% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % Desugaring arrow commands \begin{code} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details module DsArrows ( dsProcExpr ) where #include "HsVersions.h" import Match import DsUtils import DsMonad import HsSyn hiding (collectPatBinders, collectPatsBinders, collectLStmtsBinders, collectLStmtBinders, collectStmtBinders ) import TcHsSyn -- NB: The desugarer, which straddles the source and Core worlds, sometimes -- needs to see source types (newtypes etc), and sometimes not -- So WATCH OUT; check each use of split*Ty functions. -- Sigh. This is a pain. import {-# SOURCE #-} DsExpr ( dsExpr, dsLExpr, dsLocalBinds ) import TcType import TcEvidence import Type import CoreSyn import CoreFVs import CoreUtils import MkCore import Name import Var import Id import DataCon import TysWiredIn import BasicTypes import PrelNames import Outputable import Bag import VarSet import SrcLoc import Data.List \end{code} \begin{code} data DsCmdEnv = DsCmdEnv { meth_binds :: [CoreBind], arr_id, compose_id, first_id, app_id, choice_id, loop_id :: CoreExpr } mkCmdEnv :: SyntaxTable Id -> DsM DsCmdEnv mkCmdEnv ids = do (meth_binds, ds_meths) <- dsSyntaxTable ids return $ DsCmdEnv { meth_binds = meth_binds, arr_id = Var (lookupEvidence ds_meths arrAName), compose_id = Var (lookupEvidence ds_meths composeAName), first_id = Var (lookupEvidence ds_meths firstAName), app_id = Var (lookupEvidence ds_meths appAName), choice_id = Var (lookupEvidence ds_meths choiceAName), loop_id = Var (lookupEvidence ds_meths loopAName) } bindCmdEnv :: DsCmdEnv -> CoreExpr -> CoreExpr bindCmdEnv ids body = foldr Let body (meth_binds ids) -- arr :: forall b c. (b -> c) -> a b c do_arr :: DsCmdEnv -> Type -> Type -> CoreExpr -> CoreExpr do_arr ids b_ty c_ty f = mkApps (arr_id ids) [Type b_ty, Type c_ty, f] -- (>>>) :: forall b c d. a b c -> a c d -> a b d do_compose :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr -> CoreExpr do_compose ids b_ty c_ty d_ty f g = mkApps (compose_id ids) [Type b_ty, Type c_ty, Type d_ty, f, g] -- first :: forall b c d. a b c -> a (b,d) (c,d) do_first :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr do_first ids b_ty c_ty d_ty f = mkApps (first_id ids) [Type b_ty, Type c_ty, Type d_ty, f] -- app :: forall b c. a (a b c, b) c do_app :: DsCmdEnv -> Type -> Type -> CoreExpr do_app ids b_ty c_ty = mkApps (app_id ids) [Type b_ty, Type c_ty] -- (|||) :: forall b d c. a b d -> a c d -> a (Either b c) d -- note the swapping of d and c do_choice :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr -> CoreExpr do_choice ids b_ty c_ty d_ty f g = mkApps (choice_id ids) [Type b_ty, Type d_ty, Type c_ty, f, g] -- loop :: forall b d c. a (b,d) (c,d) -> a b c -- note the swapping of d and c do_loop :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr do_loop ids b_ty c_ty d_ty f = mkApps (loop_id ids) [Type b_ty, Type d_ty, Type c_ty, f] -- map_arrow (f :: b -> c) (g :: a c d) = arr f >>> g :: a b d do_map_arrow :: DsCmdEnv -> Type -> Type -> Type -> CoreExpr -> CoreExpr -> CoreExpr do_map_arrow ids b_ty c_ty d_ty f c = do_compose ids b_ty c_ty d_ty (do_arr ids b_ty c_ty f) c mkFailExpr :: HsMatchContext Id -> Type -> DsM CoreExpr mkFailExpr ctxt ty = mkErrorAppDs pAT_ERROR_ID ty (matchContextErrString ctxt) -- construct CoreExpr for \ (a :: a_ty, b :: b_ty) -> b mkSndExpr :: Type -> Type -> DsM CoreExpr mkSndExpr a_ty b_ty = do a_var <- newSysLocalDs a_ty b_var <- newSysLocalDs b_ty pair_var <- newSysLocalDs (mkCorePairTy a_ty b_ty) return (Lam pair_var (coreCasePair pair_var a_var b_var (Var b_var))) \end{code} Build case analysis of a tuple. This cannot be done in the DsM monad, because the list of variables is typically not yet defined. \begin{code} -- coreCaseTuple [u1..] v [x1..xn] body -- = case v of v { (x1, .., xn) -> body } -- But the matching may be nested if the tuple is very big coreCaseTuple :: UniqSupply -> Id -> [Id] -> CoreExpr -> CoreExpr coreCaseTuple uniqs scrut_var vars body = mkTupleCase uniqs vars body scrut_var (Var scrut_var) coreCasePair :: Id -> Id -> Id -> CoreExpr -> CoreExpr coreCasePair scrut_var var1 var2 body = Case (Var scrut_var) scrut_var (exprType body) [(DataAlt (tupleCon BoxedTuple 2), [var1, var2], body)] \end{code} \begin{code} mkCorePairTy :: Type -> Type -> Type mkCorePairTy t1 t2 = mkBoxedTupleTy [t1, t2] mkCorePairExpr :: CoreExpr -> CoreExpr -> CoreExpr mkCorePairExpr e1 e2 = mkCoreTup [e1, e2] \end{code} The input is divided into a local environment, which is a flat tuple (unless it's too big), and a stack, each element of which is paired with the environment in turn. In general, the input has the form (...((x1,...,xn),s1),...sk) where xi are the environment values, and si the ones on the stack, with s1 being the "top", the first one to be matched with a lambda. \begin{code} envStackType :: [Id] -> [Type] -> Type envStackType ids stack_tys = foldl mkCorePairTy (mkBigCoreVarTupTy ids) stack_tys ---------------------------------------------- -- buildEnvStack -- -- (...((x1,...,xn),s1),...sk) buildEnvStack :: [Id] -> [Id] -> CoreExpr buildEnvStack env_ids stack_ids = foldl mkCorePairExpr (mkBigCoreVarTup env_ids) (map Var stack_ids) ---------------------------------------------- -- matchEnvStack -- -- \ (...((x1,...,xn),s1),...sk) -> e -- => -- \ zk -> -- case zk of (zk-1,sk) -> -- ... -- case z1 of (z0,s1) -> -- case z0 of (x1,...,xn) -> -- e matchEnvStack :: [Id] -- x1..xn -> [Id] -- s1..sk -> CoreExpr -- e -> DsM CoreExpr matchEnvStack env_ids stack_ids body = do uniqs <- newUniqueSupply tup_var <- newSysLocalDs (mkBigCoreVarTupTy env_ids) matchVarStack tup_var stack_ids (coreCaseTuple uniqs tup_var env_ids body) ---------------------------------------------- -- matchVarStack -- -- \ (...(z0,s1),...sk) -> e -- => -- \ zk -> -- case zk of (zk-1,sk) -> -- ... -- case z1 of (z0,s1) -> -- e matchVarStack :: Id -- z0 -> [Id] -- s1..sk -> CoreExpr -- e -> DsM CoreExpr matchVarStack env_id [] body = return (Lam env_id body) matchVarStack env_id (stack_id:stack_ids) body = do pair_id <- newSysLocalDs (mkCorePairTy (idType env_id) (idType stack_id)) matchVarStack pair_id stack_ids (coreCasePair pair_id env_id stack_id body) \end{code} \begin{code} mkHsEnvStackExpr :: [Id] -> [Id] -> LHsExpr Id mkHsEnvStackExpr env_ids stack_ids = foldl (\a b -> mkLHsTupleExpr [a,b]) (mkLHsVarTuple env_ids) (map nlHsVar stack_ids) \end{code} Translation of arrow abstraction \begin{code} -- A | xs |- c :: [] t' ---> c' -- -------------------------- -- A |- proc p -> c :: a t t' ---> arr (\ p -> (xs)) >>> c' -- -- where (xs) is the tuple of variables bound by p dsProcExpr :: LPat Id -> LHsCmdTop Id -> DsM CoreExpr dsProcExpr pat (L _ (HsCmdTop cmd [] cmd_ty ids)) = do meth_ids <- mkCmdEnv ids let locals = mkVarSet (collectPatBinders pat) (core_cmd, _free_vars, env_ids) <- dsfixCmd meth_ids locals [] cmd_ty cmd let env_ty = mkBigCoreVarTupTy env_ids fail_expr <- mkFailExpr ProcExpr env_ty var <- selectSimpleMatchVarL pat match_code <- matchSimply (Var var) ProcExpr pat (mkBigCoreVarTup env_ids) fail_expr let pat_ty = hsLPatType pat proc_code = do_map_arrow meth_ids pat_ty env_ty cmd_ty (Lam var match_code) core_cmd return (bindCmdEnv meth_ids proc_code) dsProcExpr _ c = pprPanic "dsProcExpr" (ppr c) \end{code} Translation of command judgements of the form A | xs |- c :: [ts] t \begin{code} dsLCmd :: DsCmdEnv -> IdSet -> [Type] -> Type -> LHsCmd Id -> [Id] -> DsM (CoreExpr, IdSet) dsLCmd ids local_vars stack res_ty cmd env_ids = dsCmd ids local_vars stack res_ty (unLoc cmd) env_ids dsCmd :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this command -> [Type] -- type of the stack -> Type -- return type of the command -> HsCmd Id -- command to desugar -> [Id] -- list of vars in the input to this command -- This is typically fed back, -- so don't pull on it too early -> DsM (CoreExpr, -- desugared expression IdSet) -- subset of local vars that occur free -- A |- f :: a (t*ts) t' -- A, xs |- arg :: t -- ----------------------------- -- A | xs |- f -< arg :: [ts] t' -- -- ---> arr (\ ((xs)*ts) -> (arg*ts)) >>> f dsCmd ids local_vars stack res_ty (HsArrApp arrow arg arrow_ty HsFirstOrderApp _) env_ids = do let (a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty (_a_ty, arg_ty) = tcSplitAppTy a_arg_ty core_arrow <- dsLExpr arrow core_arg <- dsLExpr arg stack_ids <- mapM newSysLocalDs stack core_make_arg <- matchEnvStack env_ids stack_ids (foldl mkCorePairExpr core_arg (map Var stack_ids)) return (do_map_arrow ids (envStackType env_ids stack) arg_ty res_ty core_make_arg core_arrow, exprFreeIds core_arg `intersectVarSet` local_vars) -- A, xs |- f :: a (t*ts) t' -- A, xs |- arg :: t -- ------------------------------ -- A | xs |- f -<< arg :: [ts] t' -- -- ---> arr (\ ((xs)*ts) -> (f,(arg*ts))) >>> app dsCmd ids local_vars stack res_ty (HsArrApp arrow arg arrow_ty HsHigherOrderApp _) env_ids = do let (a_arg_ty, _res_ty') = tcSplitAppTy arrow_ty (_a_ty, arg_ty) = tcSplitAppTy a_arg_ty core_arrow <- dsLExpr arrow core_arg <- dsLExpr arg stack_ids <- mapM newSysLocalDs stack core_make_pair <- matchEnvStack env_ids stack_ids (mkCorePairExpr core_arrow (foldl mkCorePairExpr core_arg (map Var stack_ids))) return (do_map_arrow ids (envStackType env_ids stack) (mkCorePairTy arrow_ty arg_ty) res_ty core_make_pair (do_app ids arg_ty res_ty), (exprFreeIds core_arrow `unionVarSet` exprFreeIds core_arg) `intersectVarSet` local_vars) -- A | ys |- c :: [t:ts] t' -- A, xs |- e :: t -- ------------------------ -- A | xs |- c e :: [ts] t' -- -- ---> arr (\ ((xs)*ts) -> let z = e in (((ys),z)*ts)) >>> c dsCmd ids local_vars stack res_ty (HsApp cmd arg) env_ids = do core_arg <- dsLExpr arg let arg_ty = exprType core_arg stack' = arg_ty:stack (core_cmd, free_vars, env_ids') <- dsfixCmd ids local_vars stack' res_ty cmd stack_ids <- mapM newSysLocalDs stack arg_id <- newSysLocalDs arg_ty -- push the argument expression onto the stack let core_body = bindNonRec arg_id core_arg (buildEnvStack env_ids' (arg_id:stack_ids)) -- match the environment and stack against the input core_map <- matchEnvStack env_ids stack_ids core_body return (do_map_arrow ids (envStackType env_ids stack) (envStackType env_ids' stack') res_ty core_map core_cmd, free_vars `unionVarSet` (exprFreeIds core_arg `intersectVarSet` local_vars)) -- A | ys |- c :: [ts] t' -- ----------------------------------------------- -- A | xs |- \ p1 ... pk -> c :: [t1:...:tk:ts] t' -- -- ---> arr (\ ((((xs), p1), ... pk)*ts) -> ((ys)*ts)) >>> c dsCmd ids local_vars stack res_ty (HsLam (MatchGroup [L _ (Match pats _ (GRHSs [L _ (GRHS [] body)] _ ))] _)) env_ids = do let pat_vars = mkVarSet (collectPatsBinders pats) local_vars' = pat_vars `unionVarSet` local_vars stack' = drop (length pats) stack (core_body, free_vars, env_ids') <- dsfixCmd ids local_vars' stack' res_ty body stack_ids <- mapM newSysLocalDs stack -- the expression is built from the inside out, so the actions -- are presented in reverse order let (actual_ids, stack_ids') = splitAt (length pats) stack_ids -- build a new environment, plus what's left of the stack core_expr = buildEnvStack env_ids' stack_ids' in_ty = envStackType env_ids stack in_ty' = envStackType env_ids' stack' fail_expr <- mkFailExpr LambdaExpr in_ty' -- match the patterns against the top of the old stack match_code <- matchSimplys (map Var actual_ids) LambdaExpr pats core_expr fail_expr -- match the old environment and stack against the input select_code <- matchEnvStack env_ids stack_ids match_code return (do_map_arrow ids in_ty in_ty' res_ty select_code core_body, free_vars `minusVarSet` pat_vars) dsCmd ids local_vars stack res_ty (HsPar cmd) env_ids = dsLCmd ids local_vars stack res_ty cmd env_ids -- A, xs |- e :: Bool -- A | xs1 |- c1 :: [ts] t -- A | xs2 |- c2 :: [ts] t -- ---------------------------------------- -- A | xs |- if e then c1 else c2 :: [ts] t -- -- ---> arr (\ ((xs)*ts) -> -- if e then Left ((xs1)*ts) else Right ((xs2)*ts)) >>> -- c1 ||| c2 dsCmd ids local_vars stack res_ty (HsIf mb_fun cond then_cmd else_cmd) env_ids = do core_cond <- dsLExpr cond (core_then, fvs_then, then_ids) <- dsfixCmd ids local_vars stack res_ty then_cmd (core_else, fvs_else, else_ids) <- dsfixCmd ids local_vars stack res_ty else_cmd stack_ids <- mapM newSysLocalDs stack either_con <- dsLookupTyCon eitherTyConName left_con <- dsLookupDataCon leftDataConName right_con <- dsLookupDataCon rightDataConName let mk_left_expr ty1 ty2 e = mkConApp left_con [Type ty1, Type ty2, e] mk_right_expr ty1 ty2 e = mkConApp right_con [Type ty1, Type ty2, e] in_ty = envStackType env_ids stack then_ty = envStackType then_ids stack else_ty = envStackType else_ids stack sum_ty = mkTyConApp either_con [then_ty, else_ty] fvs_cond = exprFreeIds core_cond `intersectVarSet` local_vars core_left = mk_left_expr then_ty else_ty (buildEnvStack then_ids stack_ids) core_right = mk_right_expr then_ty else_ty (buildEnvStack else_ids stack_ids) core_if <- case mb_fun of Just fun -> do { core_fun <- dsExpr fun ; matchEnvStack env_ids stack_ids $ mkCoreApps core_fun [core_cond, core_left, core_right] } Nothing -> matchEnvStack env_ids stack_ids $ mkIfThenElse core_cond core_left core_right return (do_map_arrow ids in_ty sum_ty res_ty core_if (do_choice ids then_ty else_ty res_ty core_then core_else), fvs_cond `unionVarSet` fvs_then `unionVarSet` fvs_else) \end{code} Case commands are treated in much the same way as if commands (see above) except that there are more alternatives. For example case e of { p1 -> c1; p2 -> c2; p3 -> c3 } is translated to arr (\ ((xs)*ts) -> case e of p1 -> (Left (Left (xs1)*ts)) p2 -> Left ((Right (xs2)*ts)) p3 -> Right ((xs3)*ts)) >>> (c1 ||| c2) ||| c3 The idea is to extract the commands from the case, build a balanced tree of choices, and replace the commands with expressions that build tagged tuples, obtaining a case expression that can be desugared normally. To build all this, we use triples describing segments of the list of case bodies, containing the following fields: * a list of expressions of the form (Left|Right)* ((xs)*ts), to be put into the case replacing the commands * a sum type that is the common type of these expressions, and also the input type of the arrow * a CoreExpr for an arrow built by combining the translated command bodies with |||. \begin{code} dsCmd ids local_vars stack res_ty (HsCase exp (MatchGroup matches match_ty)) env_ids = do stack_ids <- mapM newSysLocalDs stack -- Extract and desugar the leaf commands in the case, building tuple -- expressions that will (after tagging) replace these leaves let leaves = concatMap leavesMatch matches make_branch (leaf, bound_vars) = do (core_leaf, _fvs, leaf_ids) <- dsfixCmd ids (bound_vars `unionVarSet` local_vars) stack res_ty leaf return ([mkHsEnvStackExpr leaf_ids stack_ids], envStackType leaf_ids stack, core_leaf) branches <- mapM make_branch leaves either_con <- dsLookupTyCon eitherTyConName left_con <- dsLookupDataCon leftDataConName right_con <- dsLookupDataCon rightDataConName let left_id = HsVar (dataConWrapId left_con) right_id = HsVar (dataConWrapId right_con) left_expr ty1 ty2 e = noLoc $ HsApp (noLoc $ HsWrap (mkWpTyApps [ty1, ty2]) left_id ) e right_expr ty1 ty2 e = noLoc $ HsApp (noLoc $ HsWrap (mkWpTyApps [ty1, ty2]) right_id) e -- Prefix each tuple with a distinct series of Left's and Right's, -- in a balanced way, keeping track of the types. merge_branches (builds1, in_ty1, core_exp1) (builds2, in_ty2, core_exp2) = (map (left_expr in_ty1 in_ty2) builds1 ++ map (right_expr in_ty1 in_ty2) builds2, mkTyConApp either_con [in_ty1, in_ty2], do_choice ids in_ty1 in_ty2 res_ty core_exp1 core_exp2) (leaves', sum_ty, core_choices) = foldb merge_branches branches -- Replace the commands in the case with these tagged tuples, -- yielding a HsExpr Id we can feed to dsExpr. (_, matches') = mapAccumL (replaceLeavesMatch res_ty) leaves' matches in_ty = envStackType env_ids stack pat_ty = funArgTy match_ty match_ty' = mkFunTy pat_ty sum_ty -- Note that we replace the HsCase result type by sum_ty, -- which is the type of matches' core_body <- dsExpr (HsCase exp (MatchGroup matches' match_ty')) core_matches <- matchEnvStack env_ids stack_ids core_body return (do_map_arrow ids in_ty sum_ty res_ty core_matches core_choices, exprFreeIds core_body `intersectVarSet` local_vars) -- A | ys |- c :: [ts] t -- ---------------------------------- -- A | xs |- let binds in c :: [ts] t -- -- ---> arr (\ ((xs)*ts) -> let binds in ((ys)*ts)) >>> c dsCmd ids local_vars stack res_ty (HsLet binds body) env_ids = do let defined_vars = mkVarSet (collectLocalBinders binds) local_vars' = defined_vars `unionVarSet` local_vars (core_body, _free_vars, env_ids') <- dsfixCmd ids local_vars' stack res_ty body stack_ids <- mapM newSysLocalDs stack -- build a new environment, plus the stack, using the let bindings core_binds <- dsLocalBinds binds (buildEnvStack env_ids' stack_ids) -- match the old environment and stack against the input core_map <- matchEnvStack env_ids stack_ids core_binds return (do_map_arrow ids (envStackType env_ids stack) (envStackType env_ids' stack) res_ty core_map core_body, exprFreeIds core_binds `intersectVarSet` local_vars) dsCmd ids local_vars [] res_ty (HsDo _ctxt stmts _) env_ids = dsCmdDo ids local_vars res_ty stmts env_ids -- A |- e :: forall e. a1 (e*ts1) t1 -> ... an (e*tsn) tn -> a (e*ts) t -- A | xs |- ci :: [tsi] ti -- ----------------------------------- -- A | xs |- (|e c1 ... cn|) :: [ts] t ---> e [t_xs] c1 ... cn dsCmd _ids local_vars _stack _res_ty (HsArrForm op _ args) env_ids = do let env_ty = mkBigCoreVarTupTy env_ids core_op <- dsLExpr op (core_args, fv_sets) <- mapAndUnzipM (dsTrimCmdArg local_vars env_ids) args return (mkApps (App core_op (Type env_ty)) core_args, unionVarSets fv_sets) dsCmd ids local_vars stack res_ty (HsTick tickish expr) env_ids = do (expr1,id_set) <- dsLCmd ids local_vars stack res_ty expr env_ids return (Tick tickish expr1, id_set) dsCmd _ _ _ _ _ c = pprPanic "dsCmd" (ppr c) -- A | ys |- c :: [ts] t (ys <= xs) -- --------------------- -- A | xs |- c :: [ts] t ---> arr_ts (\ (xs) -> (ys)) >>> c dsTrimCmdArg :: IdSet -- set of local vars available to this command -> [Id] -- list of vars in the input to this command -> LHsCmdTop Id -- command argument to desugar -> DsM (CoreExpr, -- desugared expression IdSet) -- subset of local vars that occur free dsTrimCmdArg local_vars env_ids (L _ (HsCmdTop cmd stack cmd_ty ids)) = do meth_ids <- mkCmdEnv ids (core_cmd, free_vars, env_ids') <- dsfixCmd meth_ids local_vars stack cmd_ty cmd stack_ids <- mapM newSysLocalDs stack trim_code <- matchEnvStack env_ids stack_ids (buildEnvStack env_ids' stack_ids) let in_ty = envStackType env_ids stack in_ty' = envStackType env_ids' stack arg_code = if env_ids' == env_ids then core_cmd else do_map_arrow meth_ids in_ty in_ty' cmd_ty trim_code core_cmd return (bindCmdEnv meth_ids arg_code, free_vars) -- Given A | xs |- c :: [ts] t, builds c with xs fed back. -- Typically needs to be prefixed with arr (\p -> ((xs)*ts)) dsfixCmd :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this command -> [Type] -- type of the stack -> Type -- return type of the command -> LHsCmd Id -- command to desugar -> DsM (CoreExpr, -- desugared expression IdSet, -- subset of local vars that occur free [Id]) -- the same local vars as a list, fed back dsfixCmd ids local_vars stack cmd_ty cmd = trimInput (dsLCmd ids local_vars stack cmd_ty cmd) -- Feed back the list of local variables actually used a command, -- for use as the input tuple of the generated arrow. trimInput :: ([Id] -> DsM (CoreExpr, IdSet)) -> DsM (CoreExpr, -- desugared expression IdSet, -- subset of local vars that occur free [Id]) -- same local vars as a list, fed back to -- the inner function to form the tuple of -- inputs to the arrow. trimInput build_arrow = fixDs (\ ~(_,_,env_ids) -> do (core_cmd, free_vars) <- build_arrow env_ids return (core_cmd, free_vars, varSetElems free_vars)) \end{code} Translation of command judgements of the form A | xs |- do { ss } :: [] t \begin{code} dsCmdDo :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> Type -- return type of the statement -> [LStmt Id] -- statements to desugar -> [Id] -- list of vars in the input to this statement -- This is typically fed back, -- so don't pull on it too early -> DsM (CoreExpr, -- desugared expression IdSet) -- subset of local vars that occur free -- A | xs |- c :: [] t -- -------------------------- -- A | xs |- do { c } :: [] t dsCmdDo _ _ _ [] _ = panic "dsCmdDo" dsCmdDo ids local_vars res_ty [L _ (LastStmt body _)] env_ids = dsLCmd ids local_vars [] res_ty body env_ids dsCmdDo ids local_vars res_ty (stmt:stmts) env_ids = do let bound_vars = mkVarSet (collectLStmtBinders stmt) local_vars' = bound_vars `unionVarSet` local_vars (core_stmts, _, env_ids') <- trimInput (dsCmdDo ids local_vars' res_ty stmts) (core_stmt, fv_stmt) <- dsCmdLStmt ids local_vars env_ids' stmt env_ids return (do_compose ids (mkBigCoreVarTupTy env_ids) (mkBigCoreVarTupTy env_ids') res_ty core_stmt core_stmts, fv_stmt) \end{code} A statement maps one local environment to another, and is represented as an arrow from one tuple type to another. A statement sequence is translated to a composition of such arrows. \begin{code} dsCmdLStmt :: DsCmdEnv -> IdSet -> [Id] -> LStmt Id -> [Id] -> DsM (CoreExpr, IdSet) dsCmdLStmt ids local_vars out_ids cmd env_ids = dsCmdStmt ids local_vars out_ids (unLoc cmd) env_ids dsCmdStmt :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [Id] -- list of vars in the output of this statement -> Stmt Id -- statement to desugar -> [Id] -- list of vars in the input to this statement -- This is typically fed back, -- so don't pull on it too early -> DsM (CoreExpr, -- desugared expression IdSet) -- subset of local vars that occur free -- A | xs1 |- c :: [] t -- A | xs' |- do { ss } :: [] t' -- ------------------------------ -- A | xs |- do { c; ss } :: [] t' -- -- ---> arr (\ (xs) -> ((xs1),(xs'))) >>> first c >>> -- arr snd >>> ss dsCmdStmt ids local_vars out_ids (ExprStmt cmd _ _ c_ty) env_ids = do (core_cmd, fv_cmd, env_ids1) <- dsfixCmd ids local_vars [] c_ty cmd core_mux <- matchEnvStack env_ids [] (mkCorePairExpr (mkBigCoreVarTup env_ids1) (mkBigCoreVarTup out_ids)) let in_ty = mkBigCoreVarTupTy env_ids in_ty1 = mkBigCoreVarTupTy env_ids1 out_ty = mkBigCoreVarTupTy out_ids before_c_ty = mkCorePairTy in_ty1 out_ty after_c_ty = mkCorePairTy c_ty out_ty snd_fn <- mkSndExpr c_ty out_ty return (do_map_arrow ids in_ty before_c_ty out_ty core_mux $ do_compose ids before_c_ty after_c_ty out_ty (do_first ids in_ty1 c_ty out_ty core_cmd) $ do_arr ids after_c_ty out_ty snd_fn, extendVarSetList fv_cmd out_ids) where -- A | xs1 |- c :: [] t -- A | xs' |- do { ss } :: [] t' xs2 = xs' - defs(p) -- ----------------------------------- -- A | xs |- do { p <- c; ss } :: [] t' -- -- ---> arr (\ (xs) -> ((xs1),(xs2))) >>> first c >>> -- arr (\ (p, (xs2)) -> (xs')) >>> ss -- -- It would be simpler and more consistent to do this using second, -- but that's likely to be defined in terms of first. dsCmdStmt ids local_vars out_ids (BindStmt pat cmd _ _) env_ids = do (core_cmd, fv_cmd, env_ids1) <- dsfixCmd ids local_vars [] (hsLPatType pat) cmd let pat_ty = hsLPatType pat pat_vars = mkVarSet (collectPatBinders pat) env_ids2 = varSetElems (mkVarSet out_ids `minusVarSet` pat_vars) env_ty2 = mkBigCoreVarTupTy env_ids2 -- multiplexing function -- \ (xs) -> ((xs1),(xs2)) core_mux <- matchEnvStack env_ids [] (mkCorePairExpr (mkBigCoreVarTup env_ids1) (mkBigCoreVarTup env_ids2)) -- projection function -- \ (p, (xs2)) -> (zs) env_id <- newSysLocalDs env_ty2 uniqs <- newUniqueSupply let after_c_ty = mkCorePairTy pat_ty env_ty2 out_ty = mkBigCoreVarTupTy out_ids body_expr = coreCaseTuple uniqs env_id env_ids2 (mkBigCoreVarTup out_ids) fail_expr <- mkFailExpr (StmtCtxt DoExpr) out_ty pat_id <- selectSimpleMatchVarL pat match_code <- matchSimply (Var pat_id) (StmtCtxt DoExpr) pat body_expr fail_expr pair_id <- newSysLocalDs after_c_ty let proj_expr = Lam pair_id (coreCasePair pair_id pat_id env_id match_code) -- put it all together let in_ty = mkBigCoreVarTupTy env_ids in_ty1 = mkBigCoreVarTupTy env_ids1 in_ty2 = mkBigCoreVarTupTy env_ids2 before_c_ty = mkCorePairTy in_ty1 in_ty2 return (do_map_arrow ids in_ty before_c_ty out_ty core_mux $ do_compose ids before_c_ty after_c_ty out_ty (do_first ids in_ty1 pat_ty in_ty2 core_cmd) $ do_arr ids after_c_ty out_ty proj_expr, fv_cmd `unionVarSet` (mkVarSet out_ids `minusVarSet` pat_vars)) -- A | xs' |- do { ss } :: [] t -- -------------------------------------- -- A | xs |- do { let binds; ss } :: [] t -- -- ---> arr (\ (xs) -> let binds in (xs')) >>> ss dsCmdStmt ids local_vars out_ids (LetStmt binds) env_ids = do -- build a new environment using the let bindings core_binds <- dsLocalBinds binds (mkBigCoreVarTup out_ids) -- match the old environment against the input core_map <- matchEnvStack env_ids [] core_binds return (do_arr ids (mkBigCoreVarTupTy env_ids) (mkBigCoreVarTupTy out_ids) core_map, exprFreeIds core_binds `intersectVarSet` local_vars) -- A | ys |- do { ss; returnA -< ((xs1), (ys2)) } :: [] ... -- A | xs' |- do { ss' } :: [] t -- ------------------------------------ -- A | xs |- do { rec ss; ss' } :: [] t -- -- xs1 = xs' /\ defs(ss) -- xs2 = xs' - defs(ss) -- ys1 = ys - defs(ss) -- ys2 = ys /\ defs(ss) -- -- ---> arr (\(xs) -> ((ys1),(xs2))) >>> -- first (loop (arr (\((ys1),~(ys2)) -> (ys)) >>> ss)) >>> -- arr (\((xs1),(xs2)) -> (xs')) >>> ss' dsCmdStmt ids local_vars out_ids (RecStmt { recS_stmts = stmts , recS_later_ids = later_ids, recS_rec_ids = rec_ids , recS_later_rets = later_rets, recS_rec_rets = rec_rets }) env_ids = do let env2_id_set = mkVarSet out_ids `minusVarSet` mkVarSet later_ids env2_ids = varSetElems env2_id_set env2_ty = mkBigCoreVarTupTy env2_ids -- post_loop_fn = \((later_ids),(env2_ids)) -> (out_ids) uniqs <- newUniqueSupply env2_id <- newSysLocalDs env2_ty let later_ty = mkBigCoreVarTupTy later_ids post_pair_ty = mkCorePairTy later_ty env2_ty post_loop_body = coreCaseTuple uniqs env2_id env2_ids (mkBigCoreVarTup out_ids) post_loop_fn <- matchEnvStack later_ids [env2_id] post_loop_body --- loop (...) (core_loop, env1_id_set, env1_ids) <- dsRecCmd ids local_vars stmts later_ids later_rets rec_ids rec_rets -- pre_loop_fn = \(env_ids) -> ((env1_ids),(env2_ids)) let env1_ty = mkBigCoreVarTupTy env1_ids pre_pair_ty = mkCorePairTy env1_ty env2_ty pre_loop_body = mkCorePairExpr (mkBigCoreVarTup env1_ids) (mkBigCoreVarTup env2_ids) pre_loop_fn <- matchEnvStack env_ids [] pre_loop_body -- arr pre_loop_fn >>> first (loop (...)) >>> arr post_loop_fn let env_ty = mkBigCoreVarTupTy env_ids out_ty = mkBigCoreVarTupTy out_ids core_body = do_map_arrow ids env_ty pre_pair_ty out_ty pre_loop_fn (do_compose ids pre_pair_ty post_pair_ty out_ty (do_first ids env1_ty later_ty env2_ty core_loop) (do_arr ids post_pair_ty out_ty post_loop_fn)) return (core_body, env1_id_set `unionVarSet` env2_id_set) dsCmdStmt _ _ _ _ s = pprPanic "dsCmdStmt" (ppr s) -- loop (arr (\ ((env1_ids), ~(rec_ids)) -> (env_ids)) >>> -- ss >>> -- arr (\ (out_ids) -> ((later_rets),(rec_rets))) >>> dsRecCmd :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [LStmt Id] -- list of statements inside the RecCmd -> [Id] -- list of vars defined here and used later -> [HsExpr Id] -- expressions corresponding to later_ids -> [Id] -- list of vars fed back through the loop -> [HsExpr Id] -- expressions corresponding to rec_ids -> DsM (CoreExpr, -- desugared statement IdSet, -- subset of local vars that occur free [Id]) -- same local vars as a list dsRecCmd ids local_vars stmts later_ids later_rets rec_ids rec_rets = do let later_id_set = mkVarSet later_ids rec_id_set = mkVarSet rec_ids local_vars' = rec_id_set `unionVarSet` later_id_set `unionVarSet` local_vars -- mk_pair_fn = \ (out_ids) -> ((later_rets),(rec_rets)) core_later_rets <- mapM dsExpr later_rets core_rec_rets <- mapM dsExpr rec_rets let -- possibly polymorphic version of vars of later_ids and rec_ids out_ids = varSetElems (unionVarSets (map exprFreeIds (core_later_rets ++ core_rec_rets))) out_ty = mkBigCoreVarTupTy out_ids later_tuple = mkBigCoreTup core_later_rets later_ty = mkBigCoreVarTupTy later_ids rec_tuple = mkBigCoreTup core_rec_rets rec_ty = mkBigCoreVarTupTy rec_ids out_pair = mkCorePairExpr later_tuple rec_tuple out_pair_ty = mkCorePairTy later_ty rec_ty mk_pair_fn <- matchEnvStack out_ids [] out_pair -- ss (core_stmts, fv_stmts, env_ids) <- dsfixCmdStmts ids local_vars' out_ids stmts -- squash_pair_fn = \ ((env1_ids), ~(rec_ids)) -> (env_ids) rec_id <- newSysLocalDs rec_ty let env1_id_set = fv_stmts `minusVarSet` rec_id_set env1_ids = varSetElems env1_id_set env1_ty = mkBigCoreVarTupTy env1_ids in_pair_ty = mkCorePairTy env1_ty rec_ty core_body = mkBigCoreTup (map selectVar env_ids) where selectVar v | v `elemVarSet` rec_id_set = mkTupleSelector rec_ids v rec_id (Var rec_id) | otherwise = Var v squash_pair_fn <- matchEnvStack env1_ids [rec_id] core_body -- loop (arr squash_pair_fn >>> ss >>> arr mk_pair_fn) let env_ty = mkBigCoreVarTupTy env_ids core_loop = do_loop ids env1_ty later_ty rec_ty (do_map_arrow ids in_pair_ty env_ty out_pair_ty squash_pair_fn (do_compose ids env_ty out_ty out_pair_ty core_stmts (do_arr ids out_ty out_pair_ty mk_pair_fn))) return (core_loop, env1_id_set, env1_ids) \end{code} A sequence of statements (as in a rec) is desugared to an arrow between two environments \begin{code} dsfixCmdStmts :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [Id] -- output vars of these statements -> [LStmt Id] -- statements to desugar -> DsM (CoreExpr, -- desugared expression IdSet, -- subset of local vars that occur free [Id]) -- same local vars as a list dsfixCmdStmts ids local_vars out_ids stmts = trimInput (dsCmdStmts ids local_vars out_ids stmts) dsCmdStmts :: DsCmdEnv -- arrow combinators -> IdSet -- set of local vars available to this statement -> [Id] -- output vars of these statements -> [LStmt Id] -- statements to desugar -> [Id] -- list of vars in the input to these statements -> DsM (CoreExpr, -- desugared expression IdSet) -- subset of local vars that occur free dsCmdStmts ids local_vars out_ids [stmt] env_ids = dsCmdLStmt ids local_vars out_ids stmt env_ids dsCmdStmts ids local_vars out_ids (stmt:stmts) env_ids = do let bound_vars = mkVarSet (collectLStmtBinders stmt) local_vars' = bound_vars `unionVarSet` local_vars (core_stmts, _fv_stmts, env_ids') <- dsfixCmdStmts ids local_vars' out_ids stmts (core_stmt, fv_stmt) <- dsCmdLStmt ids local_vars env_ids' stmt env_ids return (do_compose ids (mkBigCoreVarTupTy env_ids) (mkBigCoreVarTupTy env_ids') (mkBigCoreVarTupTy out_ids) core_stmt core_stmts, fv_stmt) dsCmdStmts _ _ _ [] _ = panic "dsCmdStmts []" \end{code} Match a list of expressions against a list of patterns, left-to-right. \begin{code} matchSimplys :: [CoreExpr] -- Scrutinees -> HsMatchContext Name -- Match kind -> [LPat Id] -- Patterns they should match -> CoreExpr -- Return this if they all match -> CoreExpr -- Return this if they don't -> DsM CoreExpr matchSimplys [] _ctxt [] result_expr _fail_expr = return result_expr matchSimplys (exp:exps) ctxt (pat:pats) result_expr fail_expr = do match_code <- matchSimplys exps ctxt pats result_expr fail_expr matchSimply exp ctxt pat match_code fail_expr matchSimplys _ _ _ _ _ = panic "matchSimplys" \end{code} List of leaf expressions, with set of variables bound in each \begin{code} leavesMatch :: LMatch Id -> [(LHsExpr Id, IdSet)] leavesMatch (L _ (Match pats _ (GRHSs grhss binds))) = let defined_vars = mkVarSet (collectPatsBinders pats) `unionVarSet` mkVarSet (collectLocalBinders binds) in [(expr, mkVarSet (collectLStmtsBinders stmts) `unionVarSet` defined_vars) | L _ (GRHS stmts expr) <- grhss] \end{code} Replace the leaf commands in a match \begin{code} replaceLeavesMatch :: Type -- new result type -> [LHsExpr Id] -- replacement leaf expressions of that type -> LMatch Id -- the matches of a case command -> ([LHsExpr Id],-- remaining leaf expressions LMatch Id) -- updated match replaceLeavesMatch _res_ty leaves (L loc (Match pat mt (GRHSs grhss binds))) = let (leaves', grhss') = mapAccumL replaceLeavesGRHS leaves grhss in (leaves', L loc (Match pat mt (GRHSs grhss' binds))) replaceLeavesGRHS :: [LHsExpr Id] -- replacement leaf expressions of that type -> LGRHS Id -- rhss of a case command -> ([LHsExpr Id],-- remaining leaf expressions LGRHS Id) -- updated GRHS replaceLeavesGRHS (leaf:leaves) (L loc (GRHS stmts _)) = (leaves, L loc (GRHS stmts leaf)) replaceLeavesGRHS [] _ = panic "replaceLeavesGRHS []" \end{code} Balanced fold of a non-empty list. \begin{code} foldb :: (a -> a -> a) -> [a] -> a foldb _ [] = error "foldb of empty list" foldb _ [x] = x foldb f xs = foldb f (fold_pairs xs) where fold_pairs [] = [] fold_pairs [x] = [x] fold_pairs (x1:x2:xs) = f x1 x2:fold_pairs xs \end{code} Note [Dictionary binders in ConPatOut] See also same Note in HsUtils ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The following functions to collect value variables from patterns are copied from HsUtils, with one change: we also collect the dictionary bindings (pat_binds) from ConPatOut. We need them for cases like h :: Arrow a => Int -> a (Int,Int) Int h x = proc (y,z) -> case compare x y of GT -> returnA -< z+x The type checker turns the case into case compare x y of GT { p77 = plusInt } -> returnA -< p77 z x Here p77 is a local binding for the (+) operation. See comments in HsUtils for why the other version does not include these bindings. \begin{code} collectPatBinders :: LPat Id -> [Id] collectPatBinders pat = collectl pat [] collectPatsBinders :: [LPat Id] -> [Id] collectPatsBinders pats = foldr collectl [] pats --------------------- collectl :: LPat Id -> [Id] -> [Id] -- See Note [Dictionary binders in ConPatOut] collectl (L _ pat) bndrs = go pat where go (VarPat var) = var : bndrs go (WildPat _) = bndrs go (LazyPat pat) = collectl pat bndrs go (BangPat pat) = collectl pat bndrs go (AsPat (L _ a) pat) = a : collectl pat bndrs go (ParPat pat) = collectl pat bndrs go (ListPat pats _) = foldr collectl bndrs pats go (PArrPat pats _) = foldr collectl bndrs pats go (TuplePat pats _ _) = foldr collectl bndrs pats go (ConPatIn _ ps) = foldr collectl bndrs (hsConPatArgs ps) go (ConPatOut {pat_args=ps, pat_binds=ds}) = collectEvBinders ds ++ foldr collectl bndrs (hsConPatArgs ps) go (LitPat _) = bndrs go (NPat _ _ _) = bndrs go (NPlusKPat (L _ n) _ _ _) = n : bndrs go (SigPatIn pat _) = collectl pat bndrs go (SigPatOut pat _) = collectl pat bndrs go (CoPat _ pat _) = collectl (noLoc pat) bndrs go (ViewPat _ pat _) = collectl pat bndrs go p@(QuasiQuotePat {}) = pprPanic "collectl/go" (ppr p) collectEvBinders :: TcEvBinds -> [Id] collectEvBinders (EvBinds bs) = foldrBag add_ev_bndr [] bs collectEvBinders (TcEvBinds {}) = panic "ToDo: collectEvBinders" add_ev_bndr :: EvBind -> [Id] -> [Id] add_ev_bndr (EvBind b _) bs | isId b = b:bs | otherwise = bs -- A worry: what about coercion variable binders?? collectLStmtsBinders :: [LStmt Id] -> [Id] collectLStmtsBinders = concatMap collectLStmtBinders collectLStmtBinders :: LStmt Id -> [Id] collectLStmtBinders = collectStmtBinders . unLoc collectStmtBinders :: Stmt Id -> [Id] collectStmtBinders (BindStmt pat _ _ _) = collectPatBinders pat collectStmtBinders (LetStmt binds) = collectLocalBinders binds collectStmtBinders (ExprStmt {}) = [] collectStmtBinders (LastStmt {}) = [] collectStmtBinders (ParStmt xs _ _ _) = collectLStmtsBinders $ concatMap fst xs collectStmtBinders (TransStmt { trS_stmts = stmts }) = collectLStmtsBinders stmts collectStmtBinders (RecStmt { recS_later_ids = later_ids }) = later_ids \end{code}