{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 Desugaring arrow commands -} {-# LANGUAGE CPP #-} module DsArrows ( dsProcExpr ) where #include "HsVersions.h" import Match import DsUtils import DsMonad import HsSyn hiding (collectPatBinders, collectPatsBinders, collectLStmtsBinders, collectLStmtBinders, collectStmtBinders ) import TcHsSyn import qualified HsUtils -- NB: The desugarer, which straddles the source and Core worlds, sometimes -- needs to see source types (newtypes etc), and sometimes not -- So WATCH OUT; check each use of split*Ty functions. -- Sigh. This is a pain. import {-# SOURCE #-} DsExpr ( dsExpr, dsLExpr, dsLExprNoLP, dsLocalBinds, dsSyntaxExpr ) import TcType import Type ( splitPiTy ) import TcEvidence import CoreSyn import CoreFVs import CoreUtils import MkCore import DsBinds (dsHsWrapper) import Name import Var import Id import ConLike import TysWiredIn import BasicTypes import PrelNames import Outputable import Bag import VarSet import SrcLoc import ListSetOps( assocMaybe ) import Data.List import Util import UniqDFM data DsCmdEnv = DsCmdEnv { arr_id, compose_id, first_id, app_id, choice_id, loop_id :: CoreExpr } mkCmdEnv :: CmdSyntaxTable Id -> DsM ([CoreBind], DsCmdEnv) -- See Note [CmdSyntaxTable] in HsExpr mkCmdEnv tc_meths = do { (meth_binds, prs) <- mapAndUnzipM mk_bind tc_meths -- NB: Some of these lookups might fail, but that's OK if the -- symbol is never used. That's why we use Maybe first and then -- panic. An eager panic caused trouble in typecheck/should_compile/tc192 ; let the_arr_id = assocMaybe prs arrAName the_compose_id = assocMaybe prs composeAName the_first_id = assocMaybe prs firstAName the_app_id = assocMaybe prs appAName the_choice_id = assocMaybe prs choiceAName the_loop_id = assocMaybe prs loopAName -- used as an argument in, e.g., do_premap ; check_lev_poly 3 the_arr_id -- used as an argument in, e.g., dsCmdStmt/BodyStmt ; check_lev_poly 5 the_compose_id -- used as an argument in, e.g., dsCmdStmt/BodyStmt ; check_lev_poly 4 the_first_id -- the result of the_app_id is used as an argument in, e.g., -- dsCmd/HsCmdArrApp/HsHigherOrderApp ; check_lev_poly 2 the_app_id -- used as an argument in, e.g., HsCmdIf ; check_lev_poly 5 the_choice_id -- used as an argument in, e.g., RecStmt ; check_lev_poly 4 the_loop_id ; return (meth_binds, DsCmdEnv { arr_id = Var (unmaybe the_arr_id arrAName), compose_id = Var (unmaybe the_compose_id composeAName), first_id = Var (unmaybe the_first_id firstAName), app_id = Var (unmaybe the_app_id appAName), choice_id = Var (unmaybe the_choice_id choiceAName), loop_id = Var (unmaybe the_loop_id loopAName) }) } where mk_bind (std_name, expr) = do { rhs <- dsExpr expr ; id <- newSysLocalDs (exprType rhs) -- no check needed; these are functions ; return (NonRec id rhs, (std_name, id)) } unmaybe Nothing name = pprPanic "mkCmdEnv" (text "Not found:" <+> ppr name) unmaybe (Just id) _ = id -- returns the result type of a pi-type (that is, a forall or a function) -- Note that this result type may be ill-scoped. res_type :: Type -> Type res_type ty = res_ty where (_, res_ty) = splitPiTy ty check_lev_poly :: Int -- arity -> Maybe Id -> DsM () check_lev_poly _ Nothing = return () check_lev_poly arity (Just id) = dsNoLevPoly (nTimes arity res_type (idType id)) (text "In the result of the function" <+> quotes (ppr id)) -- arr :: forall b c. (b -> c) -> a b c do_arr :: DsCmdEnv -> Type -> Type -> CoreExpr -> CoreExpr do_arr ids b_ty c_ty f = mkApps (arr_id ids) [Type b_ty, Type c_ty, f] -- (>>>) :: forall b c d. a b c -> a c d -> a b d do_compose :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr -> CoreExpr do_compose ids b_ty c_ty d_ty f g = mkApps (compose_id ids) [Type b_ty, Type c_ty, Type d_ty, f, g] -- first :: forall b c d. a b c -> a (b,d) (c,d) do_first :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr do_first ids b_ty c_ty d_ty f = mkApps (first_id ids) [Type b_ty, Type c_ty, Type d_ty, f] -- app :: forall b c. a (a b c, b) c do_app :: DsCmdEnv -> Type -> Type -> CoreExpr do_app ids b_ty c_ty = mkApps (app_id ids) [Type b_ty, Type c_ty] -- (|||) :: forall b d c. a b d -> a c d -> a (Either b c) d -- note the swapping of d and c do_choice :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr -> CoreExpr do_choice ids b_ty c_ty d_ty f g = mkApps (choice_id ids) [Type b_ty, Type d_ty, Type c_ty, f, g] -- loop :: forall b d c. a (b,d) (c,d) -> a b c -- note the swapping of d and c do_loop :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr do_loop ids b_ty c_ty d_ty f = mkApps (loop_id ids) [Type b_ty, Type d_ty, Type c_ty, f] -- premap :: forall b c d. (b -> c) -> a c d -> a b d -- premap f g = arr f >>> g do_premap :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr -> CoreExpr do_premap ids b_ty c_ty d_ty f g = do_compose ids b_ty c_ty d_ty (do_arr ids b_ty c_ty f) g mkFailExpr :: HsMatchContext Id -> Type -> DsM CoreExpr mkFailExpr ctxt ty = mkErrorAppDs pAT_ERROR_ID ty (matchContextErrString ctxt) -- construct CoreExpr for \ (a :: a_ty, b :: b_ty) -> a mkFstExpr :: Type -> Type -> DsM CoreExpr mkFstExpr a_ty b_ty = do a_var <- newSysLocalDs a_ty b_var <- newSysLocalDs b_ty pair_var <- newSysLocalDs (mkCorePairTy a_ty b_ty) return (Lam pair_var (coreCasePair pair_var a_var b_var (Var a_var))) -- construct CoreExpr for \ (a :: a_ty, b :: b_ty) -> b mkSndExpr :: Type -> Type -> DsM CoreExpr mkSndExpr a_ty b_ty = do a_var <- newSysLocalDs a_ty b_var <- newSysLocalDs b_ty pair_var <- newSysLocalDs (mkCorePairTy a_ty b_ty) return (Lam pair_var (coreCasePair pair_var a_var b_var (Var b_var))) {- Build case analysis of a tuple. This cannot be done in the DsM monad, because the list of variables is typically not yet defined. -} -- coreCaseTuple [u1..] v [x1..xn] body -- = case v of v { (x1, .., xn) -> body } -- But the matching may be nested if the tuple is very big coreCaseTuple :: UniqSupply -> Id -> [Id] -> CoreExpr -> CoreExpr coreCaseTuple uniqs scrut_var vars body = mkTupleCase uniqs vars body scrut_var (Var scrut_var) coreCasePair :: Id -> Id -> Id -> CoreExpr -> CoreExpr coreCasePair scrut_var var1 var2 body = Case (Var scrut_var) scrut_var (exprType body) [(DataAlt (tupleDataCon Boxed 2), [var1, var2], body)] mkCorePairTy :: Type -> Type -> Type mkCorePairTy t1 t2 = mkBoxedTupleTy [t1, t2] mkCorePairExpr :: CoreExpr -> CoreExpr -> CoreExpr mkCorePairExpr e1 e2 = mkCoreTup [e1, e2] mkCoreUnitExpr :: CoreExpr mkCoreUnitExpr = mkCoreTup [] {- The input is divided into a local environment, which is a flat tuple (unless it's too big), and a stack, which is a right-nested pair. In general, the input has the form ((x1,...,xn), (s1,...(sk,())...)) where xi are the environment values, and si the ones on the stack, with s1 being the "top", the first one to be matched with a lambda. -} envStackType :: [Id] -> Type -> Type envStackType ids stack_ty = mkCorePairTy (mkBigCoreVarTupTy ids) stack_ty -- splitTypeAt n (t1,... (tn,t)...) = ([t1, ..., tn], t) splitTypeAt :: Int -> Type -> ([Type], Type) splitTypeAt n ty | n == 0 = ([], ty) | otherwise = case tcTyConAppArgs ty of [t, ty'] -> let (ts, ty_r) = splitTypeAt (n-1) ty' in (t:ts, ty_r) _ -> pprPanic "splitTypeAt" (ppr ty) ---------------------------------------------- -- buildEnvStack -- -- ((x1,...,xn),stk) buildEnvStack :: [Id] -> Id -> CoreExpr buildEnvStack env_ids stack_id = mkCorePairExpr (mkBigCoreVarTup env_ids) (Var stack_id) ---------------------------------------------- -- matchEnvStack -- -- \ ((x1,...,xn),stk) -> body -- => -- \ pair -> -- case pair of (tup,stk) -> -- case tup of (x1,...,xn) -> -- body matchEnvStack :: [Id] -- x1..xn -> Id -- stk -> CoreExpr -- e -> DsM CoreExpr matchEnvStack env_ids stack_id body = do uniqs <- newUniqueSupply tup_var <- newSysLocalDs (mkBigCoreVarTupTy env_ids) let match_env = coreCaseTuple uniqs tup_var env_ids body pair_id <- newSysLocalDs (mkCorePairTy (idType tup_var) (idType stack_id)) return (Lam pair_id (coreCasePair pair_id tup_var stack_id match_env)) ---------------------------------------------- -- matchEnv -- -- \ (x1,...,xn) -> body -- => -- \ tup -> -- case tup of (x1,...,xn) -> -- body matchEnv :: [Id] -- x1..xn -> CoreExpr -- e -> DsM CoreExpr matchEnv env_ids body = do uniqs <- newUniqueSupply tup_id <- newSysLocalDs (mkBigCoreVarTupTy env_ids) return (Lam tup_id (coreCaseTuple uniqs tup_id env_ids body)) ---------------------------------------------- -- matchVarStack -- -- case (x1, ...(xn, s)...) -> e -- => -- case z0 of (x1,z1) -> -- case zn-1 of (xn,s) -> -- e matchVarStack :: [Id] -> Id -> CoreExpr -> DsM (Id, CoreExpr) matchVarStack [] stack_id body = return (stack_id, body) matchVarStack (param_id:param_ids) stack_id body = do (tail_id, tail_code) <- matchVarStack param_ids stack_id body pair_id <- newSysLocalDs (mkCorePairTy (idType param_id) (idType tail_id)) return (pair_id, coreCasePair pair_id param_id tail_id tail_code) mkHsEnvStackExpr :: [Id] -> Id -> LHsExpr Id mkHsEnvStackExpr env_ids stack_id = mkLHsTupleExpr [mkLHsVarTuple env_ids, nlHsVar stack_id] -- Translation of arrow abstraction -- D; xs |-a c : () --> t' ---> c' -- -------------------------- -- D |- proc p -> c :: a t t' ---> premap (\ p -> ((xs),())) c' -- -- where (xs) is the tuple of variables bound by p dsProcExpr :: LPat Id -> LHsCmdTop Id -> DsM CoreExpr dsProcExpr pat (L _ (HsCmdTop cmd _unitTy cmd_ty ids)) = do (meth_binds, meth_ids) <- mkCmdEnv ids let locals = mkVarSet (collectPatBinders pat) (core_cmd, _free_vars, env_ids) <- dsfixCmd meth_ids locals unitTy cmd_ty cmd let env_ty = mkBigCoreVarTupTy env_ids let env_stk_ty = mkCorePairTy env_ty unitTy let env_stk_expr = mkCorePairExpr (mkBigCoreVarTup env_ids) mkCoreUnitExpr fail_expr <- mkFailExpr ProcExpr env_stk_ty var <- selectSimpleMatchVarL pat match_code <- matchSimply (Var var) ProcExpr pat env_stk_expr fail_expr let pat_ty = hsLPatType pat let proc_code = do_premap meth_ids pat_ty env_stk_ty cmd_ty (Lam var match_code) core_cmd return (mkLets meth_binds proc_code) {- Translation of a command judgement of the form D; xs |-a c : stk --> t to an expression e such that D |- e :: a (xs, stk) t -} dsLCmd :: DsCmdEnv -> IdSet -> Type -> Type -> LHsCmd Id -> [Id] -> DsM (CoreExpr, DIdSet) dsLCmd ids local_vars stk_ty res_ty cmd env_ids = dsCmd ids local_vars stk_ty res_ty (unLoc cmd) env_ids dsCmd :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this command -> Type -- type of the stack (right-nested tuple) -> Type -- return type of the command -> HsCmd Id -- command to desugar -> [Id] -- list of vars in the input to this command -- This is typically fed back, -- so don't pull on it too early -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free -- D |- fun :: a t1 t2 -- D, xs |- arg :: t1 -- ----------------------------- -- D; xs |-a fun -< arg : stk --> t2 -- -- ---> premap (\ ((xs), _stk) -> arg) fun dsCmd ids local_vars stack_ty res_ty (HsCmdArrApp arrow arg arrow_ty HsFirstOrderApp _) env_ids = do let (a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty (_a_ty, arg_ty) = tcSplitAppTy a_arg_ty core_arrow <- dsLExprNoLP arrow core_arg <- dsLExpr arg stack_id <- newSysLocalDs stack_ty core_make_arg <- matchEnvStack env_ids stack_id core_arg return (do_premap ids (envStackType env_ids stack_ty) arg_ty res_ty core_make_arg core_arrow, exprFreeIdsDSet core_arg `udfmIntersectUFM` local_vars) -- D, xs |- fun :: a t1 t2 -- D, xs |- arg :: t1 -- ------------------------------ -- D; xs |-a fun -<< arg : stk --> t2 -- -- ---> premap (\ ((xs), _stk) -> (fun, arg)) app dsCmd ids local_vars stack_ty res_ty (HsCmdArrApp arrow arg arrow_ty HsHigherOrderApp _) env_ids = do let (a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty (_a_ty, arg_ty) = tcSplitAppTy a_arg_ty core_arrow <- dsLExpr arrow core_arg <- dsLExpr arg stack_id <- newSysLocalDs stack_ty core_make_pair <- matchEnvStack env_ids stack_id (mkCorePairExpr core_arrow core_arg) return (do_premap ids (envStackType env_ids stack_ty) (mkCorePairTy arrow_ty arg_ty) res_ty core_make_pair (do_app ids arg_ty res_ty), (exprsFreeIdsDSet [core_arrow, core_arg]) `udfmIntersectUFM` local_vars) -- D; ys |-a cmd : (t,stk) --> t' -- D, xs |- exp :: t -- ------------------------ -- D; xs |-a cmd exp : stk --> t' -- -- ---> premap (\ ((xs),stk) -> ((ys),(e,stk))) cmd dsCmd ids local_vars stack_ty res_ty (HsCmdApp cmd arg) env_ids = do core_arg <- dsLExpr arg let arg_ty = exprType core_arg stack_ty' = mkCorePairTy arg_ty stack_ty (core_cmd, free_vars, env_ids') <- dsfixCmd ids local_vars stack_ty' res_ty cmd stack_id <- newSysLocalDs stack_ty arg_id <- newSysLocalDsNoLP arg_ty -- push the argument expression onto the stack let stack' = mkCorePairExpr (Var arg_id) (Var stack_id) core_body = bindNonRec arg_id core_arg (mkCorePairExpr (mkBigCoreVarTup env_ids') stack') -- match the environment and stack against the input core_map <- matchEnvStack env_ids stack_id core_body return (do_premap ids (envStackType env_ids stack_ty) (envStackType env_ids' stack_ty') res_ty core_map core_cmd, free_vars `unionDVarSet` (exprFreeIdsDSet core_arg `udfmIntersectUFM` local_vars)) -- D; ys |-a cmd : stk t' -- ----------------------------------------------- -- D; xs |-a \ p1 ... pk -> cmd : (t1,...(tk,stk)...) t' -- -- ---> premap (\ ((xs), (p1, ... (pk,stk)...)) -> ((ys),stk)) cmd dsCmd ids local_vars stack_ty res_ty (HsCmdLam (MG { mg_alts = L _ [L _ (Match _ pats _ (GRHSs [L _ (GRHS [] body)] _ ))] })) env_ids = do let pat_vars = mkVarSet (collectPatsBinders pats) let local_vars' = pat_vars `unionVarSet` local_vars (pat_tys, stack_ty') = splitTypeAt (length pats) stack_ty (core_body, free_vars, env_ids') <- dsfixCmd ids local_vars' stack_ty' res_ty body param_ids <- mapM newSysLocalDsNoLP pat_tys stack_id' <- newSysLocalDs stack_ty' -- the expression is built from the inside out, so the actions -- are presented in reverse order let -- build a new environment, plus what's left of the stack core_expr = buildEnvStack env_ids' stack_id' in_ty = envStackType env_ids stack_ty in_ty' = envStackType env_ids' stack_ty' fail_expr <- mkFailExpr LambdaExpr in_ty' -- match the patterns against the parameters match_code <- matchSimplys (map Var param_ids) LambdaExpr pats core_expr fail_expr -- match the parameters against the top of the old stack (stack_id, param_code) <- matchVarStack param_ids stack_id' match_code -- match the old environment and stack against the input select_code <- matchEnvStack env_ids stack_id param_code return (do_premap ids in_ty in_ty' res_ty select_code core_body, free_vars `udfmMinusUFM` pat_vars) dsCmd ids local_vars stack_ty res_ty (HsCmdPar cmd) env_ids = dsLCmd ids local_vars stack_ty res_ty cmd env_ids -- D, xs |- e :: Bool -- D; xs1 |-a c1 : stk --> t -- D; xs2 |-a c2 : stk --> t -- ---------------------------------------- -- D; xs |-a if e then c1 else c2 : stk --> t -- -- ---> premap (\ ((xs),stk) -> -- if e then Left ((xs1),stk) else Right ((xs2),stk)) -- (c1 ||| c2) dsCmd ids local_vars stack_ty res_ty (HsCmdIf mb_fun cond then_cmd else_cmd) env_ids = do core_cond <- dsLExpr cond (core_then, fvs_then, then_ids) <- dsfixCmd ids local_vars stack_ty res_ty then_cmd (core_else, fvs_else, else_ids) <- dsfixCmd ids local_vars stack_ty res_ty else_cmd stack_id <- newSysLocalDs stack_ty either_con <- dsLookupTyCon eitherTyConName left_con <- dsLookupDataCon leftDataConName right_con <- dsLookupDataCon rightDataConName let mk_left_expr ty1 ty2 e = mkCoreConApps left_con [Type ty1, Type ty2, e] mk_right_expr ty1 ty2 e = mkCoreConApps right_con [Type ty1, Type ty2, e] in_ty = envStackType env_ids stack_ty then_ty = envStackType then_ids stack_ty else_ty = envStackType else_ids stack_ty sum_ty = mkTyConApp either_con [then_ty, else_ty] fvs_cond = exprFreeIdsDSet core_cond `udfmIntersectUFM` local_vars core_left = mk_left_expr then_ty else_ty (buildEnvStack then_ids stack_id) core_right = mk_right_expr then_ty else_ty (buildEnvStack else_ids stack_id) core_if <- case mb_fun of Just fun -> do { fun_apps <- dsSyntaxExpr fun [core_cond, core_left, core_right] ; matchEnvStack env_ids stack_id fun_apps } Nothing -> matchEnvStack env_ids stack_id $ mkIfThenElse core_cond core_left core_right return (do_premap ids in_ty sum_ty res_ty core_if (do_choice ids then_ty else_ty res_ty core_then core_else), fvs_cond `unionDVarSet` fvs_then `unionDVarSet` fvs_else) {- Case commands are treated in much the same way as if commands (see above) except that there are more alternatives. For example case e of { p1 -> c1; p2 -> c2; p3 -> c3 } is translated to premap (\ ((xs)*ts) -> case e of p1 -> (Left (Left (xs1)*ts)) p2 -> Left ((Right (xs2)*ts)) p3 -> Right ((xs3)*ts)) ((c1 ||| c2) ||| c3) The idea is to extract the commands from the case, build a balanced tree of choices, and replace the commands with expressions that build tagged tuples, obtaining a case expression that can be desugared normally. To build all this, we use triples describing segments of the list of case bodies, containing the following fields: * a list of expressions of the form (Left|Right)* ((xs)*ts), to be put into the case replacing the commands * a sum type that is the common type of these expressions, and also the input type of the arrow * a CoreExpr for an arrow built by combining the translated command bodies with |||. -} dsCmd ids local_vars stack_ty res_ty (HsCmdCase exp (MG { mg_alts = L l matches, mg_arg_tys = arg_tys , mg_origin = origin })) env_ids = do stack_id <- newSysLocalDs stack_ty -- Extract and desugar the leaf commands in the case, building tuple -- expressions that will (after tagging) replace these leaves let leaves = concatMap leavesMatch matches make_branch (leaf, bound_vars) = do (core_leaf, _fvs, leaf_ids) <- dsfixCmd ids (bound_vars `unionVarSet` local_vars) stack_ty res_ty leaf return ([mkHsEnvStackExpr leaf_ids stack_id], envStackType leaf_ids stack_ty, core_leaf) branches <- mapM make_branch leaves either_con <- dsLookupTyCon eitherTyConName left_con <- dsLookupDataCon leftDataConName right_con <- dsLookupDataCon rightDataConName let left_id = HsConLikeOut (RealDataCon left_con) right_id = HsConLikeOut (RealDataCon right_con) left_expr ty1 ty2 e = noLoc $ HsApp (noLoc $ HsWrap (mkWpTyApps [ty1, ty2]) left_id ) e right_expr ty1 ty2 e = noLoc $ HsApp (noLoc $ HsWrap (mkWpTyApps [ty1, ty2]) right_id) e -- Prefix each tuple with a distinct series of Left's and Right's, -- in a balanced way, keeping track of the types. merge_branches (builds1, in_ty1, core_exp1) (builds2, in_ty2, core_exp2) = (map (left_expr in_ty1 in_ty2) builds1 ++ map (right_expr in_ty1 in_ty2) builds2, mkTyConApp either_con [in_ty1, in_ty2], do_choice ids in_ty1 in_ty2 res_ty core_exp1 core_exp2) (leaves', sum_ty, core_choices) = foldb merge_branches branches -- Replace the commands in the case with these tagged tuples, -- yielding a HsExpr Id we can feed to dsExpr. (_, matches') = mapAccumL (replaceLeavesMatch res_ty) leaves' matches in_ty = envStackType env_ids stack_ty core_body <- dsExpr (HsCase exp (MG { mg_alts = L l matches' , mg_arg_tys = arg_tys , mg_res_ty = sum_ty, mg_origin = origin })) -- Note that we replace the HsCase result type by sum_ty, -- which is the type of matches' core_matches <- matchEnvStack env_ids stack_id core_body return (do_premap ids in_ty sum_ty res_ty core_matches core_choices, exprFreeIdsDSet core_body `udfmIntersectUFM` local_vars) -- D; ys |-a cmd : stk --> t -- ---------------------------------- -- D; xs |-a let binds in cmd : stk --> t -- -- ---> premap (\ ((xs),stk) -> let binds in ((ys),stk)) c dsCmd ids local_vars stack_ty res_ty (HsCmdLet lbinds@(L _ binds) body) env_ids = do let defined_vars = mkVarSet (collectLocalBinders binds) local_vars' = defined_vars `unionVarSet` local_vars (core_body, _free_vars, env_ids') <- dsfixCmd ids local_vars' stack_ty res_ty body stack_id <- newSysLocalDs stack_ty -- build a new environment, plus the stack, using the let bindings core_binds <- dsLocalBinds lbinds (buildEnvStack env_ids' stack_id) -- match the old environment and stack against the input core_map <- matchEnvStack env_ids stack_id core_binds return (do_premap ids (envStackType env_ids stack_ty) (envStackType env_ids' stack_ty) res_ty core_map core_body, exprFreeIdsDSet core_binds `udfmIntersectUFM` local_vars) -- D; xs |-a ss : t -- ---------------------------------- -- D; xs |-a do { ss } : () --> t -- -- ---> premap (\ (env,stk) -> env) c dsCmd ids local_vars stack_ty res_ty do_block@(HsCmdDo (L loc stmts) stmts_ty) env_ids = do putSrcSpanDs loc $ dsNoLevPoly stmts_ty (text "In the do-command:" <+> ppr do_block) (core_stmts, env_ids') <- dsCmdDo ids local_vars res_ty stmts env_ids let env_ty = mkBigCoreVarTupTy env_ids core_fst <- mkFstExpr env_ty stack_ty return (do_premap ids (mkCorePairTy env_ty stack_ty) env_ty res_ty core_fst core_stmts, env_ids') -- D |- e :: forall e. a1 (e,stk1) t1 -> ... an (e,stkn) tn -> a (e,stk) t -- D; xs |-a ci :: stki --> ti -- ----------------------------------- -- D; xs |-a (|e c1 ... cn|) :: stk --> t ---> e [t_xs] c1 ... cn dsCmd _ids local_vars _stack_ty _res_ty (HsCmdArrForm op _ _ args) env_ids = do let env_ty = mkBigCoreVarTupTy env_ids core_op <- dsLExpr op (core_args, fv_sets) <- mapAndUnzipM (dsTrimCmdArg local_vars env_ids) args return (mkApps (App core_op (Type env_ty)) core_args, unionDVarSets fv_sets) dsCmd ids local_vars stack_ty res_ty (HsCmdWrap wrap cmd) env_ids = do (core_cmd, env_ids') <- dsCmd ids local_vars stack_ty res_ty cmd env_ids core_wrap <- dsHsWrapper wrap return (core_wrap core_cmd, env_ids') dsCmd _ _ _ _ _ c = pprPanic "dsCmd" (ppr c) -- D; ys |-a c : stk --> t (ys <= xs) -- --------------------- -- D; xs |-a c : stk --> t ---> premap (\ ((xs),stk) -> ((ys),stk)) c dsTrimCmdArg :: IdSet -- set of local vars available to this command -> [Id] -- list of vars in the input to this command -> LHsCmdTop Id -- command argument to desugar -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free dsTrimCmdArg local_vars env_ids (L _ (HsCmdTop cmd stack_ty cmd_ty ids)) = do (meth_binds, meth_ids) <- mkCmdEnv ids (core_cmd, free_vars, env_ids') <- dsfixCmd meth_ids local_vars stack_ty cmd_ty cmd stack_id <- newSysLocalDs stack_ty trim_code <- matchEnvStack env_ids stack_id (buildEnvStack env_ids' stack_id) let in_ty = envStackType env_ids stack_ty in_ty' = envStackType env_ids' stack_ty arg_code = if env_ids' == env_ids then core_cmd else do_premap meth_ids in_ty in_ty' cmd_ty trim_code core_cmd return (mkLets meth_binds arg_code, free_vars) -- Given D; xs |-a c : stk --> t, builds c with xs fed back. -- Typically needs to be prefixed with arr (\(p, stk) -> ((xs),stk)) dsfixCmd :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this command -> Type -- type of the stack (right-nested tuple) -> Type -- return type of the command -> LHsCmd Id -- command to desugar -> DsM (CoreExpr, -- desugared expression DIdSet, -- subset of local vars that occur free [Id]) -- the same local vars as a list, fed back dsfixCmd ids local_vars stk_ty cmd_ty cmd = do { putSrcSpanDs (getLoc cmd) $ dsNoLevPoly cmd_ty (text "When desugaring the command:" <+> ppr cmd) ; trimInput (dsLCmd ids local_vars stk_ty cmd_ty cmd) } -- Feed back the list of local variables actually used a command, -- for use as the input tuple of the generated arrow. trimInput :: ([Id] -> DsM (CoreExpr, DIdSet)) -> DsM (CoreExpr, -- desugared expression DIdSet, -- subset of local vars that occur free [Id]) -- same local vars as a list, fed back to -- the inner function to form the tuple of -- inputs to the arrow. trimInput build_arrow = fixDs (\ ~(_,_,env_ids) -> do (core_cmd, free_vars) <- build_arrow env_ids return (core_cmd, free_vars, dVarSetElems free_vars)) {- Translation of command judgements of the form D |-a do { ss } : t -} dsCmdDo :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> Type -- return type of the statement -> [CmdLStmt Id] -- statements to desugar -> [Id] -- list of vars in the input to this statement -- This is typically fed back, -- so don't pull on it too early -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free dsCmdDo _ _ _ [] _ = panic "dsCmdDo" -- D; xs |-a c : () --> t -- -------------------------- -- D; xs |-a do { c } : t -- -- ---> premap (\ (xs) -> ((xs), ())) c dsCmdDo ids local_vars res_ty [L loc (LastStmt body _ _)] env_ids = do putSrcSpanDs loc $ dsNoLevPoly res_ty (text "In the command:" <+> ppr body) (core_body, env_ids') <- dsLCmd ids local_vars unitTy res_ty body env_ids let env_ty = mkBigCoreVarTupTy env_ids env_var <- newSysLocalDs env_ty let core_map = Lam env_var (mkCorePairExpr (Var env_var) mkCoreUnitExpr) return (do_premap ids env_ty (mkCorePairTy env_ty unitTy) res_ty core_map core_body, env_ids') dsCmdDo ids local_vars res_ty (stmt:stmts) env_ids = do let bound_vars = mkVarSet (collectLStmtBinders stmt) let local_vars' = bound_vars `unionVarSet` local_vars (core_stmts, _, env_ids') <- trimInput (dsCmdDo ids local_vars' res_ty stmts) (core_stmt, fv_stmt) <- dsCmdLStmt ids local_vars env_ids' stmt env_ids return (do_compose ids (mkBigCoreVarTupTy env_ids) (mkBigCoreVarTupTy env_ids') res_ty core_stmt core_stmts, fv_stmt) {- A statement maps one local environment to another, and is represented as an arrow from one tuple type to another. A statement sequence is translated to a composition of such arrows. -} dsCmdLStmt :: DsCmdEnv -> IdSet -> [Id] -> CmdLStmt Id -> [Id] -> DsM (CoreExpr, DIdSet) dsCmdLStmt ids local_vars out_ids cmd env_ids = dsCmdStmt ids local_vars out_ids (unLoc cmd) env_ids dsCmdStmt :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [Id] -- list of vars in the output of this statement -> CmdStmt Id -- statement to desugar -> [Id] -- list of vars in the input to this statement -- This is typically fed back, -- so don't pull on it too early -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free -- D; xs1 |-a c : () --> t -- D; xs' |-a do { ss } : t' -- ------------------------------ -- D; xs |-a do { c; ss } : t' -- -- ---> premap (\ ((xs)) -> (((xs1),()),(xs'))) -- (first c >>> arr snd) >>> ss dsCmdStmt ids local_vars out_ids (BodyStmt cmd _ _ c_ty) env_ids = do (core_cmd, fv_cmd, env_ids1) <- dsfixCmd ids local_vars unitTy c_ty cmd core_mux <- matchEnv env_ids (mkCorePairExpr (mkCorePairExpr (mkBigCoreVarTup env_ids1) mkCoreUnitExpr) (mkBigCoreVarTup out_ids)) let in_ty = mkBigCoreVarTupTy env_ids in_ty1 = mkCorePairTy (mkBigCoreVarTupTy env_ids1) unitTy out_ty = mkBigCoreVarTupTy out_ids before_c_ty = mkCorePairTy in_ty1 out_ty after_c_ty = mkCorePairTy c_ty out_ty dsNoLevPoly c_ty empty -- I (Richard E, Dec '16) have no idea what to say here snd_fn <- mkSndExpr c_ty out_ty return (do_premap ids in_ty before_c_ty out_ty core_mux $ do_compose ids before_c_ty after_c_ty out_ty (do_first ids in_ty1 c_ty out_ty core_cmd) $ do_arr ids after_c_ty out_ty snd_fn, extendDVarSetList fv_cmd out_ids) -- D; xs1 |-a c : () --> t -- D; xs' |-a do { ss } : t' xs2 = xs' - defs(p) -- ----------------------------------- -- D; xs |-a do { p <- c; ss } : t' -- -- ---> premap (\ (xs) -> (((xs1),()),(xs2))) -- (first c >>> arr (\ (p, (xs2)) -> (xs'))) >>> ss -- -- It would be simpler and more consistent to do this using second, -- but that's likely to be defined in terms of first. dsCmdStmt ids local_vars out_ids (BindStmt pat cmd _ _ _) env_ids = do let pat_ty = hsLPatType pat (core_cmd, fv_cmd, env_ids1) <- dsfixCmd ids local_vars unitTy pat_ty cmd let pat_vars = mkVarSet (collectPatBinders pat) let env_ids2 = filterOut (`elemVarSet` pat_vars) out_ids env_ty2 = mkBigCoreVarTupTy env_ids2 -- multiplexing function -- \ (xs) -> (((xs1),()),(xs2)) core_mux <- matchEnv env_ids (mkCorePairExpr (mkCorePairExpr (mkBigCoreVarTup env_ids1) mkCoreUnitExpr) (mkBigCoreVarTup env_ids2)) -- projection function -- \ (p, (xs2)) -> (zs) env_id <- newSysLocalDs env_ty2 uniqs <- newUniqueSupply let after_c_ty = mkCorePairTy pat_ty env_ty2 out_ty = mkBigCoreVarTupTy out_ids body_expr = coreCaseTuple uniqs env_id env_ids2 (mkBigCoreVarTup out_ids) fail_expr <- mkFailExpr (StmtCtxt DoExpr) out_ty pat_id <- selectSimpleMatchVarL pat match_code <- matchSimply (Var pat_id) (StmtCtxt DoExpr) pat body_expr fail_expr pair_id <- newSysLocalDs after_c_ty let proj_expr = Lam pair_id (coreCasePair pair_id pat_id env_id match_code) -- put it all together let in_ty = mkBigCoreVarTupTy env_ids in_ty1 = mkCorePairTy (mkBigCoreVarTupTy env_ids1) unitTy in_ty2 = mkBigCoreVarTupTy env_ids2 before_c_ty = mkCorePairTy in_ty1 in_ty2 return (do_premap ids in_ty before_c_ty out_ty core_mux $ do_compose ids before_c_ty after_c_ty out_ty (do_first ids in_ty1 pat_ty in_ty2 core_cmd) $ do_arr ids after_c_ty out_ty proj_expr, fv_cmd `unionDVarSet` (mkDVarSet out_ids `udfmMinusUFM` pat_vars)) -- D; xs' |-a do { ss } : t -- -------------------------------------- -- D; xs |-a do { let binds; ss } : t -- -- ---> arr (\ (xs) -> let binds in (xs')) >>> ss dsCmdStmt ids local_vars out_ids (LetStmt binds) env_ids = do -- build a new environment using the let bindings core_binds <- dsLocalBinds binds (mkBigCoreVarTup out_ids) -- match the old environment against the input core_map <- matchEnv env_ids core_binds return (do_arr ids (mkBigCoreVarTupTy env_ids) (mkBigCoreVarTupTy out_ids) core_map, exprFreeIdsDSet core_binds `udfmIntersectUFM` local_vars) -- D; ys |-a do { ss; returnA -< ((xs1), (ys2)) } : ... -- D; xs' |-a do { ss' } : t -- ------------------------------------ -- D; xs |-a do { rec ss; ss' } : t -- -- xs1 = xs' /\ defs(ss) -- xs2 = xs' - defs(ss) -- ys1 = ys - defs(ss) -- ys2 = ys /\ defs(ss) -- -- ---> arr (\(xs) -> ((ys1),(xs2))) >>> -- first (loop (arr (\((ys1),~(ys2)) -> (ys)) >>> ss)) >>> -- arr (\((xs1),(xs2)) -> (xs')) >>> ss' dsCmdStmt ids local_vars out_ids (RecStmt { recS_stmts = stmts , recS_later_ids = later_ids, recS_rec_ids = rec_ids , recS_later_rets = later_rets, recS_rec_rets = rec_rets }) env_ids = do let later_ids_set = mkVarSet later_ids env2_ids = filterOut (`elemVarSet` later_ids_set) out_ids env2_id_set = mkDVarSet env2_ids env2_ty = mkBigCoreVarTupTy env2_ids -- post_loop_fn = \((later_ids),(env2_ids)) -> (out_ids) uniqs <- newUniqueSupply env2_id <- newSysLocalDs env2_ty let later_ty = mkBigCoreVarTupTy later_ids post_pair_ty = mkCorePairTy later_ty env2_ty post_loop_body = coreCaseTuple uniqs env2_id env2_ids (mkBigCoreVarTup out_ids) post_loop_fn <- matchEnvStack later_ids env2_id post_loop_body --- loop (...) (core_loop, env1_id_set, env1_ids) <- dsRecCmd ids local_vars stmts later_ids later_rets rec_ids rec_rets -- pre_loop_fn = \(env_ids) -> ((env1_ids),(env2_ids)) let env1_ty = mkBigCoreVarTupTy env1_ids pre_pair_ty = mkCorePairTy env1_ty env2_ty pre_loop_body = mkCorePairExpr (mkBigCoreVarTup env1_ids) (mkBigCoreVarTup env2_ids) pre_loop_fn <- matchEnv env_ids pre_loop_body -- arr pre_loop_fn >>> first (loop (...)) >>> arr post_loop_fn let env_ty = mkBigCoreVarTupTy env_ids out_ty = mkBigCoreVarTupTy out_ids core_body = do_premap ids env_ty pre_pair_ty out_ty pre_loop_fn (do_compose ids pre_pair_ty post_pair_ty out_ty (do_first ids env1_ty later_ty env2_ty core_loop) (do_arr ids post_pair_ty out_ty post_loop_fn)) return (core_body, env1_id_set `unionDVarSet` env2_id_set) dsCmdStmt _ _ _ _ s = pprPanic "dsCmdStmt" (ppr s) -- loop (premap (\ ((env1_ids), ~(rec_ids)) -> (env_ids)) -- (ss >>> arr (\ (out_ids) -> ((later_rets),(rec_rets))))) >>> dsRecCmd :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [CmdLStmt Id] -- list of statements inside the RecCmd -> [Id] -- list of vars defined here and used later -> [HsExpr Id] -- expressions corresponding to later_ids -> [Id] -- list of vars fed back through the loop -> [HsExpr Id] -- expressions corresponding to rec_ids -> DsM (CoreExpr, -- desugared statement DIdSet, -- subset of local vars that occur free [Id]) -- same local vars as a list dsRecCmd ids local_vars stmts later_ids later_rets rec_ids rec_rets = do let later_id_set = mkVarSet later_ids rec_id_set = mkVarSet rec_ids local_vars' = rec_id_set `unionVarSet` later_id_set `unionVarSet` local_vars -- mk_pair_fn = \ (out_ids) -> ((later_rets),(rec_rets)) core_later_rets <- mapM dsExpr later_rets core_rec_rets <- mapM dsExpr rec_rets let -- possibly polymorphic version of vars of later_ids and rec_ids out_ids = exprsFreeIdsList (core_later_rets ++ core_rec_rets) out_ty = mkBigCoreVarTupTy out_ids later_tuple = mkBigCoreTup core_later_rets later_ty = mkBigCoreVarTupTy later_ids rec_tuple = mkBigCoreTup core_rec_rets rec_ty = mkBigCoreVarTupTy rec_ids out_pair = mkCorePairExpr later_tuple rec_tuple out_pair_ty = mkCorePairTy later_ty rec_ty mk_pair_fn <- matchEnv out_ids out_pair -- ss (core_stmts, fv_stmts, env_ids) <- dsfixCmdStmts ids local_vars' out_ids stmts -- squash_pair_fn = \ ((env1_ids), ~(rec_ids)) -> (env_ids) rec_id <- newSysLocalDs rec_ty let env1_id_set = fv_stmts `udfmMinusUFM` rec_id_set env1_ids = dVarSetElems env1_id_set env1_ty = mkBigCoreVarTupTy env1_ids in_pair_ty = mkCorePairTy env1_ty rec_ty core_body = mkBigCoreTup (map selectVar env_ids) where selectVar v | v `elemVarSet` rec_id_set = mkTupleSelector rec_ids v rec_id (Var rec_id) | otherwise = Var v squash_pair_fn <- matchEnvStack env1_ids rec_id core_body -- loop (premap squash_pair_fn (ss >>> arr mk_pair_fn)) let env_ty = mkBigCoreVarTupTy env_ids core_loop = do_loop ids env1_ty later_ty rec_ty (do_premap ids in_pair_ty env_ty out_pair_ty squash_pair_fn (do_compose ids env_ty out_ty out_pair_ty core_stmts (do_arr ids out_ty out_pair_ty mk_pair_fn))) return (core_loop, env1_id_set, env1_ids) {- A sequence of statements (as in a rec) is desugared to an arrow between two environments (no stack) -} dsfixCmdStmts :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [Id] -- output vars of these statements -> [CmdLStmt Id] -- statements to desugar -> DsM (CoreExpr, -- desugared expression DIdSet, -- subset of local vars that occur free [Id]) -- same local vars as a list dsfixCmdStmts ids local_vars out_ids stmts = trimInput (dsCmdStmts ids local_vars out_ids stmts) -- TODO: Add levity polymorphism check for the resulting expression. -- But I (Richard E.) don't know enough about arrows to do so. dsCmdStmts :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [Id] -- output vars of these statements -> [CmdLStmt Id] -- statements to desugar -> [Id] -- list of vars in the input to these statements -> DsM (CoreExpr, -- desugared expression DIdSet) -- subset of local vars that occur free dsCmdStmts ids local_vars out_ids [stmt] env_ids = dsCmdLStmt ids local_vars out_ids stmt env_ids dsCmdStmts ids local_vars out_ids (stmt:stmts) env_ids = do let bound_vars = mkVarSet (collectLStmtBinders stmt) let local_vars' = bound_vars `unionVarSet` local_vars (core_stmts, _fv_stmts, env_ids') <- dsfixCmdStmts ids local_vars' out_ids stmts (core_stmt, fv_stmt) <- dsCmdLStmt ids local_vars env_ids' stmt env_ids return (do_compose ids (mkBigCoreVarTupTy env_ids) (mkBigCoreVarTupTy env_ids') (mkBigCoreVarTupTy out_ids) core_stmt core_stmts, fv_stmt) dsCmdStmts _ _ _ [] _ = panic "dsCmdStmts []" -- Match a list of expressions against a list of patterns, left-to-right. matchSimplys :: [CoreExpr] -- Scrutinees -> HsMatchContext Name -- Match kind -> [LPat Id] -- Patterns they should match -> CoreExpr -- Return this if they all match -> CoreExpr -- Return this if they don't -> DsM CoreExpr matchSimplys [] _ctxt [] result_expr _fail_expr = return result_expr matchSimplys (exp:exps) ctxt (pat:pats) result_expr fail_expr = do match_code <- matchSimplys exps ctxt pats result_expr fail_expr matchSimply exp ctxt pat match_code fail_expr matchSimplys _ _ _ _ _ = panic "matchSimplys" -- List of leaf expressions, with set of variables bound in each leavesMatch :: LMatch Id (Located (body Id)) -> [(Located (body Id), IdSet)] leavesMatch (L _ (Match _ pats _ (GRHSs grhss (L _ binds)))) = let defined_vars = mkVarSet (collectPatsBinders pats) `unionVarSet` mkVarSet (collectLocalBinders binds) in [(body, mkVarSet (collectLStmtsBinders stmts) `unionVarSet` defined_vars) | L _ (GRHS stmts body) <- grhss] -- Replace the leaf commands in a match replaceLeavesMatch :: Type -- new result type -> [Located (body' Id)] -- replacement leaf expressions of that type -> LMatch Id (Located (body Id)) -- the matches of a case command -> ([Located (body' Id)], -- remaining leaf expressions LMatch Id (Located (body' Id))) -- updated match replaceLeavesMatch _res_ty leaves (L loc (Match mf pat mt (GRHSs grhss binds))) = let (leaves', grhss') = mapAccumL replaceLeavesGRHS leaves grhss in (leaves', L loc (Match mf pat mt (GRHSs grhss' binds))) replaceLeavesGRHS :: [Located (body' Id)] -- replacement leaf expressions of that type -> LGRHS Id (Located (body Id)) -- rhss of a case command -> ([Located (body' Id)], -- remaining leaf expressions LGRHS Id (Located (body' Id))) -- updated GRHS replaceLeavesGRHS (leaf:leaves) (L loc (GRHS stmts _)) = (leaves, L loc (GRHS stmts leaf)) replaceLeavesGRHS [] _ = panic "replaceLeavesGRHS []" -- Balanced fold of a non-empty list. foldb :: (a -> a -> a) -> [a] -> a foldb _ [] = error "foldb of empty list" foldb _ [x] = x foldb f xs = foldb f (fold_pairs xs) where fold_pairs [] = [] fold_pairs [x] = [x] fold_pairs (x1:x2:xs) = f x1 x2:fold_pairs xs {- Note [Dictionary binders in ConPatOut] See also same Note in HsUtils ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The following functions to collect value variables from patterns are copied from HsUtils, with one change: we also collect the dictionary bindings (pat_binds) from ConPatOut. We need them for cases like h :: Arrow a => Int -> a (Int,Int) Int h x = proc (y,z) -> case compare x y of GT -> returnA -< z+x The type checker turns the case into case compare x y of GT { p77 = plusInt } -> returnA -< p77 z x Here p77 is a local binding for the (+) operation. See comments in HsUtils for why the other version does not include these bindings. -} collectPatBinders :: LPat Id -> [Id] collectPatBinders pat = collectl pat [] collectPatsBinders :: [LPat Id] -> [Id] collectPatsBinders pats = foldr collectl [] pats --------------------- collectl :: LPat Id -> [Id] -> [Id] -- See Note [Dictionary binders in ConPatOut] collectl (L _ pat) bndrs = go pat where go (VarPat (L _ var)) = var : bndrs go (WildPat _) = bndrs go (LazyPat pat) = collectl pat bndrs go (BangPat pat) = collectl pat bndrs go (AsPat (L _ a) pat) = a : collectl pat bndrs go (ParPat pat) = collectl pat bndrs go (ListPat pats _ _) = foldr collectl bndrs pats go (PArrPat pats _) = foldr collectl bndrs pats go (TuplePat pats _ _) = foldr collectl bndrs pats go (SumPat pat _ _ _) = collectl pat bndrs go (ConPatIn _ ps) = foldr collectl bndrs (hsConPatArgs ps) go (ConPatOut {pat_args=ps, pat_binds=ds}) = collectEvBinders ds ++ foldr collectl bndrs (hsConPatArgs ps) go (LitPat _) = bndrs go (NPat {}) = bndrs go (NPlusKPat (L _ n) _ _ _ _ _) = n : bndrs go (SigPatIn pat _) = collectl pat bndrs go (SigPatOut pat _) = collectl pat bndrs go (CoPat _ pat _) = collectl (noLoc pat) bndrs go (ViewPat _ pat _) = collectl pat bndrs go p@(SplicePat {}) = pprPanic "collectl/go" (ppr p) collectEvBinders :: TcEvBinds -> [Id] collectEvBinders (EvBinds bs) = foldrBag add_ev_bndr [] bs collectEvBinders (TcEvBinds {}) = panic "ToDo: collectEvBinders" add_ev_bndr :: EvBind -> [Id] -> [Id] add_ev_bndr (EvBind { eb_lhs = b }) bs | isId b = b:bs | otherwise = bs -- A worry: what about coercion variable binders?? collectLStmtsBinders :: [LStmt Id body] -> [Id] collectLStmtsBinders = concatMap collectLStmtBinders collectLStmtBinders :: LStmt Id body -> [Id] collectLStmtBinders = collectStmtBinders . unLoc collectStmtBinders :: Stmt Id body -> [Id] collectStmtBinders (RecStmt { recS_later_ids = later_ids }) = later_ids collectStmtBinders stmt = HsUtils.collectStmtBinders stmt