% % (c) The University of Glasgow 2006 % (c) The AQUA Project, Glasgow University, 1998 % Desugaring foreign declarations (see also DsCCall). \begin{code} {-# OPTIONS -w #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and fix -- any warnings in the module. See -- http://hackage.haskell.org/trac/ghc/wiki/CodingStyle#Warnings -- for details module DsForeign ( dsForeigns ) where #include "HsVersions.h" import TcRnMonad -- temp import CoreSyn import DsCCall import DsMonad import HsSyn import DataCon import MachOp import SMRep import CoreUtils import Id import Literal import Module import Name import Type import Coercion import TcType import HscTypes import ForeignCall import TysWiredIn import TysPrim import PrelNames import BasicTypes import SrcLoc import Outputable import FastString import Data.Maybe import Data.List \end{code} Desugaring of @foreign@ declarations is naturally split up into parts, an @import@ and an @export@ part. A @foreign import@ declaration \begin{verbatim} foreign import cc nm f :: prim_args -> IO prim_res \end{verbatim} is the same as \begin{verbatim} f :: prim_args -> IO prim_res f a1 ... an = _ccall_ nm cc a1 ... an \end{verbatim} so we reuse the desugaring code in @DsCCall@ to deal with these. \begin{code} type Binding = (Id, CoreExpr) -- No rec/nonrec structure; -- the occurrence analyser will sort it all out dsForeigns :: [LForeignDecl Id] -> DsM (ForeignStubs, [Binding]) dsForeigns [] = returnDs (NoStubs, []) dsForeigns fos = do fives <- mapM do_ldecl fos let (hs, cs, hdrs, idss, bindss) = unzip5 fives fe_ids = concat idss fe_init_code = map foreignExportInitialiser fe_ids -- return (ForeignStubs (vcat hs) (vcat cs $$ vcat fe_init_code) (nub (concat hdrs)), (concat bindss)) where do_ldecl (L loc decl) = putSrcSpanDs loc (do_decl decl) do_decl (ForeignImport id _ spec) = traceIf (text "fi start" <+> ppr id) `thenDs` \ _ -> dsFImport (unLoc id) spec `thenDs` \ (bs, h, c, mbhd) -> traceIf (text "fi end" <+> ppr id) `thenDs` \ _ -> returnDs (h, c, maybeToList mbhd, [], bs) do_decl (ForeignExport (L _ id) _ (CExport (CExportStatic ext_nm cconv))) = dsFExport id (idType id) ext_nm cconv False `thenDs` \(h, c, _, _) -> returnDs (h, c, [], [id], []) \end{code} %************************************************************************ %* * \subsection{Foreign import} %* * %************************************************************************ Desugaring foreign imports is just the matter of creating a binding that on its RHS unboxes its arguments, performs the external call (using the @CCallOp@ primop), before boxing the result up and returning it. However, we create a worker/wrapper pair, thus: foreign import f :: Int -> IO Int ==> f x = IO ( \s -> case x of { I# x# -> case fw s x# of { (# s1, y# #) -> (# s1, I# y# #)}}) fw s x# = ccall f s x# The strictness/CPR analyser won't do this automatically because it doesn't look inside returned tuples; but inlining this wrapper is a Really Good Idea because it exposes the boxing to the call site. \begin{code} dsFImport :: Id -> ForeignImport -> DsM ([Binding], SDoc, SDoc, Maybe FastString) dsFImport id (CImport cconv safety header lib spec) = dsCImport id spec cconv safety no_hdrs `thenDs` \(ids, h, c) -> returnDs (ids, h, c, if no_hdrs then Nothing else Just header) where no_hdrs = nullFS header -- FIXME: the `lib' field is needed for .NET ILX generation when invoking -- routines that are external to the .NET runtime, but GHC doesn't -- support such calls yet; if `nullFastString lib', the value was not given dsFImport id (DNImport spec) = dsFCall id (DNCall spec) True {- No headers -} `thenDs` \(ids, h, c) -> returnDs (ids, h, c, Nothing) dsCImport :: Id -> CImportSpec -> CCallConv -> Safety -> Bool -- True <=> no headers in the f.i decl -> DsM ([Binding], SDoc, SDoc) dsCImport id (CLabel cid) _ _ no_hdrs = resultWrapper (idType id) `thenDs` \ (resTy, foRhs) -> ASSERT(fromJust resTy `coreEqType` addrPrimTy) -- typechecker ensures this let rhs = foRhs (mkLit (MachLabel cid Nothing)) in returnDs ([(setImpInline no_hdrs id, rhs)], empty, empty) dsCImport id (CFunction target) cconv safety no_hdrs = dsFCall id (CCall (CCallSpec target cconv safety)) no_hdrs dsCImport id CWrapper cconv _ _ = dsFExportDynamic id cconv setImpInline :: Bool -- True <=> No #include headers -- in the foreign import declaration -> Id -> Id -- If there is a #include header in the foreign import -- we make the worker non-inlinable, because we currently -- don't keep the #include stuff in the CCallId, and hence -- it won't be visible in the importing module, which can be -- fatal. -- (The #include stuff is just collected from the foreign import -- decls in a module.) -- If you want to do cross-module inlining of the c-calls themselves, -- put the #include stuff in the package spec, not the foreign -- import decl. setImpInline True id = id setImpInline False id = id `setInlinePragma` NeverActive \end{code} %************************************************************************ %* * \subsection{Foreign calls} %* * %************************************************************************ \begin{code} dsFCall fn_id fcall no_hdrs = let ty = idType fn_id (tvs, fun_ty) = tcSplitForAllTys ty (arg_tys, io_res_ty) = tcSplitFunTys fun_ty -- Must use tcSplit* functions because we want to -- see that (IO t) in the corner in newSysLocalsDs arg_tys `thenDs` \ args -> mapAndUnzipDs unboxArg (map Var args) `thenDs` \ (val_args, arg_wrappers) -> let work_arg_ids = [v | Var v <- val_args] -- All guaranteed to be vars forDotnet = case fcall of DNCall{} -> True _ -> False topConDs | forDotnet = dsLookupGlobalId checkDotnetResName `thenDs` \ check_id -> return (Just check_id) | otherwise = return Nothing augmentResultDs | forDotnet = newSysLocalDs addrPrimTy `thenDs` \ err_res -> returnDs (\ (mb_res_ty, resWrap) -> case mb_res_ty of Nothing -> (Just (mkTyConApp (tupleTyCon Unboxed 1) [ addrPrimTy ]), resWrap) Just x -> (Just (mkTyConApp (tupleTyCon Unboxed 2) [ x, addrPrimTy ]), resWrap)) | otherwise = returnDs id in augmentResultDs `thenDs` \ augment -> topConDs `thenDs` \ topCon -> boxResult augment topCon io_res_ty `thenDs` \ (ccall_result_ty, res_wrapper) -> newUnique `thenDs` \ ccall_uniq -> newUnique `thenDs` \ work_uniq -> let -- Build the worker worker_ty = mkForAllTys tvs (mkFunTys (map idType work_arg_ids) ccall_result_ty) the_ccall_app = mkFCall ccall_uniq fcall val_args ccall_result_ty work_rhs = mkLams tvs (mkLams work_arg_ids the_ccall_app) work_id = setImpInline no_hdrs $ -- See comments with setImpInline mkSysLocal FSLIT("$wccall") work_uniq worker_ty -- Build the wrapper work_app = mkApps (mkVarApps (Var work_id) tvs) val_args wrapper_body = foldr ($) (res_wrapper work_app) arg_wrappers wrap_rhs = mkInlineMe (mkLams (tvs ++ args) wrapper_body) in returnDs ([(work_id, work_rhs), (fn_id, wrap_rhs)], empty, empty) \end{code} %************************************************************************ %* * \subsection{Foreign export} %* * %************************************************************************ The function that does most of the work for `@foreign export@' declarations. (see below for the boilerplate code a `@foreign export@' declaration expands into.) For each `@foreign export foo@' in a module M we generate: \begin{itemize} \item a C function `@foo@', which calls \item a Haskell stub `@M.$ffoo@', which calls \end{itemize} the user-written Haskell function `@M.foo@'. \begin{code} dsFExport :: Id -- Either the exported Id, -- or the foreign-export-dynamic constructor -> Type -- The type of the thing callable from C -> CLabelString -- The name to export to C land -> CCallConv -> Bool -- True => foreign export dynamic -- so invoke IO action that's hanging off -- the first argument's stable pointer -> DsM ( SDoc -- contents of Module_stub.h , SDoc -- contents of Module_stub.c , [MachRep] -- primitive arguments expected by stub function , Int -- size of args to stub function ) dsFExport fn_id ty ext_name cconv isDyn = let (_tvs,sans_foralls) = tcSplitForAllTys ty (fe_arg_tys', orig_res_ty) = tcSplitFunTys sans_foralls -- We must use tcSplits here, because we want to see -- the (IO t) in the corner of the type! fe_arg_tys | isDyn = tail fe_arg_tys' | otherwise = fe_arg_tys' in -- Look at the result type of the exported function, orig_res_ty -- If it's IO t, return (t, True) -- If it's plain t, return (t, False) (case tcSplitIOType_maybe orig_res_ty of Just (ioTyCon, res_ty, co) -> returnDs (res_ty, True) -- The function already returns IO t -- ToDo: what about the coercion? Nothing -> returnDs (orig_res_ty, False) -- The function returns t ) `thenDs` \ (res_ty, -- t is_IO_res_ty) -> -- Bool returnDs $ mkFExportCBits ext_name (if isDyn then Nothing else Just fn_id) fe_arg_tys res_ty is_IO_res_ty cconv \end{code} @foreign import "wrapper"@ (previously "foreign export dynamic") lets you dress up Haskell IO actions of some fixed type behind an externally callable interface (i.e., as a C function pointer). Useful for callbacks and stuff. \begin{verbatim} type Fun = Bool -> Int -> IO Int foreign import "wrapper" f :: Fun -> IO (FunPtr Fun) -- Haskell-visible constructor, which is generated from the above: -- SUP: No check for NULL from createAdjustor anymore??? f :: Fun -> IO (FunPtr Fun) f cback = bindIO (newStablePtr cback) (\StablePtr sp# -> IO (\s1# -> case _ccall_ createAdjustor cconv sp# ``f_helper'' s1# of (# s2#, a# #) -> (# s2#, A# a# #))) foreign import "&f_helper" f_helper :: FunPtr (StablePtr Fun -> Fun) -- and the helper in C: f_helper(StablePtr s, HsBool b, HsInt i) { rts_evalIO(rts_apply(rts_apply(deRefStablePtr(s), rts_mkBool(b)), rts_mkInt(i))); } \end{verbatim} \begin{code} dsFExportDynamic :: Id -> CCallConv -> DsM ([Binding], SDoc, SDoc) dsFExportDynamic id cconv = newSysLocalDs ty `thenDs` \ fe_id -> getModuleDs `thenDs` \ mod -> let -- hack: need to get at the name of the C stub we're about to generate. fe_nm = mkFastString (unpackFS (zEncodeFS (moduleNameFS (moduleName mod))) ++ "_" ++ toCName fe_id) in newSysLocalDs arg_ty `thenDs` \ cback -> dsLookupGlobalId newStablePtrName `thenDs` \ newStablePtrId -> dsLookupTyCon stablePtrTyConName `thenDs` \ stable_ptr_tycon -> let stable_ptr_ty = mkTyConApp stable_ptr_tycon [arg_ty] export_ty = mkFunTy stable_ptr_ty arg_ty in dsLookupGlobalId bindIOName `thenDs` \ bindIOId -> newSysLocalDs stable_ptr_ty `thenDs` \ stbl_value -> dsFExport id export_ty fe_nm cconv True `thenDs` \ (h_code, c_code, arg_reps, args_size) -> let {- The arguments to the external function which will create a little bit of (template) code on the fly for allowing the (stable pointed) Haskell closure to be entered using an external calling convention (stdcall, ccall). -} adj_args = [ mkIntLitInt (ccallConvToInt cconv) , Var stbl_value , mkLit (MachLabel fe_nm mb_sz_args) , mkLit (mkStringLit arg_type_info) ] -- name of external entry point providing these services. -- (probably in the RTS.) adjustor = FSLIT("createAdjustor") arg_type_info = map repCharCode arg_reps repCharCode F32 = 'f' repCharCode F64 = 'd' repCharCode I64 = 'l' repCharCode _ = 'i' -- Determine the number of bytes of arguments to the stub function, -- so that we can attach the '@N' suffix to its label if it is a -- stdcall on Windows. mb_sz_args = case cconv of StdCallConv -> Just args_size _ -> Nothing in dsCCall adjustor adj_args PlayRisky (mkTyConApp io_tc [res_ty]) `thenDs` \ ccall_adj -> -- PlayRisky: the adjustor doesn't allocate in the Haskell heap or do a callback let io_app = mkLams tvs $ Lam cback $ mkCoerceI (mkSymCoI co) $ mkApps (Var bindIOId) [ Type stable_ptr_ty , Type res_ty , mkApps (Var newStablePtrId) [ Type arg_ty, Var cback ] , Lam stbl_value ccall_adj ] fed = (id `setInlinePragma` NeverActive, io_app) -- Never inline the f.e.d. function, because the litlit -- might not be in scope in other modules. in returnDs ([fed], h_code, c_code) where ty = idType id (tvs,sans_foralls) = tcSplitForAllTys ty ([arg_ty], fn_res_ty) = tcSplitFunTys sans_foralls Just (io_tc, res_ty, co) = tcSplitIOType_maybe fn_res_ty -- Must have an IO type; hence Just -- co : fn_res_ty ~ IO res_ty toCName :: Id -> String toCName i = showSDoc (pprCode CStyle (ppr (idName i))) \end{code} %* % \subsection{Generating @foreign export@ stubs} % %* For each @foreign export@ function, a C stub function is generated. The C stub constructs the application of the exported Haskell function using the hugs/ghc rts invocation API. \begin{code} mkFExportCBits :: FastString -> Maybe Id -- Just==static, Nothing==dynamic -> [Type] -> Type -> Bool -- True <=> returns an IO type -> CCallConv -> (SDoc, SDoc, [MachRep], -- the argument reps Int -- total size of arguments ) mkFExportCBits c_nm maybe_target arg_htys res_hty is_IO_res_ty cc = (header_bits, c_bits, [rep | (_,_,_,rep) <- arg_info], -- just the real args sum [ machRepByteWidth rep | (_,_,_,rep) <- aug_arg_info] -- all the args ) where -- list the arguments to the C function arg_info :: [(SDoc, -- arg name SDoc, -- C type Type, -- Haskell type MachRep)] -- the MachRep arg_info = [ (text ('a':show n), showStgType ty, ty, typeMachRep (getPrimTyOf ty)) | (ty,n) <- zip arg_htys [1::Int ..] ] -- add some auxiliary args; the stable ptr in the wrapper case, and -- a slot for the dummy return address in the wrapper + ccall case aug_arg_info | isNothing maybe_target = stable_ptr_arg : insertRetAddr cc arg_info | otherwise = arg_info stable_ptr_arg = (text "the_stableptr", text "StgStablePtr", undefined, typeMachRep (mkStablePtrPrimTy alphaTy)) -- stuff to do with the return type of the C function res_hty_is_unit = res_hty `coreEqType` unitTy -- Look through any newtypes cResType | res_hty_is_unit = text "void" | otherwise = showStgType res_hty -- Now we can cook up the prototype for the exported function. pprCconv = case cc of CCallConv -> empty StdCallConv -> text (ccallConvAttribute cc) header_bits = ptext SLIT("extern") <+> fun_proto <> semi fun_proto = cResType <+> pprCconv <+> ftext c_nm <> parens (hsep (punctuate comma (map (\(nm,ty,_,_) -> ty <+> nm) aug_arg_info))) -- the target which will form the root of what we ask rts_evalIO to run the_cfun = case maybe_target of Nothing -> text "(StgClosure*)deRefStablePtr(the_stableptr)" Just hs_fn -> char '&' <> ppr hs_fn <> text "_closure" cap = text "cap" <> comma -- the expression we give to rts_evalIO expr_to_run = foldl appArg the_cfun arg_info -- NOT aug_arg_info where appArg acc (arg_cname, _, arg_hty, _) = text "rts_apply" <> parens (cap <> acc <> comma <> mkHObj arg_hty <> parens (cap <> arg_cname)) -- various other bits for inside the fn declareResult = text "HaskellObj ret;" declareCResult | res_hty_is_unit = empty | otherwise = cResType <+> text "cret;" assignCResult | res_hty_is_unit = empty | otherwise = text "cret=" <> unpackHObj res_hty <> parens (text "ret") <> semi -- an extern decl for the fn being called extern_decl = case maybe_target of Nothing -> empty Just hs_fn -> text "extern StgClosure " <> ppr hs_fn <> text "_closure" <> semi -- finally, the whole darn thing c_bits = space $$ extern_decl $$ fun_proto $$ vcat [ lbrace , text "Capability *cap;" , declareResult , declareCResult , text "cap = rts_lock();" -- create the application + perform it. , text "cap=rts_evalIO" <> parens ( cap <> text "rts_apply" <> parens ( cap <> text "(HaskellObj)" <> text (if is_IO_res_ty then "runIO_closure" else "runNonIO_closure") <> comma <> expr_to_run ) <+> comma <> text "&ret" ) <> semi , text "rts_checkSchedStatus" <> parens (doubleQuotes (ftext c_nm) <> comma <> text "cap") <> semi , assignCResult , text "rts_unlock(cap);" , if res_hty_is_unit then empty else text "return cret;" , rbrace ] foreignExportInitialiser :: Id -> SDoc foreignExportInitialiser hs_fn = -- Initialise foreign exports by registering a stable pointer from an -- __attribute__((constructor)) function. -- The alternative is to do this from stginit functions generated in -- codeGen/CodeGen.lhs; however, stginit functions have a negative impact -- on binary sizes and link times because the static linker will think that -- all modules that are imported directly or indirectly are actually used by -- the program. -- (this is bad for big umbrella modules like Graphics.Rendering.OpenGL) vcat [ text "static void stginit_export_" <> ppr hs_fn <> text "() __attribute__((constructor));" , text "static void stginit_export_" <> ppr hs_fn <> text "()" , braces (text "getStablePtr" <> parens (text "(StgPtr) &" <> ppr hs_fn <> text "_closure") <> semi) ] -- NB. the calculation here isn't strictly speaking correct. -- We have a primitive Haskell type (eg. Int#, Double#), and -- we want to know the size, when passed on the C stack, of -- the associated C type (eg. HsInt, HsDouble). We don't have -- this information to hand, but we know what GHC's conventions -- are for passing around the primitive Haskell types, so we -- use that instead. I hope the two coincide --SDM typeMachRep ty = argMachRep (typeCgRep ty) mkHObj :: Type -> SDoc mkHObj t = text "rts_mk" <> text (showFFIType t) unpackHObj :: Type -> SDoc unpackHObj t = text "rts_get" <> text (showFFIType t) showStgType :: Type -> SDoc showStgType t = text "Hs" <> text (showFFIType t) showFFIType :: Type -> String showFFIType t = getOccString (getName tc) where tc = case tcSplitTyConApp_maybe (repType t) of Just (tc,_) -> tc Nothing -> pprPanic "showFFIType" (ppr t) #if !defined(x86_64_TARGET_ARCH) insertRetAddr CCallConv args = ret_addr_arg : args insertRetAddr _ args = args #else -- On x86_64 we insert the return address after the 6th -- integer argument, because this is the point at which we -- need to flush a register argument to the stack (See rts/Adjustor.c for -- details). insertRetAddr CCallConv args = go 0 args where go 6 args = ret_addr_arg : args go n (arg@(_,_,_,rep):args) | I64 <- rep = arg : go (n+1) args | otherwise = arg : go n args go n [] = [] insertRetAddr _ args = args #endif ret_addr_arg = (text "original_return_addr", text "void*", undefined, typeMachRep addrPrimTy) -- This function returns the primitive type associated with the boxed -- type argument to a foreign export (eg. Int ==> Int#). getPrimTyOf :: Type -> Type getPrimTyOf ty | isBoolTy rep_ty = intPrimTy -- Except for Bool, the types we are interested in have a single constructor -- with a single primitive-typed argument (see TcType.legalFEArgTyCon). | otherwise = case splitProductType_maybe rep_ty of Just (_, _, data_con, [prim_ty]) -> ASSERT(dataConSourceArity data_con == 1) ASSERT2(isUnLiftedType prim_ty, ppr prim_ty) prim_ty _other -> pprPanic "DsForeign.getPrimTyOf" (ppr ty) where rep_ty = repType ty \end{code}