ppr k ] ----------------- lint_ty_app :: Type -> LintedKind -> [(LintedType,LintedKind)] -> LintM LintedKind lint_ty_app ty k tys = lint_app (text "type" <+> quotes (ppr ty)) k tys ---------------- lint_co_app :: Coercion -> LintedKind -> [(LintedType,LintedKind)] -> LintM LintedKind lint_co_app ty k tys = lint_app (text "coercion" <+> quotes (ppr ty)) k tys ---------------- lintTyLit :: TyLit -> LintM () lintTyLit (NumTyLit n) | n >= 0 = return () | otherwise = failWithL msg where msg = text "Negative type literal:" <+> integer n lintTyLit (StrTyLit _) = return () lint_app :: SDoc -> LintedKind -> [(LintedType,LintedKind)] -> LintM Kind -- (lint_app d fun_kind arg_tys) -- We have an application (f arg_ty1 .. arg_tyn), -- where f :: fun_kind -- Takes care of linting the OutTypes -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lint_app doc kfn kas = do { in_scope <- getInScope -- We need the in_scope set to satisfy the invariant in -- Note [The substitution invariant] in TyCoSubst ; foldlM (go_app in_scope) kfn kas } where fail_msg extra = vcat [ hang (text "Kind application error in") 2 doc , nest 2 (text "Function kind =" <+> ppr kfn) , nest 2 (text "Arg kinds =" <+> ppr kas) , extra ] go_app in_scope kfn tka | Just kfn' <- coreView kfn = go_app in_scope kfn' tka go_app _ (FunTy _ kfa kfb) tka@(_,ka) = do { unless (ka `eqType` kfa) $ addErrL (fail_msg (text "Fun:" <+> (ppr kfa $$ ppr tka))) ; return kfb } go_app in_scope (ForAllTy (Bndr kv _vis) kfn) tka@(ta,ka) = do { let kv_kind = varType kv ; unless (ka `eqType` kv_kind) $ addErrL (fail_msg (text "Forall:" <+> (ppr kv $$ ppr kv_kind $$ ppr tka))) ; return $ substTy (extendTCvSubst (mkEmptyTCvSubst in_scope) kv ta) kfn } go_app _ kfn ka = failWithL (fail_msg (text "Not a fun:" <+> (ppr kfn $$ ppr ka))) {- ********************************************************************* * * Linting rules * * ********************************************************************* -} lintCoreRule :: OutVar -> OutType -> CoreRule -> LintM () lintCoreRule _ _ (BuiltinRule {}) = return () -- Don't bother lintCoreRule fun fun_ty rule@(Rule { ru_name = name, ru_bndrs = bndrs , ru_args = args, ru_rhs = rhs }) = lintBinders LambdaBind bndrs $ \ _ -> do { lhs_ty <- lintCoreArgs fun_ty args ; rhs_ty <- case isJoinId_maybe fun of Just join_arity -> do { checkL (args `lengthIs` join_arity) $ mkBadJoinPointRuleMsg fun join_arity rule -- See Note [Rules for join points] ; lintCoreExpr rhs } _ -> markAllJoinsBad $ lintCoreExpr rhs ; ensureEqTys lhs_ty rhs_ty $ (rule_doc <+> vcat [ text "lhs type:" <+> ppr lhs_ty , text "rhs type:" <+> ppr rhs_ty , text "fun_ty:" <+> ppr fun_ty ]) ; let bad_bndrs = filter is_bad_bndr bndrs ; checkL (null bad_bndrs) (rule_doc <+> text "unbound" <+> ppr bad_bndrs) -- See Note [Linting rules] } where rule_doc = text "Rule" <+> doubleQuotes (ftext name) <> colon lhs_fvs = exprsFreeVars args rhs_fvs = exprFreeVars rhs is_bad_bndr :: Var -> Bool -- See Note [Unbound RULE binders] in Rules is_bad_bndr bndr = not (bndr `elemVarSet` lhs_fvs) && bndr `elemVarSet` rhs_fvs && isNothing (isReflCoVar_maybe bndr) {- Note [Linting rules] ~~~~~~~~~~~~~~~~~~~~~~~ It's very bad if simplifying a rule means that one of the template variables (ru_bndrs) that /is/ mentioned on the RHS becomes not-mentioned in the LHS (ru_args). How can that happen? Well, in #10602, SpecConstr stupidly constructed a rule like forall x,c1,c2. f (x |> c1 |> c2) = .... But simplExpr collapses those coercions into one. (Indeed in #10602, it collapsed to the identity and was removed altogether.) We don't have a great story for what to do here, but at least this check will nail it. NB (#11643): it's possible that a variable listed in the binders becomes not-mentioned on both LHS and RHS. Here's a silly example: RULE forall x y. f (g x y) = g (x+1) (y-1) And suppose worker/wrapper decides that 'x' is Absent. Then we'll end up with RULE forall x y. f ($gw y) = $gw (x+1) This seems sufficiently obscure that there isn't enough payoff to try to trim the forall'd binder list. Note [Rules for join points] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A join point cannot be partially applied. However, the left-hand side of a rule for a join point is effectively a *pattern*, not a piece of code, so there's an argument to be made for allowing a situation like this: join $sj :: Int -> Int -> String $sj n m = ... j :: forall a. Eq a => a -> a -> String {-# RULES "SPEC j" jump j @ Int $dEq = jump $sj #-} j @a $dEq x y = ... Applying this rule can't turn a well-typed program into an ill-typed one, so conceivably we could allow it. But we can always eta-expand such an "undersaturated" rule (see 'CoreArity.etaExpandToJoinPointRule'), and in fact the simplifier would have to in order to deal with the RHS. So we take a conservative view and don't allow undersaturated rules for join points. See Note [Rules and join points] in OccurAnal for further discussion. -} {- ************************************************************************ * * Linting coercions * * ************************************************************************ -} lintInCo :: InCoercion -> LintM (LintedKind, LintedKind, LintedType, LintedType, Role) -- Check the coercion, and apply the substitution to it -- See Note [Linting type lets] lintInCo co = addLoc (InCo co) $ do { co' <- applySubstCo co ; lintCoercion co' } -- lints a coercion, confirming that its lh kind and its rh kind are both * -- also ensures that the role is Nominal lintStarCoercion :: OutCoercion -> LintM (LintedType, LintedType) lintStarCoercion g = do { (k1, k2, t1, t2, r) <- lintCoercion g ; checkValueKind k1 (text "the kind of the left type in" <+> ppr g) ; checkValueKind k2 (text "the kind of the right type in" <+> ppr g) ; lintRole g Nominal r ; return (t1, t2) } lintCoercion :: OutCoercion -> LintM (LintedKind, LintedKind, LintedType, LintedType, Role) -- Check the kind of a coercion term, returning the kind -- Post-condition: the returned OutTypes are lint-free -- -- If lintCoercion co = (k1, k2, s1, s2, r) -- then co :: s1 ~r s2 -- s1 :: k1 -- s2 :: k2 -- If you edit this function, you may need to update the GHC formalism -- See Note [GHC Formalism] lintCoercion (Refl ty) = do { k <- lintType ty ; return (k, k, ty, ty, Nominal) } lintCoercion (GRefl r ty MRefl) = do { k <- lintType ty ; return (k, k, ty, ty, r) } lintCoercion (GRefl r ty (MCo co)) = do { k <- lintType ty ; (_, _, k1, k2, r') <- lintCoercion co ; ensureEqTys k k1 (hang (text "GRefl coercion kind mis-match:" <+> ppr co) 2 (vcat [ppr ty, ppr k, ppr k1])) ; lintRole co Nominal r' ; return (k1, k2, ty, mkCastTy ty co, r) } lintCoercion co@(TyConAppCo r tc cos) | tc `hasKey` funTyConKey , [_rep1,_rep2,_co1,_co2] <- cos = do { failWithL (text "Saturated TyConAppCo (->):" <+> ppr co) } -- All saturated TyConAppCos should be FunCos | Just {} <- synTyConDefn_maybe tc = failWithL (text "Synonym in TyConAppCo:" <+> ppr co) | otherwise = do { checkTyCon tc ; (k's, ks, ss, ts, rs) <- mapAndUnzip5M lintCoercion cos ; k' <- lint_co_app co (tyConKind tc) (ss `zip` k's) ; k <- lint_co_app co (tyConKind tc) (ts `zip` ks) ; _ <- zipWith3M lintRole cos (tyConRolesX r tc) rs ; return (k', k, mkTyConApp tc ss, mkTyConApp tc ts, r) } lintCoercion co@(AppCo co1 co2) | TyConAppCo {} <- co1 = failWithL (text "TyConAppCo to the left of AppCo:" <+> ppr co) | Just (TyConApp {}, _) <- isReflCo_maybe co1 = failWithL (text "Refl (TyConApp ...) to the left of AppCo:" <+> ppr co) | otherwise = do { (k1, k2, s1, s2, r1) <- lintCoercion co1 ; (k'1, k'2, t1, t2, r2) <- lintCoercion co2 ; k3 <- lint_co_app co k1 [(t1,k'1)] ; k4 <- lint_co_app co k2 [(t2,k'2)] ; if r1 == Phantom then lintL (r2 == Phantom || r2 == Nominal) (text "Second argument in AppCo cannot be R:" $$ ppr co) else lintRole co Nominal r2 ; return (k3, k4, mkAppTy s1 t1, mkAppTy s2 t2, r1) } ---------- lintCoercion (ForAllCo tv1 kind_co co) -- forall over types | isTyVar tv1 = do { (_, k2) <- lintStarCoercion kind_co ; let tv2 = setTyVarKind tv1 k2 ; addInScopeVar tv1 $ do { ; (k3, k4, t1, t2, r) <- lintCoercion co ; in_scope <- getInScope ; let tyl = mkInvForAllTy tv1 t1 subst = mkTvSubst in_scope $ -- We need both the free vars of the `t2` and the -- free vars of the range of the substitution in -- scope. All the free vars of `t2` and `kind_co` should -- already be in `in_scope`, because they've been -- linted and `tv2` has the same unique as `tv1`. -- See Note [The substitution invariant] in TyCoSubst. unitVarEnv tv1 (TyVarTy tv2 `mkCastTy` mkSymCo kind_co) tyr = mkInvForAllTy tv2 $ substTy subst t2 ; return (k3, k4, tyl, tyr, r) } } lintCoercion (ForAllCo cv1 kind_co co) -- forall over coercions = ASSERT( isCoVar cv1 ) do { lintL (almostDevoidCoVarOfCo cv1 co) (text "Covar can only appear in Refl and GRefl: " <+> ppr co) ; (_, k2) <- lintStarCoercion kind_co ; let cv2 = setVarType cv1 k2 ; addInScopeVar cv1 $ do { ; (k3, k4, t1, t2, r) <- lintCoercion co ; checkValueKind k3 (text "the body of a ForAllCo over covar:" <+> ppr co) ; checkValueKind k4 (text "the body of a ForAllCo over covar:" <+> ppr co) -- See Note [Weird typing rule for ForAllTy] in Type ; in_scope <- getInScope ; let tyl = mkTyCoInvForAllTy cv1 t1 r2 = coVarRole cv1 kind_co' = downgradeRole r2 Nominal kind_co eta1 = mkNthCo r2 2 kind_co' eta2 = mkNthCo r2 3 kind_co' subst = mkCvSubst in_scope $ -- We need both the free vars of the `t2` and the -- free vars of the range of the substitution in -- scope. All the free vars of `t2` and `kind_co` should -- already be in `in_scope`, because they've been -- linted and `cv2` has the same unique as `cv1`. -- See Note [The substitution invariant] in TyCoSubst. unitVarEnv cv1 (eta1 `mkTransCo` (mkCoVarCo cv2) `mkTransCo` (mkSymCo eta2)) tyr = mkTyCoInvForAllTy cv2 $ substTy subst t2 ; return (liftedTypeKind, liftedTypeKind, tyl, tyr, r) } } -- See Note [Weird typing rule for ForAllTy] in Type lintCoercion co@(FunCo r co1 co2) = do { (k1,k'1,s1,t1,r1) <- lintCoercion co1 ; (k2,k'2,s2,t2,r2) <- lintCoercion co2 ; k <- lintArrow (text "coercion" <+> quotes (ppr co)) k1 k2 ; k' <- lintArrow (text "coercion" <+> quotes (ppr co)) k'1 k'2 ; lintRole co1 r r1 ; lintRole co2 r r2 ; return (k, k', mkVisFunTy s1 s2, mkVisFunTy t1 t2, r) } lintCoercion (CoVarCo cv) | not (isCoVar cv) = failWithL (hang (text "Bad CoVarCo:" <+> ppr cv) 2 (text "With offending type:" <+> ppr (varType cv))) | otherwise = do { lintTyCoVarInScope cv ; cv' <- lookupIdInScope cv ; lintUnliftedCoVar cv ; return $ coVarKindsTypesRole cv' } -- See Note [Bad unsafe coercion] lintCoercion co@(UnivCo prov r ty1 ty2) = do { k1 <- lintType ty1 ; k2 <- lintType ty2 ; case prov of PhantomProv kco -> do { lintRole co Phantom r ; check_kinds kco k1 k2 } ProofIrrelProv kco -> do { lintL (isCoercionTy ty1) $ mkBadProofIrrelMsg ty1 co ; lintL (isCoercionTy ty2) $ mkBadProofIrrelMsg ty2 co ; check_kinds kco k1 k2 } PluginProv _ -> return () -- no extra checks ; when (r /= Phantom && classifiesTypeWithValues k1 && classifiesTypeWithValues k2) (checkTypes ty1 ty2) ; return (k1, k2, ty1, ty2, r) } where report s = hang (text $ "Unsafe coercion: " ++ s) 2 (vcat [ text "From:" <+> ppr ty1 , text " To:" <+> ppr ty2]) isUnBoxed :: PrimRep -> Bool isUnBoxed = not . isGcPtrRep -- see #9122 for discussion of these checks checkTypes t1 t2 = do { checkWarnL (not lev_poly1) (report "left-hand type is levity-polymorphic") ; checkWarnL (not lev_poly2) (report "right-hand type is levity-polymorphic") ; when (not (lev_poly1 || lev_poly2)) $ do { checkWarnL (reps1 `equalLength` reps2) (report "between values with different # of reps") ; zipWithM_ validateCoercion reps1 reps2 }} where lev_poly1 = isTypeLevPoly t1 lev_poly2 = isTypeLevPoly t2 -- don't look at these unless lev_poly1/2 are False -- Otherwise, we get #13458 reps1 = typePrimRep t1 reps2 = typePrimRep t2 validateCoercion :: PrimRep -> PrimRep -> LintM () validateCoercion rep1 rep2 = do { dflags <- getDynFlags ; checkWarnL (isUnBoxed rep1 == isUnBoxed rep2) (report "between unboxed and boxed value") ; checkWarnL (TyCon.primRepSizeB dflags rep1 == TyCon.primRepSizeB dflags rep2) (report "between unboxed values of different size") ; let fl = liftM2 (==) (TyCon.primRepIsFloat rep1) (TyCon.primRepIsFloat rep2) ; case fl of Nothing -> addWarnL (report "between vector types") Just False -> addWarnL (report "between float and integral values") _ -> return () } check_kinds kco k1 k2 = do { (k1', k2') <- lintStarCoercion kco ; ensureEqTys k1 k1' (mkBadUnivCoMsg CLeft co) ; ensureEqTys k2 k2' (mkBadUnivCoMsg CRight co) } lintCoercion (SymCo co) = do { (k1, k2, ty1, ty2, r) <- lintCoercion co ; return (k2, k1, ty2, ty1, r) } lintCoercion co@(TransCo co1 co2) = do { (k1a, _k1b, ty1a, ty1b, r1) <- lintCoercion co1 ; (_k2a, k2b, ty2a, ty2b, r2) <- lintCoercion co2 ; ensureEqTys ty1b ty2a (hang (text "Trans coercion mis-match:" <+> ppr co) 2 (vcat [ppr ty1a, ppr ty1b, ppr ty2a, ppr ty2b])) ; lintRole co r1 r2 ; return (k1a, k2b, ty1a, ty2b, r1) } lintCoercion the_co@(NthCo r0 n co) = do { (_, _, s, t, r) <- lintCoercion co ; case (splitForAllTy_maybe s, splitForAllTy_maybe t) of { (Just (tcv_s, _ty_s), Just (tcv_t, _ty_t)) -- works for both tyvar and covar | n == 0 , (isForAllTy_ty s && isForAllTy_ty t) || (isForAllTy_co s && isForAllTy_co t) -> do { lintRole the_co Nominal r0 ; return (ks, kt, ts, tt, r0) } where ts = varType tcv_s tt = varType tcv_t ks = typeKind ts kt = typeKind tt ; _ -> case (splitTyConApp_maybe s, splitTyConApp_maybe t) of { (Just (tc_s, tys_s), Just (tc_t, tys_t)) | tc_s == tc_t , isInjectiveTyCon tc_s r -- see Note [NthCo and newtypes] in TyCoRep , tys_s `equalLength` tys_t , tys_s `lengthExceeds` n -> do { lintRole the_co tr r0 ; return (ks, kt, ts, tt, r0) } where ts = getNth tys_s n tt = getNth tys_t n tr = nthRole r tc_s n ks = typeKind ts kt = typeKind tt ; _ -> failWithL (hang (text "Bad getNth:") 2 (ppr the_co $$ ppr s $$ ppr t)) }}} lintCoercion the_co@(LRCo lr co) = do { (_,_,s,t,r) <- lintCoercion co ; lintRole co Nominal r ; case (splitAppTy_maybe s, splitAppTy_maybe t) of (Just s_pr, Just t_pr) -> return (ks_pick, kt_pick, s_pick, t_pick, Nominal) where s_pick = pickLR lr s_pr t_pick = pickLR lr t_pr ks_pick = typeKind s_pick kt_pick = typeKind t_pick _ -> failWithL (hang (text "Bad LRCo:") 2 (ppr the_co $$ ppr s $$ ppr t)) } lintCoercion (InstCo co arg) = do { (k3, k4, t1',t2', r) <- lintCoercion co ; (k1',k2',s1,s2, r') <- lintCoercion arg ; lintRole arg Nominal r' ; in_scope <- getInScope ; case (splitForAllTy_ty_maybe t1', splitForAllTy_ty_maybe t2') of -- forall over tvar { (Just (tv1,t1), Just (tv2,t2)) | k1' `eqType` tyVarKind tv1 , k2' `eqType` tyVarKind tv2 -> return (k3, k4, substTyWithInScope in_scope [tv1] [s1] t1, substTyWithInScope in_scope [tv2] [s2] t2, r) | otherwise -> failWithL (text "Kind mis-match in inst coercion") ; _ -> case (splitForAllTy_co_maybe t1', splitForAllTy_co_maybe t2') of -- forall over covar { (Just (cv1, t1), Just (cv2, t2)) | k1' `eqType` varType cv1 , k2' `eqType` varType cv2 , CoercionTy s1' <- s1 , CoercionTy s2' <- s2 -> do { return $ (liftedTypeKind, liftedTypeKind -- See Note [Weird typing rule for ForAllTy] in Type , substTy (mkCvSubst in_scope $ unitVarEnv cv1 s1') t1 , substTy (mkCvSubst in_scope $ unitVarEnv cv2 s2') t2 , r) } | otherwise -> failWithL (text "Kind mis-match in inst coercion") ; _ -> failWithL (text "Bad argument of inst") }}} lintCoercion co@(AxiomInstCo con ind cos) = do { unless (0 <= ind && ind < numBranches (coAxiomBranches con)) (bad_ax (text "index out of range")) ; let CoAxBranch { cab_tvs = ktvs , cab_cvs = cvs , cab_roles = roles , cab_lhs = lhs , cab_rhs = rhs } = coAxiomNthBranch con ind ; unless (cos `equalLength` (ktvs ++ cvs)) $ bad_ax (text "lengths") ; subst <- getTCvSubst ; let empty_subst = zapTCvSubst subst ; (subst_l, subst_r) <- foldlM check_ki (empty_subst, empty_subst) (zip3 (ktvs ++ cvs) roles cos) ; let lhs' = substTys subst_l lhs rhs' = substTy subst_r rhs fam_tc = coAxiomTyCon con ; case checkAxInstCo co of Just bad_branch -> bad_ax $ text "inconsistent with" <+> pprCoAxBranch fam_tc bad_branch Nothing -> return () ; let s2 = mkTyConApp fam_tc lhs' ; return (typeKind s2, typeKind rhs', s2, rhs', coAxiomRole con) } where bad_ax what = addErrL (hang (text "Bad axiom application" <+> parens what) 2 (ppr co)) check_ki (subst_l, subst_r) (ktv, role, arg) = do { (k', k'', s', t', r) <- lintCoercion arg ; lintRole arg role r ; let ktv_kind_l = substTy subst_l (tyVarKind ktv) ktv_kind_r = substTy subst_r (tyVarKind ktv) ; unless (k' `eqType` ktv_kind_l) (bad_ax (text "check_ki1" <+> vcat [ ppr co, ppr k', ppr ktv, ppr ktv_kind_l ] )) ; unless (k'' `eqType` ktv_kind_r) (bad_ax (text "check_ki2" <+> vcat [ ppr co, ppr k'', ppr ktv, ppr ktv_kind_r ] )) ; return (extendTCvSubst subst_l ktv s', extendTCvSubst subst_r ktv t') } lintCoercion (KindCo co) = do { (k1, k2, _, _, _) <- lintCoercion co ; return (liftedTypeKind, liftedTypeKind, k1, k2, Nominal) } lintCoercion (SubCo co') = do { (k1,k2,s,t,r) <- lintCoercion co' ; lintRole co' Nominal r ; return (k1,k2,s,t,Representational) } lintCoercion this@(AxiomRuleCo co cs) = do { eqs <- mapM lintCoercion cs ; lintRoles 0 (coaxrAsmpRoles co) eqs ; case coaxrProves co [ Pair l r | (_,_,l,r,_) <- eqs ] of Nothing -> err "Malformed use of AxiomRuleCo" [ ppr this ] Just (Pair l r) -> return (typeKind l, typeKind r, l, r, coaxrRole co) } where err m xs = failWithL $ hang (text m) 2 $ vcat (text "Rule:" <+> ppr (coaxrName co) : xs) lintRoles n (e : es) ((_,_,_,_,r) : rs) | e == r = lintRoles (n+1) es rs | otherwise = err "Argument roles mismatch" [ text "In argument:" <+> int (n+1) , text "Expected:" <+> ppr e , text "Found:" <+> ppr r ] lintRoles _ [] [] = return () lintRoles n [] rs = err "Too many coercion arguments" [ text "Expected:" <+> int n , text "Provided:" <+> int (n + length rs) ] lintRoles n es [] = err "Not enough coercion arguments" [ text "Expected:" <+> int (n + length es) , text "Provided:" <+> int n ] lintCoercion (HoleCo h) = do { addErrL $ text "Unfilled coercion hole:" <+> ppr h ; lintCoercion (CoVarCo (coHoleCoVar h)) } ---------- lintUnliftedCoVar :: CoVar -> LintM () lintUnliftedCoVar cv = when (not (isUnliftedType (coVarKind cv))) $ failWithL (text "Bad lifted equality:" <+> ppr cv <+> dcolon <+> ppr (coVarKind cv)) {- ************************************************************************ * * \subsection[lint-monad]{The Lint monad} * * ************************************************************************ -} -- If you edit this type, you may need to update the GHC formalism -- See Note [GHC Formalism] data LintEnv = LE { le_flags :: LintFlags -- Linting the result of this pass , le_loc :: [LintLocInfo] -- Locations , le_subst :: TCvSubst -- Current type substitution -- We also use le_subst to keep track of -- /all variables/ in scope, both Ids and TyVars , le_joins :: IdSet -- Join points in scope that are valid -- A subset of the InScopeSet in le_subst -- See Note [Join points] , le_dynflags :: DynFlags -- DynamicFlags } data LintFlags = LF { lf_check_global_ids :: Bool -- See Note [Checking for global Ids] , lf_check_inline_loop_breakers :: Bool -- See Note [Checking for INLINE loop breakers] , lf_check_static_ptrs :: StaticPtrCheck -- ^ See Note [Checking StaticPtrs] , lf_report_unsat_syns :: Bool -- ^ See Note [Linting type synonym applications] , lf_check_levity_poly :: Bool -- See Note [Checking for levity polymorphism] } -- See Note [Checking StaticPtrs] data StaticPtrCheck = AllowAnywhere -- ^ Allow 'makeStatic' to occur anywhere. | AllowAtTopLevel -- ^ Allow 'makeStatic' calls at the top-level only. | RejectEverywhere -- ^ Reject any 'makeStatic' occurrence. deriving Eq defaultLintFlags :: LintFlags defaultLintFlags = LF { lf_check_global_ids = False , lf_check_inline_loop_breakers = True , lf_check_static_ptrs = AllowAnywhere , lf_report_unsat_syns = True , lf_check_levity_poly = True } newtype LintM a = LintM { unLintM :: LintEnv -> WarnsAndErrs -> -- Warning and error messages so far (Maybe a, WarnsAndErrs) } -- Result and messages (if any) deriving (Functor) type WarnsAndErrs = (Bag MsgDoc, Bag MsgDoc) {- Note [Checking for global Ids] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Before CoreTidy, all locally-bound Ids must be LocalIds, even top-level ones. See Note [Exported LocalIds] and #9857. Note [Checking StaticPtrs] ~~~~~~~~~~~~~~~~~~~~~~~~~~ See Note [Grand plan for static forms] in StaticPtrTable for an overview. Every occurrence of the function 'makeStatic' should be moved to the top level by the FloatOut pass. It's vital that we don't have nested 'makeStatic' occurrences after CorePrep, because we populate the Static Pointer Table from the top-level bindings. See SimplCore Note [Grand plan for static forms]. The linter checks that no occurrence is left behind, nested within an expression. The check is enabled only after the FloatOut, CorePrep, and CoreTidy passes and only if the module uses the StaticPointers language extension. Checking more often doesn't help since the condition doesn't hold until after the first FloatOut pass. Note [Type substitution] ~~~~~~~~~~~~~~~~~~~~~~~~ Why do we need a type substitution? Consider /\(a:*). \(x:a). /\(a:*). id a x This is ill typed, because (renaming variables) it is really /\(a:*). \(x:a). /\(b:*). id b x Hence, when checking an application, we can't naively compare x's type (at its binding site) with its expected type (at a use site). So we rename type binders as we go, maintaining a substitution. The same substitution also supports let-type, current expressed as (/\(a:*). body) ty Here we substitute 'ty' for 'a' in 'body', on the fly. Note [Linting type synonym applications] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When linting a type-synonym, or type-family, application S ty1 .. tyn we behave as follows (#15057, #T15664): * If lf_report_unsat_syns = True, and S has arity < n, complain about an unsaturated type synonym or type family * Switch off lf_report_unsat_syns, and lint ty1 .. tyn. Reason: catch out of scope variables or other ill-kinded gubbins, even if S discards that argument entirely. E.g. (#15012): type FakeOut a = Int type family TF a type instance TF Int = FakeOut a Here 'a' is out of scope; but if we expand FakeOut, we conceal that out-of-scope error. Reason for switching off lf_report_unsat_syns: with LiberalTypeSynonyms, GHC allows unsaturated synonyms provided they are saturated when the type is expanded. Example type T f = f Int type S a = a -> a type Z = T S In Z's RHS, S appears unsaturated, but it is saturated when T is expanded. * If lf_report_unsat_syns is on, expand the synonym application and lint the result. Reason: want to check that synonyms are saturated when the type is expanded. -} instance Applicative LintM where pure x = LintM $ \ _ errs -> (Just x, errs) (<*>) = ap instance Monad LintM where #if !MIN_VERSION_base(4,13,0) fail = MonadFail.fail #endif m >>= k = LintM (\ env errs -> let (res, errs') = unLintM m env errs in case res of Just r -> unLintM (k r) env errs' Nothing -> (Nothing, errs')) instance MonadFail.MonadFail LintM where fail err = failWithL (text err) instance HasDynFlags LintM where getDynFlags = LintM (\ e errs -> (Just (le_dynflags e), errs)) data LintLocInfo = RhsOf Id -- The variable bound | LambdaBodyOf Id -- The lambda-binder | UnfoldingOf Id -- Unfolding of a binder | BodyOfLetRec [Id] -- One of the binders | CaseAlt CoreAlt -- Case alternative | CasePat CoreAlt -- The *pattern* of the case alternative | CaseTy CoreExpr -- The type field of a case expression -- with this scrutinee | IdTy Id -- The type field of an Id binder | AnExpr CoreExpr -- Some expression | ImportedUnfolding SrcLoc -- Some imported unfolding (ToDo: say which) | TopLevelBindings | InType Type -- Inside a type | InCo Coercion -- Inside a coercion initL :: DynFlags -> LintFlags -> InScopeSet -> LintM a -> WarnsAndErrs -- Warnings and errors initL dflags flags in_scope m = case unLintM m env (emptyBag, emptyBag) of (Just _, errs) -> errs (Nothing, errs@(_, e)) | not (isEmptyBag e) -> errs | otherwise -> pprPanic ("Bug in Lint: a failure occurred " ++ "without reporting an error message") empty where env = LE { le_flags = flags , le_subst = mkEmptyTCvSubst in_scope , le_joins = emptyVarSet , le_loc = [] , le_dynflags = dflags } setReportUnsat :: Bool -> LintM a -> LintM a -- Switch off lf_report_unsat_syns setReportUnsat ru thing_inside = LintM $ \ env errs -> let env' = env { le_flags = (le_flags env) { lf_report_unsat_syns = ru } } in unLintM thing_inside env' errs -- See Note [Checking for levity polymorphism] noLPChecks :: LintM a -> LintM a noLPChecks thing_inside = LintM $ \env errs -> let env' = env { le_flags = (le_flags env) { lf_check_levity_poly = False } } in unLintM thing_inside env' errs getLintFlags :: LintM LintFlags getLintFlags = LintM $ \ env errs -> (Just (le_flags env), errs) checkL :: Bool -> MsgDoc -> LintM () checkL True _ = return () checkL False msg = failWithL msg -- like checkL, but relevant to type checking lintL :: Bool -> MsgDoc -> LintM () lintL = checkL checkWarnL :: Bool -> MsgDoc -> LintM () checkWarnL True _ = return () checkWarnL False msg = addWarnL msg failWithL :: MsgDoc -> LintM a failWithL msg = LintM $ \ env (warns,errs) -> (Nothing, (warns, addMsg True env errs msg)) addErrL :: MsgDoc -> LintM () addErrL msg = LintM $ \ env (warns,errs) -> (Just (), (warns, addMsg True env errs msg)) addWarnL :: MsgDoc -> LintM () addWarnL msg = LintM $ \ env (warns,errs) -> (Just (), (addMsg False env warns msg, errs)) addMsg :: Bool -> LintEnv -> Bag MsgDoc -> MsgDoc -> Bag MsgDoc addMsg is_error env msgs msg = ASSERT( notNull loc_msgs ) msgs `snocBag` mk_msg msg where loc_msgs :: [(SrcLoc, SDoc)] -- Innermost first loc_msgs = map dumpLoc (le_loc env) cxt_doc = vcat [ vcat $ reverse $ map snd loc_msgs , text "Substitution:" <+> ppr (le_subst env) ] context | is_error = cxt_doc | otherwise = whenPprDebug cxt_doc -- Print voluminous info for Lint errors -- but not for warnings msg_span = case [ span | (loc,_) <- loc_msgs , let span = srcLocSpan loc , isGoodSrcSpan span ] of [] -> noSrcSpan (s:_) -> s mk_msg msg = mkLocMessage SevWarning msg_span (msg $$ context) addLoc :: LintLocInfo -> LintM a -> LintM a addLoc extra_loc m = LintM $ \ env errs -> unLintM m (env { le_loc = extra_loc : le_loc env }) errs inCasePat :: LintM Bool -- A slight hack; see the unique call site inCasePat = LintM $ \ env errs -> (Just (is_case_pat env), errs) where is_case_pat (LE { le_loc = CasePat {} : _ }) = True is_case_pat _other = False addInScopeVar :: Var -> LintM a -> LintM a addInScopeVar var m = LintM $ \ env errs -> unLintM m (env { le_subst = extendTCvInScope (le_subst env) var , le_joins = delVarSet (le_joins env) var }) errs extendSubstL :: TyVar -> Type -> LintM a -> LintM a extendSubstL tv ty m = LintM $ \ env errs -> unLintM m (env { le_subst = Type.extendTvSubst (le_subst env) tv ty }) errs updateTCvSubst :: TCvSubst -> LintM a -> LintM a updateTCvSubst subst' m = LintM $ \ env errs -> unLintM m (env { le_subst = subst' }) errs markAllJoinsBad :: LintM a -> LintM a markAllJoinsBad m = LintM $ \ env errs -> unLintM m (env { le_joins = emptyVarSet }) errs markAllJoinsBadIf :: Bool -> LintM a -> LintM a markAllJoinsBadIf True m = markAllJoinsBad m markAllJoinsBadIf False m = m addGoodJoins :: [Var] -> LintM a -> LintM a addGoodJoins vars thing_inside = LintM $ \ env errs -> unLintM thing_inside (add_joins env) errs where add_joins env = env { le_joins = le_joins env `extendVarSetList` join_ids } join_ids = filter isJoinId vars getValidJoins :: LintM IdSet getValidJoins = LintM (\ env errs -> (Just (le_joins env), errs)) getTCvSubst :: LintM TCvSubst getTCvSubst = LintM (\ env errs -> (Just (le_subst env), errs)) getInScope :: LintM InScopeSet getInScope = LintM (\ env errs -> (Just (getTCvInScope $ le_subst env), errs)) applySubstTy :: InType -> LintM OutType applySubstTy ty = do { subst <- getTCvSubst; return (substTy subst ty) } applySubstCo :: InCoercion -> LintM OutCoercion applySubstCo co = do { subst <- getTCvSubst; return (substCo subst co) } lookupIdInScope :: Id -> LintM Id lookupIdInScope id_occ = do { subst <- getTCvSubst ; case lookupInScope (getTCvInScope subst) id_occ of Just id_bnd -> do { checkL (not (bad_global id_bnd)) global_in_scope ; return id_bnd } Nothing -> do { checkL (not is_local) local_out_of_scope ; return id_occ } } where is_local = mustHaveLocalBinding id_occ local_out_of_scope = text "Out of scope:" <+> pprBndr LetBind id_occ global_in_scope = hang (text "Occurrence is GlobalId, but binding is LocalId") 2 (pprBndr LetBind id_occ) bad_global id_bnd = isGlobalId id_occ && isLocalId id_bnd && not (isWiredIn id_occ) -- 'bad_global' checks for the case where an /occurrence/ is -- a GlobalId, but there is an enclosing binding fora a LocalId. -- NB: the in-scope variables are mostly LocalIds, checked by lintIdBndr, -- but GHCi adds GlobalIds from the interactive context. These -- are fine; hence the test (isLocalId id == isLocalId v) -- NB: when compiling Control.Exception.Base, things like absentError -- are defined locally, but appear in expressions as (global) -- wired-in Ids after worker/wrapper -- So we simply disable the test in this case lookupJoinId :: Id -> LintM (Maybe JoinArity) -- Look up an Id which should be a join point, valid here -- If so, return its arity, if not return Nothing lookupJoinId id = do { join_set <- getValidJoins ; case lookupVarSet join_set id of Just id' -> return (isJoinId_maybe id') Nothing -> return Nothing } lintTyCoVarInScope :: TyCoVar -> LintM () lintTyCoVarInScope var = do { subst <- getTCvSubst ; lintL (var `isInScope` subst) (hang (text "The variable" <+> pprBndr LetBind var) 2 (text "is out of scope")) } ensureEqTys :: OutType -> OutType -> MsgDoc -> LintM () -- check ty2 is subtype of ty1 (ie, has same structure but usage -- annotations need only be consistent, not equal) -- Assumes ty1,ty2 are have already had the substitution applied ensureEqTys ty1 ty2 msg = lintL (ty1 `eqType` ty2) msg lintRole :: Outputable thing => thing -- where the role appeared -> Role -- expected -> Role -- actual -> LintM () lintRole co r1 r2 = lintL (r1 == r2) (text "Role incompatibility: expected" <+> ppr r1 <> comma <+> text "got" <+> ppr r2 $$ text "in" <+> ppr co) {- ************************************************************************ * * \subsection{Error messages} * * ************************************************************************ -} dumpLoc :: LintLocInfo -> (SrcLoc, SDoc) dumpLoc (RhsOf v) = (getSrcLoc v, text "In the RHS of" <+> pp_binders [v]) dumpLoc (LambdaBodyOf b) = (getSrcLoc b, text "In the body of lambda with binder" <+> pp_binder b) dumpLoc (UnfoldingOf b) = (getSrcLoc b, text "In the unfolding of" <+> pp_binder b) dumpLoc (BodyOfLetRec []) = (noSrcLoc, text "In body of a letrec with no binders") dumpLoc (BodyOfLetRec bs@(_:_)) = ( getSrcLoc (head bs), text "In the body of letrec with binders" <+> pp_binders bs) dumpLoc (AnExpr e) = (noSrcLoc, text "In the expression:" <+> ppr e) dumpLoc (CaseAlt (con, args, _)) = (noSrcLoc, text "In a case alternative:" <+> parens (ppr con <+> pp_binders args)) dumpLoc (CasePat (con, args, _)) = (noSrcLoc, text "In the pattern of a case alternative:" <+> parens (ppr con <+> pp_binders args)) dumpLoc (CaseTy scrut) = (noSrcLoc, hang (text "In the result-type of a case with scrutinee:") 2 (ppr scrut)) dumpLoc (IdTy b) = (getSrcLoc b, text "In the type of a binder:" <+> ppr b) dumpLoc (ImportedUnfolding locn) = (locn, text "In an imported unfolding") dumpLoc TopLevelBindings = (noSrcLoc, Outputable.empty) dumpLoc (InType ty) = (noSrcLoc, text "In the type" <+> quotes (ppr ty)) dumpLoc (InCo co) = (noSrcLoc, text "In the coercion" <+> quotes (ppr co)) pp_binders :: [Var] -> SDoc pp_binders bs = sep (punctuate comma (map pp_binder bs)) pp_binder :: Var -> SDoc pp_binder b | isId b = hsep [ppr b, dcolon, ppr (idType b)] | otherwise = hsep [ppr b, dcolon, ppr (tyVarKind b)] ------------------------------------------------------ -- Messages for case expressions mkDefaultArgsMsg :: [Var] -> MsgDoc mkDefaultArgsMsg args = hang (text "DEFAULT case with binders") 4 (ppr args) mkCaseAltMsg :: CoreExpr -> Type -> Type -> MsgDoc mkCaseAltMsg e ty1 ty2 = hang (text "Type of case alternatives not the same as the annotation on case:") 4 (vcat [ text "Actual type:" <+> ppr ty1, text "Annotation on case:" <+> ppr ty2, text "Alt Rhs:" <+> ppr e ]) mkScrutMsg :: Id -> Type -> Type -> TCvSubst -> MsgDoc mkScrutMsg var var_ty scrut_ty subst = vcat [text "Result binder in case doesn't match scrutinee:" <+> ppr var, text "Result binder type:" <+> ppr var_ty,--(idType var), text "Scrutinee type:" <+> ppr scrut_ty, hsep [text "Current TCv subst", ppr subst]] mkNonDefltMsg, mkNonIncreasingAltsMsg :: CoreExpr -> MsgDoc mkNonDefltMsg e = hang (text "Case expression with DEFAULT not at the beginning") 4 (ppr e) mkNonIncreasingAltsMsg e = hang (text "Case expression with badly-ordered alternatives") 4 (ppr e) nonExhaustiveAltsMsg :: CoreExpr -> MsgDoc nonExhaustiveAltsMsg e = hang (text "Case expression with non-exhaustive alternatives") 4 (ppr e) mkBadConMsg :: TyCon -> DataCon -> MsgDoc mkBadConMsg tycon datacon = vcat [ text "In a case alternative, data constructor isn't in scrutinee type:", text "Scrutinee type constructor:" <+> ppr tycon, text "Data con:" <+> ppr datacon ] mkBadPatMsg :: Type -> Type -> MsgDoc mkBadPatMsg con_result_ty scrut_ty = vcat [ text "In a case alternative, pattern result type doesn't match scrutinee type:", text "Pattern result type:" <+> ppr con_result_ty, text "Scrutinee type:" <+> ppr scrut_ty ] integerScrutinisedMsg :: MsgDoc integerScrutinisedMsg = text "In a LitAlt, the literal is lifted (probably Integer)" mkBadAltMsg :: Type -> CoreAlt -> MsgDoc mkBadAltMsg scrut_ty alt = vcat [ text "Data alternative when scrutinee is not a tycon application", text "Scrutinee type:" <+> ppr scrut_ty, text "Alternative:" <+> pprCoreAlt alt ] mkNewTyDataConAltMsg :: Type -> CoreAlt -> MsgDoc mkNewTyDataConAltMsg scrut_ty alt = vcat [ text "Data alternative for newtype datacon", text "Scrutinee type:" <+> ppr scrut_ty, text "Alternative:" <+> pprCoreAlt alt ] ------------------------------------------------------ -- Other error messages mkAppMsg :: Type -> Type -> CoreExpr -> MsgDoc mkAppMsg fun_ty arg_ty arg = vcat [text "Argument value doesn't match argument type:", hang (text "Fun type:") 4 (ppr fun_ty), hang (text "Arg type:") 4 (ppr arg_ty), hang (text "Arg:") 4 (ppr arg)] mkNonFunAppMsg :: Type -> Type -> CoreExpr -> MsgDoc mkNonFunAppMsg fun_ty arg_ty arg = vcat [text "Non-function type in function position", hang (text "Fun type:") 4 (ppr fun_ty), hang (text "Arg type:") 4 (ppr arg_ty), hang (text "Arg:") 4 (ppr arg)] mkLetErr :: TyVar -> CoreExpr -> MsgDoc mkLetErr bndr rhs = vcat [text "Bad `let' binding:", hang (text "Variable:") 4 (ppr bndr <+> dcolon <+> ppr (varType bndr)), hang (text "Rhs:") 4 (ppr rhs)] mkTyAppMsg :: Type -> Type -> MsgDoc mkTyAppMsg ty arg_ty = vcat [text "Illegal type application:", hang (text "Exp type:") 4 (ppr ty <+> dcolon <+> ppr (typeKind ty)), hang (text "Arg type:") 4 (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))] emptyRec :: CoreExpr -> MsgDoc emptyRec e = hang (text "Empty Rec binding:") 2 (ppr e) mkRhsMsg :: Id -> SDoc -> Type -> MsgDoc mkRhsMsg binder what ty = vcat [hsep [text "The type of this binder doesn't match the type of its" <+> what <> colon, ppr binder], hsep [text "Binder's type:", ppr (idType binder)], hsep [text "Rhs type:", ppr ty]] mkLetAppMsg :: CoreExpr -> MsgDoc mkLetAppMsg e = hang (text "This argument does not satisfy the let/app invariant:") 2 (ppr e) badBndrTyMsg :: Id -> SDoc -> MsgDoc badBndrTyMsg binder what = vcat [ text "The type of this binder is" <+> what <> colon <+> ppr binder , text "Binder's type:" <+> ppr (idType binder) ] mkStrictMsg :: Id -> MsgDoc mkStrictMsg binder = vcat [hsep [text "Recursive or top-level binder has strict demand info:", ppr binder], hsep [text "Binder's demand info:", ppr (idDemandInfo binder)] ] mkNonTopExportedMsg :: Id -> MsgDoc mkNonTopExportedMsg binder = hsep [text "Non-top-level binder is marked as exported:", ppr binder] mkNonTopExternalNameMsg :: Id -> MsgDoc mkNonTopExternalNameMsg binder = hsep [text "Non-top-level binder has an external name:", ppr binder] mkTopNonLitStrMsg :: Id -> MsgDoc mkTopNonLitStrMsg binder = hsep [text "Top-level Addr# binder has a non-literal rhs:", ppr binder] mkKindErrMsg :: TyVar -> Type -> MsgDoc mkKindErrMsg tyvar arg_ty = vcat [text "Kinds don't match in type application:", hang (text "Type variable:") 4 (ppr tyvar <+> dcolon <+> ppr (tyVarKind tyvar)), hang (text "Arg type:") 4 (ppr arg_ty <+> dcolon <+> ppr (typeKind arg_ty))] mkCastErr :: CoreExpr -> Coercion -> Type -> Type -> MsgDoc mkCastErr expr = mk_cast_err "expression" "type" (ppr expr) mkCastTyErr :: Type -> Coercion -> Kind -> Kind -> MsgDoc mkCastTyErr ty = mk_cast_err "type" "kind" (ppr ty) mk_cast_err :: String -- ^ What sort of casted thing this is -- (\"expression\" or \"type\"). -> String -- ^ What sort of coercion is being used -- (\"type\" or \"kind\"). -> SDoc -- ^ The thing being casted. -> Coercion -> Type -> Type -> MsgDoc mk_cast_err thing_str co_str pp_thing co from_ty thing_ty = vcat [from_msg <+> text "of Cast differs from" <+> co_msg <+> text "of" <+> enclosed_msg, from_msg <> colon <+> ppr from_ty, text (capitalise co_str) <+> text "of" <+> enclosed_msg <> colon <+> ppr thing_ty, text "Actual" <+> enclosed_msg <> colon <+> pp_thing, text "Coercion used in cast:" <+> ppr co ] where co_msg, from_msg, enclosed_msg :: SDoc co_msg = text co_str from_msg = text "From-" <> co_msg enclosed_msg = text "enclosed" <+> text thing_str mkBadUnivCoMsg :: LeftOrRight -> Coercion -> SDoc mkBadUnivCoMsg lr co = text "Kind mismatch on the" <+> pprLeftOrRight lr <+> text "side of a UnivCo:" <+> ppr co mkBadProofIrrelMsg :: Type -> Coercion -> SDoc mkBadProofIrrelMsg ty co = hang (text "Found a non-coercion in a proof-irrelevance UnivCo:") 2 (vcat [ text "type:" <+> ppr ty , text "co:" <+> ppr co ]) mkBadTyVarMsg :: Var -> SDoc mkBadTyVarMsg tv = text "Non-tyvar used in TyVarTy:" <+> ppr tv <+> dcolon <+> ppr (varType tv) mkBadJoinBindMsg :: Var -> SDoc mkBadJoinBindMsg var = vcat [ text "Bad join point binding:" <+> ppr var , text "Join points can be bound only by a non-top-level let" ] mkInvalidJoinPointMsg :: Var -> Type -> SDoc mkInvalidJoinPointMsg var ty = hang (text "Join point has invalid type:") 2 (ppr var <+> dcolon <+> ppr ty) mkBadJoinArityMsg :: Var -> Int -> Int -> CoreExpr -> SDoc mkBadJoinArityMsg var ar nlams rhs = vcat [ text "Join point has too few lambdas", text "Join var:" <+> ppr var, text "Join arity:" <+> ppr ar, text "Number of lambdas:" <+> ppr nlams, text "Rhs = " <+> ppr rhs ] invalidJoinOcc :: Var -> SDoc invalidJoinOcc var = vcat [ text "Invalid occurrence of a join variable:" <+> ppr var , text "The binder is either not a join point, or not valid here" ] mkBadJumpMsg :: Var -> Int -> Int -> SDoc mkBadJumpMsg var ar nargs = vcat [ text "Join point invoked with wrong number of arguments", text "Join var:" <+> ppr var, text "Join arity:" <+> ppr ar, text "Number of arguments:" <+> int nargs ] mkInconsistentRecMsg :: [Var] -> SDoc mkInconsistentRecMsg bndrs = vcat [ text "Recursive let binders mix values and join points", text "Binders:" <+> hsep (map ppr_with_details bndrs) ] where ppr_with_details bndr = ppr bndr <> ppr (idDetails bndr) mkJoinBndrOccMismatchMsg :: Var -> JoinArity -> JoinArity -> SDoc mkJoinBndrOccMismatchMsg bndr join_arity_bndr join_arity_occ = vcat [ text "Mismatch in join point arity between binder and occurrence" , text "Var:" <+> ppr bndr , text "Arity at binding site:" <+> ppr join_arity_bndr , text "Arity at occurrence: " <+> ppr join_arity_occ ] mkBndrOccTypeMismatchMsg :: Var -> Var -> OutType -> OutType -> SDoc mkBndrOccTypeMismatchMsg bndr var bndr_ty var_ty = vcat [ text "Mismatch in type between binder and occurrence" , text "Var:" <+> ppr bndr , text "Binder type:" <+> ppr bndr_ty , text "Occurrence type:" <+> ppr var_ty , text " Before subst:" <+> ppr (idType var) ] mkBadJoinPointRuleMsg :: JoinId -> JoinArity -> CoreRule -> SDoc mkBadJoinPointRuleMsg bndr join_arity rule = vcat [ text "Join point has rule with wrong number of arguments" , text "Var:" <+> ppr bndr , text "Join arity:" <+> ppr join_arity , text "Rule:" <+> ppr rule ] pprLeftOrRight :: LeftOrRight -> MsgDoc pprLeftOrRight CLeft = text "left" pprLeftOrRight CRight = text "right" dupVars :: [NonEmpty Var] -> MsgDoc dupVars vars = hang (text "Duplicate variables brought into scope") 2 (ppr (map toList vars)) dupExtVars :: [NonEmpty Name] -> MsgDoc dupExtVars vars = hang (text "Duplicate top-level variables with the same qualified name") 2 (ppr (map toList vars)) {- ************************************************************************ * * \subsection{Annotation Linting} * * ************************************************************************ -} -- | This checks whether a pass correctly looks through debug -- annotations (@SourceNote@). This works a bit different from other -- consistency checks: We check this by running the given task twice, -- noting all differences between the results. lintAnnots :: SDoc -> (ModGuts -> CoreM ModGuts) -> ModGuts -> CoreM ModGuts lintAnnots pname pass guts = do -- Run the pass as we normally would dflags <- getDynFlags when (gopt Opt_DoAnnotationLinting dflags) $ liftIO $ Err.showPass dflags "Annotation linting - first run" nguts <- pass guts -- If appropriate re-run it without debug annotations to make sure -- that they made no difference. when (gopt Opt_DoAnnotationLinting dflags) $ do liftIO $ Err.showPass dflags "Annotation linting - second run" nguts' <- withoutAnnots pass guts -- Finally compare the resulting bindings liftIO $ Err.showPass dflags "Annotation linting - comparison" let binds = flattenBinds $ mg_binds nguts binds' = flattenBinds $ mg_binds nguts' (diffs,_) = diffBinds True (mkRnEnv2 emptyInScopeSet) binds binds' when (not (null diffs)) $ CoreMonad.putMsg $ vcat [ lint_banner "warning" pname , text "Core changes with annotations:" , withPprStyle (defaultDumpStyle dflags) $ nest 2 $ vcat diffs ] -- Return actual new guts return nguts -- | Run the given pass without annotations. This means that we both -- set the debugLevel setting to 0 in the environment as well as all -- annotations from incoming modules. withoutAnnots :: (ModGuts -> CoreM ModGuts) -> ModGuts -> CoreM ModGuts withoutAnnots pass guts = do -- Remove debug flag from environment. dflags <- getDynFlags let removeFlag env = env{ hsc_dflags = dflags{ debugLevel = 0} } withoutFlag corem = -- TODO: supply tag here as well ? liftIO =<< runCoreM <$> fmap removeFlag getHscEnv <*> getRuleBase <*> getUniqMask <*> getModule <*> getVisibleOrphanMods <*> getPrintUnqualified <*> getSrcSpanM <*> pure corem -- Nuke existing ticks in module. -- TODO: Ticks in unfoldings. Maybe change unfolding so it removes -- them in absence of debugLevel > 0. let nukeTicks = stripTicksE (not . tickishIsCode) nukeAnnotsBind :: CoreBind -> CoreBind nukeAnnotsBind bind = case bind of Rec bs -> Rec $ map (\(b,e) -> (b, nukeTicks e)) bs NonRec b e -> NonRec b $ nukeTicks e nukeAnnotsMod mg@ModGuts{mg_binds=binds} = mg{mg_binds = map nukeAnnotsBind binds} -- Perform pass with all changes applied fmap fst $ withoutFlag $ pass (nukeAnnotsMod guts)