% % (c) The University of Glasgow 2006 % (c) The AQUA Project, Glasgow University, 1998 % Desugaring foreign declarations (see also DsCCall). \begin{code} module DsForeign ( dsForeigns ) where #include "HsVersions.h" import TcRnMonad -- temp import CoreSyn import DsCCall import DsMonad import HsSyn import DataCon import MachOp import SMRep import CoreUtils import Id import Literal import Module import Name import Type import TyCon import Coercion import TcType import Var import HscTypes import ForeignCall import TysWiredIn import TysPrim import PrelNames import BasicTypes import SrcLoc import Outputable import FastString import Config import Constants import Data.Maybe import Data.List \end{code} Desugaring of @foreign@ declarations is naturally split up into parts, an @import@ and an @export@ part. A @foreign import@ declaration \begin{verbatim} foreign import cc nm f :: prim_args -> IO prim_res \end{verbatim} is the same as \begin{verbatim} f :: prim_args -> IO prim_res f a1 ... an = _ccall_ nm cc a1 ... an \end{verbatim} so we reuse the desugaring code in @DsCCall@ to deal with these. \begin{code} type Binding = (Id, CoreExpr) -- No rec/nonrec structure; -- the occurrence analyser will sort it all out dsForeigns :: [LForeignDecl Id] -> DsM (ForeignStubs, [Binding]) dsForeigns [] = return (NoStubs, []) dsForeigns fos = do fives <- mapM do_ldecl fos let (hs, cs, idss, bindss) = unzip4 fives fe_ids = concat idss fe_init_code = map foreignExportInitialiser fe_ids -- return (ForeignStubs (vcat hs) (vcat cs $$ vcat fe_init_code), (concat bindss)) where do_ldecl (L loc decl) = putSrcSpanDs loc (do_decl decl) do_decl (ForeignImport id _ spec) = do traceIf (text "fi start" <+> ppr id) (bs, h, c) <- dsFImport (unLoc id) spec traceIf (text "fi end" <+> ppr id) return (h, c, [], bs) do_decl (ForeignExport (L _ id) _ (CExport (CExportStatic ext_nm cconv))) = do (h, c, _, _) <- dsFExport id (idType id) ext_nm cconv False return (h, c, [id], []) do_decl d = pprPanic "dsForeigns/do_decl" (ppr d) \end{code} %************************************************************************ %* * \subsection{Foreign import} %* * %************************************************************************ Desugaring foreign imports is just the matter of creating a binding that on its RHS unboxes its arguments, performs the external call (using the @CCallOp@ primop), before boxing the result up and returning it. However, we create a worker/wrapper pair, thus: foreign import f :: Int -> IO Int ==> f x = IO ( \s -> case x of { I# x# -> case fw s x# of { (# s1, y# #) -> (# s1, I# y# #)}}) fw s x# = ccall f s x# The strictness/CPR analyser won't do this automatically because it doesn't look inside returned tuples; but inlining this wrapper is a Really Good Idea because it exposes the boxing to the call site. \begin{code} dsFImport :: Id -> ForeignImport -> DsM ([Binding], SDoc, SDoc) dsFImport id (CImport cconv safety _ _ spec) = do (ids, h, c) <- dsCImport id spec cconv safety return (ids, h, c) -- FIXME: the `lib' field is needed for .NET ILX generation when invoking -- routines that are external to the .NET runtime, but GHC doesn't -- support such calls yet; if `nullFastString lib', the value was not given dsFImport id (DNImport spec) = do (ids, h, c) <- dsFCall id (DNCall spec) return (ids, h, c) dsCImport :: Id -> CImportSpec -> CCallConv -> Safety -> DsM ([Binding], SDoc, SDoc) dsCImport id (CLabel cid) cconv _ = do let ty = idType id (resTy, foRhs) <- resultWrapper ty ASSERT(fromJust resTy `coreEqType` addrPrimTy) -- typechecker ensures this let rhs = foRhs (mkLit (MachLabel cid stdcall_info)) stdcall_info = fun_type_arg_stdcall_info cconv ty in return ([(id, rhs)], empty, empty) dsCImport id (CFunction target) cconv safety = dsFCall id (CCall (CCallSpec target cconv safety)) dsCImport id CWrapper cconv _ = dsFExportDynamic id cconv -- For stdcall labels, if the type was a FunPtr or newtype thereof, -- then we need to calculate the size of the arguments in order to add -- the @n suffix to the label. fun_type_arg_stdcall_info :: CCallConv -> Type -> Maybe Int fun_type_arg_stdcall_info StdCallConv ty | Just (tc,[arg_ty]) <- splitTyConApp_maybe (repType ty), tyConUnique tc == funPtrTyConKey = let (_tvs,sans_foralls) = tcSplitForAllTys arg_ty (fe_arg_tys, _orig_res_ty) = tcSplitFunTys sans_foralls in Just $ sum (map (machRepByteWidth . typeMachRep . getPrimTyOf) fe_arg_tys) fun_type_arg_stdcall_info _other_conv _ = Nothing \end{code} %************************************************************************ %* * \subsection{Foreign calls} %* * %************************************************************************ \begin{code} dsFCall :: Id -> ForeignCall -> DsM ([(Id, Expr TyVar)], SDoc, SDoc) dsFCall fn_id fcall = do let ty = idType fn_id (tvs, fun_ty) = tcSplitForAllTys ty (arg_tys, io_res_ty) = tcSplitFunTys fun_ty -- Must use tcSplit* functions because we want to -- see that (IO t) in the corner args <- newSysLocalsDs arg_tys (val_args, arg_wrappers) <- mapAndUnzipM unboxArg (map Var args) let work_arg_ids = [v | Var v <- val_args] -- All guaranteed to be vars forDotnet = case fcall of DNCall{} -> True _ -> False topConDs | forDotnet = Just <$> dsLookupGlobalId checkDotnetResName | otherwise = return Nothing augmentResultDs | forDotnet = do return (\ (mb_res_ty, resWrap) -> case mb_res_ty of Nothing -> (Just (mkTyConApp (tupleTyCon Unboxed 1) [ addrPrimTy ]), resWrap) Just x -> (Just (mkTyConApp (tupleTyCon Unboxed 2) [ x, addrPrimTy ]), resWrap)) | otherwise = return id augment <- augmentResultDs topCon <- topConDs (ccall_result_ty, res_wrapper) <- boxResult augment topCon io_res_ty ccall_uniq <- newUnique work_uniq <- newUnique let -- Build the worker worker_ty = mkForAllTys tvs (mkFunTys (map idType work_arg_ids) ccall_result_ty) the_ccall_app = mkFCall ccall_uniq fcall val_args ccall_result_ty work_rhs = mkLams tvs (mkLams work_arg_ids the_ccall_app) work_id = mkSysLocal (fsLit "$wccall") work_uniq worker_ty -- Build the wrapper work_app = mkApps (mkVarApps (Var work_id) tvs) val_args wrapper_body = foldr ($) (res_wrapper work_app) arg_wrappers wrap_rhs = mkInlineMe (mkLams (tvs ++ args) wrapper_body) return ([(work_id, work_rhs), (fn_id, wrap_rhs)], empty, empty) \end{code} %************************************************************************ %* * \subsection{Foreign export} %* * %************************************************************************ The function that does most of the work for `@foreign export@' declarations. (see below for the boilerplate code a `@foreign export@' declaration expands into.) For each `@foreign export foo@' in a module M we generate: \begin{itemize} \item a C function `@foo@', which calls \item a Haskell stub `@M.$ffoo@', which calls \end{itemize} the user-written Haskell function `@M.foo@'. \begin{code} dsFExport :: Id -- Either the exported Id, -- or the foreign-export-dynamic constructor -> Type -- The type of the thing callable from C -> CLabelString -- The name to export to C land -> CCallConv -> Bool -- True => foreign export dynamic -- so invoke IO action that's hanging off -- the first argument's stable pointer -> DsM ( SDoc -- contents of Module_stub.h , SDoc -- contents of Module_stub.c , String -- string describing type to pass to createAdj. , Int -- size of args to stub function ) dsFExport fn_id ty ext_name cconv isDyn= do let (_tvs,sans_foralls) = tcSplitForAllTys ty (fe_arg_tys', orig_res_ty) = tcSplitFunTys sans_foralls -- We must use tcSplits here, because we want to see -- the (IO t) in the corner of the type! fe_arg_tys | isDyn = tail fe_arg_tys' | otherwise = fe_arg_tys' -- Look at the result type of the exported function, orig_res_ty -- If it's IO t, return (t, True) -- If it's plain t, return (t, False) (res_ty, -- t is_IO_res_ty) <- -- Bool case tcSplitIOType_maybe orig_res_ty of Just (_ioTyCon, res_ty, _co) -> return (res_ty, True) -- The function already returns IO t -- ToDo: what about the coercion? Nothing -> return (orig_res_ty, False) -- The function returns t return $ mkFExportCBits ext_name (if isDyn then Nothing else Just fn_id) fe_arg_tys res_ty is_IO_res_ty cconv \end{code} @foreign import "wrapper"@ (previously "foreign export dynamic") lets you dress up Haskell IO actions of some fixed type behind an externally callable interface (i.e., as a C function pointer). Useful for callbacks and stuff. \begin{verbatim} type Fun = Bool -> Int -> IO Int foreign import "wrapper" f :: Fun -> IO (FunPtr Fun) -- Haskell-visible constructor, which is generated from the above: -- SUP: No check for NULL from createAdjustor anymore??? f :: Fun -> IO (FunPtr Fun) f cback = bindIO (newStablePtr cback) (\StablePtr sp# -> IO (\s1# -> case _ccall_ createAdjustor cconv sp# ``f_helper'' s1# of (# s2#, a# #) -> (# s2#, A# a# #))) foreign import "&f_helper" f_helper :: FunPtr (StablePtr Fun -> Fun) -- and the helper in C: f_helper(StablePtr s, HsBool b, HsInt i) { rts_evalIO(rts_apply(rts_apply(deRefStablePtr(s), rts_mkBool(b)), rts_mkInt(i))); } \end{verbatim} \begin{code} dsFExportDynamic :: Id -> CCallConv -> DsM ([Binding], SDoc, SDoc) dsFExportDynamic id cconv = do fe_id <- newSysLocalDs ty mod <- getModuleDs let -- hack: need to get at the name of the C stub we're about to generate. fe_nm = mkFastString (unpackFS (zEncodeFS (moduleNameFS (moduleName mod))) ++ "_" ++ toCName fe_id) cback <- newSysLocalDs arg_ty newStablePtrId <- dsLookupGlobalId newStablePtrName stable_ptr_tycon <- dsLookupTyCon stablePtrTyConName let stable_ptr_ty = mkTyConApp stable_ptr_tycon [arg_ty] export_ty = mkFunTy stable_ptr_ty arg_ty bindIOId <- dsLookupGlobalId bindIOName stbl_value <- newSysLocalDs stable_ptr_ty (h_code, c_code, typestring, args_size) <- dsFExport id export_ty fe_nm cconv True let {- The arguments to the external function which will create a little bit of (template) code on the fly for allowing the (stable pointed) Haskell closure to be entered using an external calling convention (stdcall, ccall). -} adj_args = [ mkIntLitInt (ccallConvToInt cconv) , Var stbl_value , mkLit (MachLabel fe_nm mb_sz_args) , mkLit (mkStringLit typestring) ] -- name of external entry point providing these services. -- (probably in the RTS.) adjustor = fsLit "createAdjustor" -- Determine the number of bytes of arguments to the stub function, -- so that we can attach the '@N' suffix to its label if it is a -- stdcall on Windows. mb_sz_args = case cconv of StdCallConv -> Just args_size _ -> Nothing ccall_adj <- dsCCall adjustor adj_args PlayRisky (mkTyConApp io_tc [res_ty]) -- PlayRisky: the adjustor doesn't allocate in the Haskell heap or do a callback let io_app = mkLams tvs $ Lam cback $ mkCoerceI (mkSymCoI co) $ mkApps (Var bindIOId) [ Type stable_ptr_ty , Type res_ty , mkApps (Var newStablePtrId) [ Type arg_ty, Var cback ] , Lam stbl_value ccall_adj ] fed = (id `setInlinePragma` NeverActive, io_app) -- Never inline the f.e.d. function, because the litlit -- might not be in scope in other modules. return ([fed], h_code, c_code) where ty = idType id (tvs,sans_foralls) = tcSplitForAllTys ty ([arg_ty], fn_res_ty) = tcSplitFunTys sans_foralls Just (io_tc, res_ty, co) = tcSplitIOType_maybe fn_res_ty -- Must have an IO type; hence Just -- co : fn_res_ty ~ IO res_ty toCName :: Id -> String toCName i = showSDoc (pprCode CStyle (ppr (idName i))) \end{code} %* % \subsection{Generating @foreign export@ stubs} % %* For each @foreign export@ function, a C stub function is generated. The C stub constructs the application of the exported Haskell function using the hugs/ghc rts invocation API. \begin{code} mkFExportCBits :: FastString -> Maybe Id -- Just==static, Nothing==dynamic -> [Type] -> Type -> Bool -- True <=> returns an IO type -> CCallConv -> (SDoc, SDoc, String, -- the argument reps Int -- total size of arguments ) mkFExportCBits c_nm maybe_target arg_htys res_hty is_IO_res_ty cc = (header_bits, c_bits, type_string, sum [ machRepByteWidth rep | (_,_,_,rep) <- aug_arg_info] -- all the args ) where -- list the arguments to the C function arg_info :: [(SDoc, -- arg name SDoc, -- C type Type, -- Haskell type MachRep)] -- the MachRep arg_info = [ let stg_type = showStgType ty in (arg_cname n stg_type, stg_type, ty, typeMachRep (getPrimTyOf ty)) | (ty,n) <- zip arg_htys [1::Int ..] ] arg_cname n stg_ty | libffi = char '*' <> parens (stg_ty <> char '*') <> ptext (sLit "args") <> brackets (int (n-1)) | otherwise = text ('a':show n) -- generate a libffi-style stub if this is a "wrapper" and libffi is enabled libffi = cLibFFI && isNothing maybe_target type_string -- libffi needs to know the result type too: | libffi = primTyDescChar res_hty : arg_type_string | otherwise = arg_type_string arg_type_string = [primTyDescChar ty | (_,_,ty,_) <- arg_info] -- just the real args -- add some auxiliary args; the stable ptr in the wrapper case, and -- a slot for the dummy return address in the wrapper + ccall case aug_arg_info | isNothing maybe_target = stable_ptr_arg : insertRetAddr cc arg_info | otherwise = arg_info stable_ptr_arg = (text "the_stableptr", text "StgStablePtr", undefined, typeMachRep (mkStablePtrPrimTy alphaTy)) -- stuff to do with the return type of the C function res_hty_is_unit = res_hty `coreEqType` unitTy -- Look through any newtypes cResType | res_hty_is_unit = text "void" | otherwise = showStgType res_hty -- Now we can cook up the prototype for the exported function. pprCconv = case cc of CCallConv -> empty StdCallConv -> text (ccallConvAttribute cc) CmmCallConv -> panic "mkFExportCBits/pprCconv CmmCallConv" header_bits = ptext (sLit "extern") <+> fun_proto <> semi fun_args | null aug_arg_info = text "void" | otherwise = hsep $ punctuate comma $ map (\(nm,ty,_,_) -> ty <+> nm) aug_arg_info fun_proto | libffi = ptext (sLit "void") <+> ftext c_nm <> parens (ptext (sLit "void *cif STG_UNUSED, void* resp, void** args, void* the_stableptr")) | otherwise = cResType <+> pprCconv <+> ftext c_nm <> parens fun_args -- the target which will form the root of what we ask rts_evalIO to run the_cfun = case maybe_target of Nothing -> text "(StgClosure*)deRefStablePtr(the_stableptr)" Just hs_fn -> char '&' <> ppr hs_fn <> text "_closure" cap = text "cap" <> comma -- the expression we give to rts_evalIO expr_to_run = foldl appArg the_cfun arg_info -- NOT aug_arg_info where appArg acc (arg_cname, _, arg_hty, _) = text "rts_apply" <> parens (cap <> acc <> comma <> mkHObj arg_hty <> parens (cap <> arg_cname)) -- various other bits for inside the fn declareResult = text "HaskellObj ret;" declareCResult | res_hty_is_unit = empty | otherwise = cResType <+> text "cret;" assignCResult | res_hty_is_unit = empty | otherwise = text "cret=" <> unpackHObj res_hty <> parens (text "ret") <> semi -- an extern decl for the fn being called extern_decl = case maybe_target of Nothing -> empty Just hs_fn -> text "extern StgClosure " <> ppr hs_fn <> text "_closure" <> semi -- finally, the whole darn thing c_bits = space $$ extern_decl $$ fun_proto $$ vcat [ lbrace , ptext (sLit "Capability *cap;") , declareResult , declareCResult , text "cap = rts_lock();" -- create the application + perform it. , ptext (sLit "cap=rts_evalIO") <> parens ( cap <> ptext (sLit "rts_apply") <> parens ( cap <> text "(HaskellObj)" <> ptext (if is_IO_res_ty then (sLit "runIO_closure") else (sLit "runNonIO_closure")) <> comma <> expr_to_run ) <+> comma <> text "&ret" ) <> semi , ptext (sLit "rts_checkSchedStatus") <> parens (doubleQuotes (ftext c_nm) <> comma <> text "cap") <> semi , assignCResult , ptext (sLit "rts_unlock(cap);") , if res_hty_is_unit then empty else if libffi then char '*' <> parens (cResType <> char '*') <> ptext (sLit "resp = cret;") else ptext (sLit "return cret;") , rbrace ] foreignExportInitialiser :: Id -> SDoc foreignExportInitialiser hs_fn = -- Initialise foreign exports by registering a stable pointer from an -- __attribute__((constructor)) function. -- The alternative is to do this from stginit functions generated in -- codeGen/CodeGen.lhs; however, stginit functions have a negative impact -- on binary sizes and link times because the static linker will think that -- all modules that are imported directly or indirectly are actually used by -- the program. -- (this is bad for big umbrella modules like Graphics.Rendering.OpenGL) vcat [ text "static void stginit_export_" <> ppr hs_fn <> text "() __attribute__((constructor));" , text "static void stginit_export_" <> ppr hs_fn <> text "()" , braces (text "getStablePtr" <> parens (text "(StgPtr) &" <> ppr hs_fn <> text "_closure") <> semi) ] -- NB. the calculation here isn't strictly speaking correct. -- We have a primitive Haskell type (eg. Int#, Double#), and -- we want to know the size, when passed on the C stack, of -- the associated C type (eg. HsInt, HsDouble). We don't have -- this information to hand, but we know what GHC's conventions -- are for passing around the primitive Haskell types, so we -- use that instead. I hope the two coincide --SDM typeMachRep :: Type -> MachRep typeMachRep ty = argMachRep (typeCgRep ty) mkHObj :: Type -> SDoc mkHObj t = text "rts_mk" <> text (showFFIType t) unpackHObj :: Type -> SDoc unpackHObj t = text "rts_get" <> text (showFFIType t) showStgType :: Type -> SDoc showStgType t = text "Hs" <> text (showFFIType t) showFFIType :: Type -> String showFFIType t = getOccString (getName tc) where tc = case tcSplitTyConApp_maybe (repType t) of Just (tc,_) -> tc Nothing -> pprPanic "showFFIType" (ppr t) insertRetAddr :: CCallConv -> [(SDoc, SDoc, Type, MachRep)] -> [(SDoc, SDoc, Type, MachRep)] #if !defined(x86_64_TARGET_ARCH) insertRetAddr CCallConv args = ret_addr_arg : args insertRetAddr _ args = args #else -- On x86_64 we insert the return address after the 6th -- integer argument, because this is the point at which we -- need to flush a register argument to the stack (See rts/Adjustor.c for -- details). insertRetAddr CCallConv args = go 0 args where go :: Int -> [(SDoc, SDoc, Type, MachRep)] -> [(SDoc, SDoc, Type, MachRep)] go 6 args = ret_addr_arg : args go n (arg@(_,_,_,rep):args) | I64 <- rep = arg : go (n+1) args | otherwise = arg : go n args go _ [] = [] insertRetAddr _ args = args #endif ret_addr_arg :: (SDoc, SDoc, Type, MachRep) ret_addr_arg = (text "original_return_addr", text "void*", undefined, typeMachRep addrPrimTy) -- This function returns the primitive type associated with the boxed -- type argument to a foreign export (eg. Int ==> Int#). getPrimTyOf :: Type -> Type getPrimTyOf ty | isBoolTy rep_ty = intPrimTy -- Except for Bool, the types we are interested in have a single constructor -- with a single primitive-typed argument (see TcType.legalFEArgTyCon). | otherwise = case splitProductType_maybe rep_ty of Just (_, _, data_con, [prim_ty]) -> ASSERT(dataConSourceArity data_con == 1) ASSERT2(isUnLiftedType prim_ty, ppr prim_ty) prim_ty _other -> pprPanic "DsForeign.getPrimTyOf" (ppr ty) where rep_ty = repType ty -- represent a primitive type as a Char, for building a string that -- described the foreign function type. The types are size-dependent, -- e.g. 'W' is a signed 32-bit integer. primTyDescChar :: Type -> Char primTyDescChar ty | ty `coreEqType` unitTy = 'v' | otherwise = case typePrimRep (getPrimTyOf ty) of IntRep -> signed_word WordRep -> unsigned_word Int64Rep -> 'L' Word64Rep -> 'l' AddrRep -> 'p' FloatRep -> 'f' DoubleRep -> 'd' _ -> pprPanic "primTyDescChar" (ppr ty) where (signed_word, unsigned_word) | wORD_SIZE == 4 = ('W','w') | wORD_SIZE == 8 = ('L','l') | otherwise = panic "primTyDescChar" \end{code}