% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % Matching guarded right-hand-sides (GRHSs) \begin{code} {-# OPTIONS -fno-warn-incomplete-patterns #-} -- The above warning supression flag is a temporary kludge. -- While working on this module you are encouraged to remove it and fix -- any warnings in the module. See -- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings -- for details module DsGRHSs ( dsGuarded, dsGRHSs ) where #include "HsVersions.h" import {-# SOURCE #-} DsExpr ( dsLExpr, dsLocalBinds ) import {-# SOURCE #-} Match ( matchSinglePat ) import HsSyn import MkCore import CoreSyn import Var import Type import DsMonad import DsUtils import TysWiredIn import PrelNames import Name import SrcLoc import Outputable \end{code} @dsGuarded@ is used for both @case@ expressions and pattern bindings. It desugars: \begin{verbatim} | g1 -> e1 ... | gn -> en where binds \end{verbatim} producing an expression with a runtime error in the corner if necessary. The type argument gives the type of the @ei@. \begin{code} dsGuarded :: GRHSs Id -> Type -> DsM CoreExpr dsGuarded grhss rhs_ty = do match_result <- dsGRHSs PatBindRhs [] grhss rhs_ty error_expr <- mkErrorAppDs nON_EXHAUSTIVE_GUARDS_ERROR_ID rhs_ty empty extractMatchResult match_result error_expr \end{code} In contrast, @dsGRHSs@ produces a @MatchResult@. \begin{code} dsGRHSs :: HsMatchContext Name -> [Pat Id] -- These are to build a MatchContext from -> GRHSs Id -- Guarded RHSs -> Type -- Type of RHS -> DsM MatchResult dsGRHSs hs_ctx pats (GRHSs grhss binds) rhs_ty = do match_results <- mapM (dsGRHS hs_ctx pats rhs_ty) grhss let match_result1 = foldr1 combineMatchResults match_results match_result2 = adjustMatchResultDs (\e -> dsLocalBinds binds e) match_result1 -- NB: nested dsLet inside matchResult -- return match_result2 dsGRHS :: HsMatchContext Name -> [Pat Id] -> Type -> LGRHS Id -> DsM MatchResult dsGRHS hs_ctx _ rhs_ty (L _ (GRHS guards rhs)) = matchGuards (map unLoc guards) (PatGuard hs_ctx) rhs rhs_ty \end{code} %************************************************************************ %* * %* matchGuard : make a MatchResult from a guarded RHS * %* * %************************************************************************ \begin{code} matchGuards :: [Stmt Id] -- Guard -> HsStmtContext Name -- Context -> LHsExpr Id -- RHS -> Type -- Type of RHS of guard -> DsM MatchResult -- See comments with HsExpr.Stmt re what an ExprStmt means -- Here we must be in a guard context (not do-expression, nor list-comp) matchGuards [] _ rhs _ = do { core_rhs <- dsLExpr rhs ; return (cantFailMatchResult core_rhs) } -- ExprStmts must be guards -- Turn an "otherwise" guard is a no-op. This ensures that -- you don't get a "non-exhaustive eqns" message when the guards -- finish in "otherwise". -- NB: The success of this clause depends on the typechecker not -- wrapping the 'otherwise' in empty HsTyApp or HsWrap constructors -- If it does, you'll get bogus overlap warnings matchGuards (ExprStmt e _ _ _ : stmts) ctx rhs rhs_ty | Just addTicks <- isTrueLHsExpr e = do match_result <- matchGuards stmts ctx rhs rhs_ty return (adjustMatchResultDs addTicks match_result) matchGuards (ExprStmt expr _ _ _ : stmts) ctx rhs rhs_ty = do match_result <- matchGuards stmts ctx rhs rhs_ty pred_expr <- dsLExpr expr return (mkGuardedMatchResult pred_expr match_result) matchGuards (LetStmt binds : stmts) ctx rhs rhs_ty = do match_result <- matchGuards stmts ctx rhs rhs_ty return (adjustMatchResultDs (dsLocalBinds binds) match_result) -- NB the dsLet occurs inside the match_result -- Reason: dsLet takes the body expression as its argument -- so we can't desugar the bindings without the -- body expression in hand matchGuards (BindStmt pat bind_rhs _ _ : stmts) ctx rhs rhs_ty = do match_result <- matchGuards stmts ctx rhs rhs_ty core_rhs <- dsLExpr bind_rhs matchSinglePat core_rhs (StmtCtxt ctx) pat rhs_ty match_result isTrueLHsExpr :: LHsExpr Id -> Maybe (CoreExpr -> DsM CoreExpr) -- Returns Just {..} if we're sure that the expression is True -- I.e. * 'True' datacon -- * 'otherwise' Id -- * Trivial wappings of these -- The arguments to Just are any HsTicks that we have found, -- because we still want to tick then, even it they are aways evaluted. isTrueLHsExpr (L _ (HsVar v)) | v `hasKey` otherwiseIdKey || v `hasKey` getUnique trueDataConId = Just return -- trueDataConId doesn't have the same unique as trueDataCon isTrueLHsExpr (L _ (HsTick ix frees e)) | Just ticks <- isTrueLHsExpr e = Just (\x -> ticks x >>= mkTickBox ix frees) -- This encodes that the result is constant True for Hpc tick purposes; -- which is specifically what isTrueLHsExpr is trying to find out. isTrueLHsExpr (L _ (HsBinTick ixT _ e)) | Just ticks <- isTrueLHsExpr e = Just (\x -> ticks x >>= mkTickBox ixT []) isTrueLHsExpr (L _ (HsPar e)) = isTrueLHsExpr e isTrueLHsExpr _ = Nothing \end{code} Should {\em fail} if @e@ returns @D@ \begin{verbatim} f x | p <- e', let C y# = e, f y# = r1 | otherwise = r2 \end{verbatim}