% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % Pattern-matching bindings (HsBinds and MonoBinds) Handles @HsBinds@; those at the top level require different handling, in that the @Rec@/@NonRec@/etc structure is thrown away (whereas at lower levels it is preserved with @let@/@letrec@s). \begin{code} {-# OPTIONS -fno-warn-tabs #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and -- detab the module (please do the detabbing in a separate patch). See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces -- for details module DsBinds ( dsTopLHsBinds, dsLHsBinds, decomposeRuleLhs, dsSpec, dsHsWrapper, dsTcEvBinds, dsEvBinds, dsTcCoercion ) where #include "HsVersions.h" import {-# SOURCE #-} DsExpr( dsLExpr ) import {-# SOURCE #-} Match( matchWrapper ) import DsMonad import DsGRHSs import DsUtils import HsSyn -- lots of things import CoreSyn -- lots of things import HscTypes ( MonadThings ) import Literal ( Literal(MachStr) ) import CoreSubst import MkCore import CoreUtils import CoreArity ( etaExpand ) import CoreUnfold import CoreFVs import Digraph import TyCon ( isTupleTyCon, tyConDataCons_maybe ) import TcEvidence import TcType import Type import Coercion hiding (substCo) import TysWiredIn ( eqBoxDataCon, tupleCon ) import Id import Class import DataCon ( dataConWorkId ) import Name ( Name, localiseName ) import MkId ( seqId ) import Var import VarSet import Rules import VarEnv import Outputable import SrcLoc import Maybes import OrdList import Bag import BasicTypes hiding ( TopLevel ) import DynFlags import FastString import ErrUtils( MsgDoc ) import Util import Control.Monad( when ) import MonadUtils import Control.Monad(liftM) \end{code} %************************************************************************ %* * \subsection[dsMonoBinds]{Desugaring a @MonoBinds@} %* * %************************************************************************ \begin{code} dsTopLHsBinds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr)) dsTopLHsBinds binds = ds_lhs_binds binds dsLHsBinds :: LHsBinds Id -> DsM [(Id,CoreExpr)] dsLHsBinds binds = do { binds' <- ds_lhs_binds binds ; return (fromOL binds') } ------------------------ ds_lhs_binds :: LHsBinds Id -> DsM (OrdList (Id,CoreExpr)) ds_lhs_binds binds = do { ds_bs <- mapBagM dsLHsBind binds ; return (foldBag appOL id nilOL ds_bs) } dsLHsBind :: LHsBind Id -> DsM (OrdList (Id,CoreExpr)) dsLHsBind (L loc bind) = putSrcSpanDs loc $ dsHsBind bind dsHsBind :: HsBind Id -> DsM (OrdList (Id,CoreExpr)) dsHsBind (VarBind { var_id = var, var_rhs = expr, var_inline = inline_regardless }) = do { core_expr <- dsLExpr expr -- Dictionary bindings are always VarBinds, -- so we only need do this here ; let var' | inline_regardless = var `setIdUnfolding` mkCompulsoryUnfolding core_expr | otherwise = var ; return (unitOL (makeCorePair var' False 0 core_expr)) } dsHsBind (FunBind { fun_id = L _ fun, fun_matches = matches , fun_co_fn = co_fn, fun_tick = tick , fun_infix = inf }) = do { (args, body) <- matchWrapper (FunRhs (idName fun) inf) matches ; let body' = mkOptTickBox tick body ; rhs <- dsHsWrapper co_fn (mkLams args body') ; {- pprTrace "dsHsBind" (ppr fun <+> ppr (idInlinePragma fun)) $ -} return (unitOL (makeCorePair fun False 0 rhs)) } dsHsBind (PatBind { pat_lhs = pat, pat_rhs = grhss, pat_rhs_ty = ty , pat_ticks = (rhs_tick, var_ticks) }) = do { body_expr <- dsGuarded grhss ty ; let body' = mkOptTickBox rhs_tick body_expr ; sel_binds <- mkSelectorBinds var_ticks pat body' -- We silently ignore inline pragmas; no makeCorePair -- Not so cool, but really doesn't matter ; return (toOL sel_binds) } -- A common case: one exported variable -- Non-recursive bindings come through this way -- So do self-recursive bindings, and recursive bindings -- that have been chopped up with type signatures dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts , abs_exports = [export] , abs_ev_binds = ev_binds, abs_binds = binds }) | ABE { abe_wrap = wrap, abe_poly = global , abe_mono = local, abe_prags = prags } <- export = do { bind_prs <- ds_lhs_binds binds ; let core_bind = Rec (fromOL bind_prs) ; ds_binds <- dsTcEvBinds ev_binds ; rhs <- dsHsWrapper wrap $ -- Usually the identity mkLams tyvars $ mkLams dicts $ mkCoreLets ds_binds $ Let core_bind $ Var local ; (spec_binds, rules) <- dsSpecs rhs prags ; let global' = addIdSpecialisations global rules main_bind = makeCorePair global' (isDefaultMethod prags) (dictArity dicts) rhs ; return (main_bind `consOL` spec_binds) } dsHsBind (AbsBinds { abs_tvs = tyvars, abs_ev_vars = dicts , abs_exports = exports, abs_ev_binds = ev_binds , abs_binds = binds }) -- See Note [Desugaring AbsBinds] = do { bind_prs <- ds_lhs_binds binds ; let core_bind = Rec [ makeCorePair (add_inline lcl_id) False 0 rhs | (lcl_id, rhs) <- fromOL bind_prs ] -- Monomorphic recursion possible, hence Rec locals = map abe_mono exports tup_expr = mkBigCoreVarTup locals tup_ty = exprType tup_expr ; ds_binds <- dsTcEvBinds ev_binds ; let poly_tup_rhs = mkLams tyvars $ mkLams dicts $ mkCoreLets ds_binds $ Let core_bind $ tup_expr ; poly_tup_id <- newSysLocalDs (exprType poly_tup_rhs) ; let mk_bind (ABE { abe_wrap = wrap, abe_poly = global , abe_mono = local, abe_prags = spec_prags }) = do { tup_id <- newSysLocalDs tup_ty ; rhs <- dsHsWrapper wrap $ mkLams tyvars $ mkLams dicts $ mkTupleSelector locals local tup_id $ mkVarApps (Var poly_tup_id) (tyvars ++ dicts) ; let rhs_for_spec = Let (NonRec poly_tup_id poly_tup_rhs) rhs ; (spec_binds, rules) <- dsSpecs rhs_for_spec spec_prags ; let global' = (global `setInlinePragma` defaultInlinePragma) `addIdSpecialisations` rules -- Kill the INLINE pragma because it applies to -- the user written (local) function. The global -- Id is just the selector. Hmm. ; return ((global', rhs) `consOL` spec_binds) } ; export_binds_s <- mapM mk_bind exports ; return ((poly_tup_id, poly_tup_rhs) `consOL` concatOL export_binds_s) } where inline_env :: IdEnv Id -- Maps a monomorphic local Id to one with -- the inline pragma from the source -- The type checker put the inline pragma -- on the *global* Id, so we need to transfer it inline_env = mkVarEnv [ (lcl_id, setInlinePragma lcl_id prag) | ABE { abe_mono = lcl_id, abe_poly = gbl_id } <- exports , let prag = idInlinePragma gbl_id ] add_inline :: Id -> Id -- tran add_inline lcl_id = lookupVarEnv inline_env lcl_id `orElse` lcl_id ------------------------ makeCorePair :: Id -> Bool -> Arity -> CoreExpr -> (Id, CoreExpr) makeCorePair gbl_id is_default_method dict_arity rhs | is_default_method -- Default methods are *always* inlined = (gbl_id `setIdUnfolding` mkCompulsoryUnfolding rhs, rhs) | otherwise = case inlinePragmaSpec inline_prag of EmptyInlineSpec -> (gbl_id, rhs) NoInline -> (gbl_id, rhs) Inlinable -> (gbl_id `setIdUnfolding` inlinable_unf, rhs) Inline -> inline_pair where inline_prag = idInlinePragma gbl_id inlinable_unf = mkInlinableUnfolding rhs inline_pair | Just arity <- inlinePragmaSat inline_prag -- Add an Unfolding for an INLINE (but not for NOINLINE) -- And eta-expand the RHS; see Note [Eta-expanding INLINE things] , let real_arity = dict_arity + arity -- NB: The arity in the InlineRule takes account of the dictionaries = ( gbl_id `setIdUnfolding` mkInlineUnfolding (Just real_arity) rhs , etaExpand real_arity rhs) | otherwise = pprTrace "makeCorePair: arity missing" (ppr gbl_id) $ (gbl_id `setIdUnfolding` mkInlineUnfolding Nothing rhs, rhs) dictArity :: [Var] -> Arity -- Don't count coercion variables in arity dictArity dicts = count isId dicts \end{code} [Desugaring AbsBinds] ~~~~~~~~~~~~~~~~~~~~~ In the general AbsBinds case we desugar the binding to this: tup a (d:Num a) = let fm = ...gm... gm = ...fm... in (fm,gm) f a d = case tup a d of { (fm,gm) -> fm } g a d = case tup a d of { (fm,gm) -> fm } Note [Rules and inlining] ~~~~~~~~~~~~~~~~~~~~~~~~~ Common special case: no type or dictionary abstraction This is a bit less trivial than you might suppose The naive way woudl be to desguar to something like f_lcl = ...f_lcl... -- The "binds" from AbsBinds M.f = f_lcl -- Generated from "exports" But we don't want that, because if M.f isn't exported, it'll be inlined unconditionally at every call site (its rhs is trivial). That would be ok unless it has RULES, which would thereby be completely lost. Bad, bad, bad. Instead we want to generate M.f = ...f_lcl... f_lcl = M.f Now all is cool. The RULES are attached to M.f (by SimplCore), and f_lcl is rapidly inlined away. This does not happen in the same way to polymorphic binds, because they desugar to M.f = /\a. let f_lcl = ...f_lcl... in f_lcl Although I'm a bit worried about whether full laziness might float the f_lcl binding out and then inline M.f at its call site Note [Specialising in no-dict case] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Even if there are no tyvars or dicts, we may have specialisation pragmas. Class methods can generate AbsBinds [] [] [( ... spec-prag] { AbsBinds [tvs] [dicts] ...blah } So the overloading is in the nested AbsBinds. A good example is in GHC.Float: class (Real a, Fractional a) => RealFrac a where round :: (Integral b) => a -> b instance RealFrac Float where {-# SPECIALIZE round :: Float -> Int #-} The top-level AbsBinds for $cround has no tyvars or dicts (because the instance does not). But the method is locally overloaded! Note [Abstracting over tyvars only] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When abstracting over type variable only (not dictionaries), we don't really need to built a tuple and select from it, as we do in the general case. Instead we can take AbsBinds [a,b] [ ([a,b], fg, fl, _), ([b], gg, gl, _) ] { fl = e1 gl = e2 h = e3 } and desugar it to fg = /\ab. let B in e1 gg = /\b. let a = () in let B in S(e2) h = /\ab. let B in e3 where B is the *non-recursive* binding fl = fg a b gl = gg b h = h a b -- See (b); note shadowing! Notice (a) g has a different number of type variables to f, so we must use the mkArbitraryType thing to fill in the gaps. We use a type-let to do that. (b) The local variable h isn't in the exports, and rather than clone a fresh copy we simply replace h by (h a b), where the two h's have different types! Shadowing happens here, which looks confusing but works fine. (c) The result is *still* quadratic-sized if there are a lot of small bindings. So if there are more than some small number (10), we filter the binding set B by the free variables of the particular RHS. Tiresome. Why got to this trouble? It's a common case, and it removes the quadratic-sized tuple desugaring. Less clutter, hopefullly faster compilation, especially in a case where there are a *lot* of bindings. Note [Eta-expanding INLINE things] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider foo :: Eq a => a -> a {-# INLINE foo #-} foo x = ... If (foo d) ever gets floated out as a common sub-expression (which can happen as a result of method sharing), there's a danger that we never get to do the inlining, which is a Terribly Bad thing given that the user said "inline"! To avoid this we pre-emptively eta-expand the definition, so that foo has the arity with which it is declared in the source code. In this example it has arity 2 (one for the Eq and one for x). Doing this should mean that (foo d) is a PAP and we don't share it. Note [Nested arities] ~~~~~~~~~~~~~~~~~~~~~ For reasons that are not entirely clear, method bindings come out looking like this: AbsBinds [] [] [$cfromT <= [] fromT] $cfromT [InlPrag=INLINE] :: T Bool -> Bool { AbsBinds [] [] [fromT <= [] fromT_1] fromT :: T Bool -> Bool { fromT_1 ((TBool b)) = not b } } } Note the nested AbsBind. The arity for the InlineRule on $cfromT should be gotten from the binding for fromT_1. It might be better to have just one level of AbsBinds, but that requires more thought! Note [Implementing SPECIALISE pragmas] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Example: f :: (Eq a, Ix b) => a -> b -> Bool {-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-} f = From this the typechecker generates AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX -> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ]) Note that wrap_fn can transform *any* function with the right type prefix forall ab. (Eq a, Ix b) => XXX regardless of XXX. It's sort of polymorphic in XXX. This is useful: we use the same wrapper to transform each of the class ops, as well as the dict. From these we generate: Rule: forall p, q, (dp:Ix p), (dq:Ix q). f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq Spec bind: f_spec = wrap_fn Note that * The LHS of the rule may mention dictionary *expressions* (eg $dfIxPair dp dq), and that is essential because the dp, dq are needed on the RHS. * The RHS of f_spec, has a *copy* of 'binds', so that it can fully specialise it. \begin{code} ------------------------ dsSpecs :: CoreExpr -- Its rhs -> TcSpecPrags -> DsM ( OrdList (Id,CoreExpr) -- Binding for specialised Ids , [CoreRule] ) -- Rules for the Global Ids -- See Note [Implementing SPECIALISE pragmas] dsSpecs _ IsDefaultMethod = return (nilOL, []) dsSpecs poly_rhs (SpecPrags sps) = do { pairs <- mapMaybeM (dsSpec (Just poly_rhs)) sps ; let (spec_binds_s, rules) = unzip pairs ; return (concatOL spec_binds_s, rules) } dsSpec :: Maybe CoreExpr -- Just rhs => RULE is for a local binding -- Nothing => RULE is for an imported Id -- rhs is in the Id's unfolding -> Located TcSpecPrag -> DsM (Maybe (OrdList (Id,CoreExpr), CoreRule)) dsSpec mb_poly_rhs (L loc (SpecPrag poly_id spec_co spec_inl)) | isJust (isClassOpId_maybe poly_id) = putSrcSpanDs loc $ do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for class method selector") <+> quotes (ppr poly_id)) ; return Nothing } -- There is no point in trying to specialise a class op -- Moreover, classops don't (currently) have an inl_sat arity set -- (it would be Just 0) and that in turn makes makeCorePair bleat | no_act_spec && isNeverActive rule_act = putSrcSpanDs loc $ do { warnDs (ptext (sLit "Ignoring useless SPECIALISE pragma for NOINLINE function:") <+> quotes (ppr poly_id)) ; return Nothing } -- Function is NOINLINE, and the specialiation inherits that -- See Note [Activation pragmas for SPECIALISE] | otherwise = putSrcSpanDs loc $ do { let poly_name = idName poly_id ; spec_name <- newLocalName poly_name ; (bndrs, ds_lhs) <- liftM collectBinders (dsHsWrapper spec_co (Var poly_id)) ; let spec_ty = mkPiTypes bndrs (exprType ds_lhs) ; case decomposeRuleLhs bndrs ds_lhs of { Left msg -> do { warnDs msg; return Nothing } ; Right (final_bndrs, _fn, args) -> do { (spec_unf, unf_pairs) <- specUnfolding spec_co spec_ty (realIdUnfolding poly_id) ; let spec_id = mkLocalId spec_name spec_ty `setInlinePragma` inl_prag `setIdUnfolding` spec_unf rule = mkRule False {- Not auto -} is_local_id (mkFastString ("SPEC " ++ showSDoc (ppr poly_name))) rule_act poly_name final_bndrs args (mkVarApps (Var spec_id) bndrs) ; spec_rhs <- dsHsWrapper spec_co poly_rhs ; let spec_pair = makeCorePair spec_id False (dictArity bndrs) spec_rhs ; dflags <- getDynFlags ; when (isInlinePragma id_inl && wopt Opt_WarnPointlessPragmas dflags) (warnDs (specOnInline poly_name)) ; return (Just (spec_pair `consOL` unf_pairs, rule)) } } } where is_local_id = isJust mb_poly_rhs poly_rhs | Just rhs <- mb_poly_rhs = rhs -- Local Id; this is its rhs | Just unfolding <- maybeUnfoldingTemplate (realIdUnfolding poly_id) = unfolding -- Imported Id; this is its unfolding -- Use realIdUnfolding so we get the unfolding -- even when it is a loop breaker. -- We want to specialise recursive functions! | otherwise = pprPanic "dsImpSpecs" (ppr poly_id) -- The type checker has checked that it *has* an unfolding id_inl = idInlinePragma poly_id -- See Note [Activation pragmas for SPECIALISE] inl_prag | not (isDefaultInlinePragma spec_inl) = spec_inl | not is_local_id -- See Note [Specialising imported functions] -- in OccurAnal , isStrongLoopBreaker (idOccInfo poly_id) = neverInlinePragma | otherwise = id_inl -- Get the INLINE pragma from SPECIALISE declaration, or, -- failing that, from the original Id spec_prag_act = inlinePragmaActivation spec_inl -- See Note [Activation pragmas for SPECIALISE] -- no_act_spec is True if the user didn't write an explicit -- phase specification in the SPECIALISE pragma no_act_spec = case inlinePragmaSpec spec_inl of NoInline -> isNeverActive spec_prag_act _ -> isAlwaysActive spec_prag_act rule_act | no_act_spec = inlinePragmaActivation id_inl -- Inherit | otherwise = spec_prag_act -- Specified by user specUnfolding :: HsWrapper -> Type -> Unfolding -> DsM (Unfolding, OrdList (Id,CoreExpr)) {- [Dec 10: TEMPORARILY commented out, until we can straighten out how to generate unfoldings for specialised DFuns specUnfolding wrap_fn spec_ty (DFunUnfolding _ _ ops) = do { let spec_rhss = map wrap_fn ops ; spec_ids <- mapM (mkSysLocalM (fsLit "spec") . exprType) spec_rhss ; return (mkDFunUnfolding spec_ty (map Var spec_ids), toOL (spec_ids `zip` spec_rhss)) } -} specUnfolding _ _ _ = return (noUnfolding, nilOL) specOnInline :: Name -> MsgDoc specOnInline f = ptext (sLit "SPECIALISE pragma on INLINE function probably won't fire:") <+> quotes (ppr f) \end{code} Note [Activation pragmas for SPECIALISE] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ From a user SPECIALISE pragma for f, we generate a) A top-level binding spec_fn = rhs b) A RULE f dOrd = spec_fn We need two pragma-like things: * spec_fn's inline pragma: inherited from f's inline pragma (ignoring activation on SPEC), unless overriden by SPEC INLINE * Activation of RULE: from SPECIALISE pragma (if activation given) otherwise from f's inline pragma This is not obvious (see Trac #5237)! Examples Rule activation Inline prag on spec'd fn --------------------------------------------------------------------- SPEC [n] f :: ty [n] Always, or NOINLINE [n] copy f's prag NOINLINE f SPEC [n] f :: ty [n] NOINLINE copy f's prag NOINLINE [k] f SPEC [n] f :: ty [n] NOINLINE [k] copy f's prag INLINE [k] f SPEC [n] f :: ty [n] INLINE [k] copy f's prag SPEC INLINE [n] f :: ty [n] INLINE [n] (ignore INLINE prag on f, same activation for rule and spec'd fn) NOINLINE [k] f SPEC f :: ty [n] INLINE [k] %************************************************************************ %* * \subsection{Adding inline pragmas} %* * %************************************************************************ \begin{code} decomposeRuleLhs :: [Var] -> CoreExpr -> Either SDoc ([Var], Id, [CoreExpr]) -- Take apart the LHS of a RULE. It's supposed to look like -- /\a. f a Int dOrdInt -- or /\a.\d:Ord a. let { dl::Ord [a] = dOrdList a d } in f [a] dl -- That is, the RULE binders are lambda-bound -- Returns Nothing if the LHS isn't of the expected shape decomposeRuleLhs bndrs lhs = -- Note [Simplifying the left-hand side of a RULE] case collectArgs opt_lhs of (Var fn, args) -> check_bndrs fn args (Case scrut bndr ty [(DEFAULT, _, body)], args) | isDeadBinder bndr -- Note [Matching seqId] -> check_bndrs seqId (args' ++ args) where args' = [Type (idType bndr), Type ty, scrut, body] _other -> Left bad_shape_msg where opt_lhs = simpleOptExpr lhs check_bndrs fn args | null (dead_bndrs) = Right (extra_dict_bndrs ++ bndrs, fn, args) | otherwise = Left (vcat (map dead_msg dead_bndrs)) where arg_fvs = exprsFreeVars args -- Check for dead binders: Note [Unused spec binders] dead_bndrs = filterOut (`elemVarSet` arg_fvs) bndrs -- Add extra dict binders: Note [Constant rule dicts] extra_dict_bndrs = [ mkLocalId (localiseName (idName d)) (idType d) | d <- varSetElems (arg_fvs `delVarSetList` bndrs) , isDictId d] bad_shape_msg = hang (ptext (sLit "RULE left-hand side too complicated to desugar")) 2 (ppr opt_lhs) dead_msg bndr = hang (sep [ ptext (sLit "Forall'd") <+> pp_bndr bndr , ptext (sLit "is not bound in RULE lhs")]) 2 (ppr opt_lhs) pp_bndr bndr | isTyVar bndr = ptext (sLit "type variable") <+> quotes (ppr bndr) | Just pred <- evVarPred_maybe bndr = ptext (sLit "constraint") <+> quotes (ppr pred) | otherwise = ptext (sLit "variable") <+> quotes (ppr bndr) \end{code} Note [Simplifying the left-hand side of a RULE] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ simpleOptExpr occurrence-analyses and simplifies the lhs and thereby (a) sorts dict bindings into NonRecs and inlines them (b) substitute trivial lets so that they don't get in the way Note that we substitute the function too; we might have this as a LHS: let f71 = M.f Int in f71 (c) does eta reduction For (c) consider the fold/build rule, which without simplification looked like: fold k z (build (/\a. g a)) ==> ... This doesn't match unless you do eta reduction on the build argument. Similarly for a LHS like augment g (build h) we do not want to get augment (\a. g a) (build h) otherwise we don't match when given an argument like augment (\a. h a a) (build h) NB: tcSimplifyRuleLhs is very careful not to generate complicated dictionary expressions that we might have to match Note [Matching seqId] ~~~~~~~~~~~~~~~~~~~ The desugarer turns (seq e r) into (case e of _ -> r), via a special-case hack and this code turns it back into an application of seq! See Note [Rules for seq] in MkId for the details. Note [Unused spec binders] ~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider f :: a -> a {-# SPECIALISE f :: Eq a => a -> a #-} It's true that this *is* a more specialised type, but the rule we get is something like this: f_spec d = f RULE: f = f_spec d Note that the rule is bogus, becuase it mentions a 'd' that is not bound on the LHS! But it's a silly specialisation anyway, becuase the constraint is unused. We could bind 'd' to (error "unused") but it seems better to reject the program because it's almost certainly a mistake. That's what the isDeadBinder call detects. Note [Constant rule dicts] ~~~~~~~~~~~~~~~~~~~~~~~ When the LHS of a specialisation rule, (/\as\ds. f es) has a free dict, which is presumably in scope at the function definition site, we can quantify over it too. *Any* dict with that type will do. So for example when you have f :: Eq a => a -> a f = {-# SPECIALISE f :: Int -> Int #-} Then we get the SpecPrag SpecPrag (f Int dInt) And from that we want the rule RULE forall dInt. f Int dInt = f_spec f_spec = let f = in f Int dInt But be careful! That dInt might be GHC.Base.$fOrdInt, which is an External Name, and you can't bind them in a lambda or forall without getting things confused. Likewise it might have an InlineRule or something, which would be utterly bogus. So we really make a fresh Id, with the same unique and type as the old one, but with an Internal name and no IdInfo. %************************************************************************ %* * Desugaring evidence %* * %************************************************************************ \begin{code} dsHsWrapper :: MonadThings m => HsWrapper -> CoreExpr -> m CoreExpr dsHsWrapper WpHole e = return e dsHsWrapper (WpTyApp ty) e = return $ App e (Type ty) dsHsWrapper (WpLet ev_binds) e = do bs <- dsTcEvBinds ev_binds return (mkCoreLets bs e) dsHsWrapper (WpCompose c1 c2) e = dsHsWrapper c1 =<< dsHsWrapper c2 e dsHsWrapper (WpCast co) e = return $ dsTcCoercion co (mkCast e) dsHsWrapper (WpEvLam ev) e = return $ Lam ev e dsHsWrapper (WpTyLam tv) e = return $ Lam tv e dsHsWrapper (WpEvApp evtrm) e = liftM (App e) (dsEvTerm evtrm) -------------------------------------- dsTcEvBinds :: MonadThings m => TcEvBinds -> m [CoreBind] dsTcEvBinds (TcEvBinds {}) = panic "dsEvBinds" -- Zonker has got rid of this dsTcEvBinds (EvBinds bs) = dsEvBinds bs dsEvBinds :: MonadThings m => Bag EvBind -> m [CoreBind] dsEvBinds bs = mapM ds_scc (sccEvBinds bs) where ds_scc (AcyclicSCC (EvBind v r)) = liftM (NonRec v) (dsEvTerm r) ds_scc (CyclicSCC bs) = liftM Rec (mapM ds_pair bs) ds_pair (EvBind v r) = liftM ((,) v) (dsEvTerm r) sccEvBinds :: Bag EvBind -> [SCC EvBind] sccEvBinds bs = stronglyConnCompFromEdgedVertices edges where edges :: [(EvBind, EvVar, [EvVar])] edges = foldrBag ((:) . mk_node) [] bs mk_node :: EvBind -> (EvBind, EvVar, [EvVar]) mk_node b@(EvBind var term) = (b, var, evVarsOfTerm term) --------------------------------------- dsEvTerm :: MonadThings m => EvTerm -> m CoreExpr dsEvTerm (EvId v) = return (Var v) dsEvTerm (EvCast v co) = return $ dsTcCoercion co $ mkCast (Var v) -- 'v' is always a lifted evidence variable so it is -- unnecessary to call varToCoreExpr v here. dsEvTerm (EvKindCast v co) = return $ dsTcCoercion co $ (\_ -> Var v) dsEvTerm (EvDFunApp df tys vars) = return (Var df `mkTyApps` tys `mkVarApps` vars) dsEvTerm (EvCoercion co) = return $ dsTcCoercion co mkEqBox dsEvTerm (EvTupleSel v n) = ASSERT( isTupleTyCon tc ) return $ Case (Var v) (mkWildValBinder (varType v)) (tys !! n) [(DataAlt dc, xs, Var v')] where (tc, tys) = splitTyConApp (evVarPred v) Just [dc] = tyConDataCons_maybe tc v' = v `setVarType` ty_want xs = map mkWildValBinder tys_before ++ v' : map mkWildValBinder tys_after (tys_before, ty_want:tys_after) = splitAt n tys dsEvTerm (EvTupleMk vs) = return $ Var (dataConWorkId dc) `mkTyApps` tys `mkVarApps` vs where dc = tupleCon ConstraintTuple (length vs) tys = map varType vs dsEvTerm (EvSuperClass d n) = return $ Var sc_sel_id `mkTyApps` tys `App` Var d where sc_sel_id = classSCSelId cls n -- Zero-indexed (cls, tys) = getClassPredTys (evVarPred d) dsEvTerm (EvDelayedError ty msg) = return $ Var errorId `mkTyApps` [ty] `mkApps` [litMsg] where errorId = rUNTIME_ERROR_ID litMsg = Lit (MachStr msg) dsEvTerm (EvLit l) = case l of EvNum n -> mkIntegerExpr n EvStr s -> mkStringExprFS s --------------------------------------- dsTcCoercion :: TcCoercion -> (Coercion -> CoreExpr) -> CoreExpr -- This is the crucial function that moves -- from TcCoercions to Coercions; see Note [TcCoercions] in Coercion -- e.g. dsTcCoercion (trans g1 g2) k -- = case g1 of EqBox g1# -> -- case g2 of EqBox g2# -> -- k (trans g1# g2#) dsTcCoercion co thing_inside = foldr wrap_in_case result_expr eqvs_covs where result_expr = thing_inside (ds_tc_coercion subst co) result_ty = exprType result_expr -- We use the same uniques for the EqVars and the CoVars, and just change -- the type. So the CoVars shadow the EqVars eqvs_covs :: [(EqVar,CoVar)] eqvs_covs = [(eqv, eqv `setIdType` mkCoercionType ty1 ty2) | eqv <- varSetElems (coVarsOfTcCo co) , let (ty1, ty2) = getEqPredTys (evVarPred eqv)] subst = mkCvSubst emptyInScopeSet [(eqv, mkCoVarCo cov) | (eqv, cov) <- eqvs_covs] wrap_in_case (eqv, cov) body = Case (Var eqv) eqv result_ty [(DataAlt eqBoxDataCon, [cov], body)] ds_tc_coercion :: CvSubst -> TcCoercion -> Coercion -- If the incoming TcCoercion if of type (a ~ b), -- the result is of type (a ~# b) -- The VarEnv maps EqVars of type (a ~ b) to Coercions of type (a ~# b) -- No need for InScope set etc because the ds_tc_coercion subst tc_co = go tc_co where go (TcRefl ty) = Refl (Coercion.substTy subst ty) go (TcTyConAppCo tc cos) = mkTyConAppCo tc (map go cos) go (TcAppCo co1 co2) = mkAppCo (go co1) (go co2) go (TcForAllCo tv co) = mkForAllCo tv' (ds_tc_coercion subst' co) where (subst', tv') = Coercion.substTyVarBndr subst tv go (TcAxiomInstCo ax tys) = mkAxInstCo ax (map (Coercion.substTy subst) tys) go (TcSymCo co) = mkSymCo (go co) go (TcTransCo co1 co2) = mkTransCo (go co1) (go co2) go (TcNthCo n co) = mkNthCo n (go co) go (TcInstCo co ty) = mkInstCo (go co) ty go (TcLetCo bs co) = ds_tc_coercion (ds_co_binds bs) co go (TcCoVarCo v) = ds_ev_id subst v ds_co_binds :: TcEvBinds -> CvSubst ds_co_binds (EvBinds bs) = foldl ds_scc subst (sccEvBinds bs) ds_co_binds eb@(TcEvBinds {}) = pprPanic "ds_co_binds" (ppr eb) ds_scc :: CvSubst -> SCC EvBind -> CvSubst ds_scc subst (AcyclicSCC (EvBind v ev_term)) = extendCvSubstAndInScope subst v (ds_ev_term subst ev_term) ds_scc _ (CyclicSCC other) = pprPanic "ds_scc:cyclic" (ppr other $$ ppr tc_co) ds_ev_term :: CvSubst -> EvTerm -> Coercion ds_ev_term subst (EvCoercion tc_co) = ds_tc_coercion subst tc_co ds_ev_term subst (EvId v) = ds_ev_id subst v ds_ev_term _ other = pprPanic "ds_ev_term" (ppr other $$ ppr tc_co) ds_ev_id :: CvSubst -> EqVar -> Coercion ds_ev_id subst v | Just co <- Coercion.lookupCoVar subst v = co | otherwise = pprPanic "ds_tc_coercion" (ppr v $$ ppr tc_co) \end{code}