{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 Desugaring list comprehensions, monad comprehensions and array comprehensions -} {-# LANGUAGE CPP, NamedFieldPuns #-} {-# LANGUAGE TypeFamilies #-} module DsListComp ( dsListComp, dsPArrComp, dsMonadComp ) where #include "HsVersions.h" import GhcPrelude import {-# SOURCE #-} DsExpr ( dsExpr, dsLExpr, dsLExprNoLP, dsLocalBinds, dsSyntaxExpr ) import HsSyn import TcHsSyn import CoreSyn import MkCore import DsMonad -- the monadery used in the desugarer import DsUtils import DynFlags import CoreUtils import Id import Type import TysWiredIn import Match import PrelNames import SrcLoc import Outputable import TcType import ListSetOps( getNth ) import Util {- List comprehensions may be desugared in one of two ways: ``ordinary'' (as you would expect if you read SLPJ's book) and ``with foldr/build turned on'' (if you read Gill {\em et al.}'s paper on the subject). There will be at least one ``qualifier'' in the input. -} dsListComp :: [ExprLStmt GhcTc] -> Type -- Type of entire list -> DsM CoreExpr dsListComp lquals res_ty = do dflags <- getDynFlags let quals = map unLoc lquals elt_ty = case tcTyConAppArgs res_ty of [elt_ty] -> elt_ty _ -> pprPanic "dsListComp" (ppr res_ty $$ ppr lquals) if not (gopt Opt_EnableRewriteRules dflags) || gopt Opt_IgnoreInterfacePragmas dflags -- Either rules are switched off, or we are ignoring what there are; -- Either way foldr/build won't happen, so use the more efficient -- Wadler-style desugaring || isParallelComp quals -- Foldr-style desugaring can't handle parallel list comprehensions then deListComp quals (mkNilExpr elt_ty) else mkBuildExpr elt_ty (\(c, _) (n, _) -> dfListComp c n quals) -- Foldr/build should be enabled, so desugar -- into foldrs and builds where -- We must test for ParStmt anywhere, not just at the head, because an extension -- to list comprehensions would be to add brackets to specify the associativity -- of qualifier lists. This is really easy to do by adding extra ParStmts into the -- mix of possibly a single element in length, so we do this to leave the possibility open isParallelComp = any isParallelStmt isParallelStmt (ParStmt {}) = True isParallelStmt _ = False -- This function lets you desugar a inner list comprehension and a list of the binders -- of that comprehension that we need in the outer comprehension into such an expression -- and the type of the elements that it outputs (tuples of binders) dsInnerListComp :: (ParStmtBlock GhcTc GhcTc) -> DsM (CoreExpr, Type) dsInnerListComp (ParStmtBlock _ stmts bndrs _) = do { let bndrs_tuple_type = mkBigCoreVarTupTy bndrs list_ty = mkListTy bndrs_tuple_type -- really use original bndrs below! ; expr <- dsListComp (stmts ++ [noLoc $ mkLastStmt (mkBigLHsVarTupId bndrs)]) list_ty ; return (expr, bndrs_tuple_type) } dsInnerListComp (XParStmtBlock{}) = panic "dsInnerListComp" -- This function factors out commonality between the desugaring strategies for GroupStmt. -- Given such a statement it gives you back an expression representing how to compute the transformed -- list and the tuple that you need to bind from that list in order to proceed with your desugaring dsTransStmt :: ExprStmt GhcTc -> DsM (CoreExpr, LPat GhcTc) dsTransStmt (TransStmt { trS_form = form, trS_stmts = stmts, trS_bndrs = binderMap , trS_by = by, trS_using = using }) = do let (from_bndrs, to_bndrs) = unzip binderMap let from_bndrs_tys = map idType from_bndrs to_bndrs_tys = map idType to_bndrs to_bndrs_tup_ty = mkBigCoreTupTy to_bndrs_tys -- Desugar an inner comprehension which outputs a list of tuples of the "from" binders (expr', from_tup_ty) <- dsInnerListComp (ParStmtBlock noExt stmts from_bndrs noSyntaxExpr) -- Work out what arguments should be supplied to that expression: i.e. is an extraction -- function required? If so, create that desugared function and add to arguments usingExpr' <- dsLExpr using usingArgs' <- case by of Nothing -> return [expr'] Just by_e -> do { by_e' <- dsLExpr by_e ; lam' <- matchTuple from_bndrs by_e' ; return [lam', expr'] } -- Create an unzip function for the appropriate arity and element types and find "map" unzip_stuff' <- mkUnzipBind form from_bndrs_tys map_id <- dsLookupGlobalId mapName -- Generate the expressions to build the grouped list let -- First we apply the grouping function to the inner list inner_list_expr' = mkApps usingExpr' usingArgs' -- Then we map our "unzip" across it to turn the lists of tuples into tuples of lists -- We make sure we instantiate the type variable "a" to be a list of "from" tuples and -- the "b" to be a tuple of "to" lists! -- Then finally we bind the unzip function around that expression bound_unzipped_inner_list_expr' = case unzip_stuff' of Nothing -> inner_list_expr' Just (unzip_fn', unzip_rhs') -> Let (Rec [(unzip_fn', unzip_rhs')]) $ mkApps (Var map_id) $ [ Type (mkListTy from_tup_ty) , Type to_bndrs_tup_ty , Var unzip_fn' , inner_list_expr' ] dsNoLevPoly (tcFunResultTyN (length usingArgs') (exprType usingExpr')) (text "In the result of a" <+> quotes (text "using") <+> text "function:" <+> ppr using) -- Build a pattern that ensures the consumer binds into the NEW binders, -- which hold lists rather than single values let pat = mkBigLHsVarPatTupId to_bndrs -- NB: no '! return (bound_unzipped_inner_list_expr', pat) dsTransStmt _ = panic "dsTransStmt: Not given a TransStmt" {- ************************************************************************ * * \subsection[DsListComp-ordinary]{Ordinary desugaring of list comprehensions} * * ************************************************************************ Just as in Phil's chapter~7 in SLPJ, using the rules for optimally-compiled list comprehensions. This is what Kevin followed as well, and I quite happily do the same. The TQ translation scheme transforms a list of qualifiers (either boolean expressions or generators) into a single expression which implements the list comprehension. Because we are generating 2nd-order polymorphic lambda-calculus, calls to NIL and CONS must be applied to a type argument, as well as their usual value arguments. \begin{verbatim} TE << [ e | qs ] >> = TQ << [ e | qs ] ++ Nil (typeOf e) >> (Rule C) TQ << [ e | ] ++ L >> = Cons (typeOf e) TE <> TE <> (Rule B) TQ << [ e | b , qs ] ++ L >> = if TE << b >> then TQ << [ e | qs ] ++ L >> else TE << L >> (Rule A') TQ << [ e | p <- L1, qs ] ++ L2 >> = letrec h = \ u1 -> case u1 of [] -> TE << L2 >> (u2 : u3) -> (( \ TE << p >> -> ( TQ << [e | qs] ++ (h u3) >> )) u2) [] (h u3) in h ( TE << L1 >> ) "h", "u1", "u2", and "u3" are new variables. \end{verbatim} @deListComp@ is the TQ translation scheme. Roughly speaking, @dsExpr@ is the TE translation scheme. Note that we carry around the @L@ list already desugared. @dsListComp@ does the top TE rule mentioned above. To the above, we add an additional rule to deal with parallel list comprehensions. The translation goes roughly as follows: [ e | p1 <- e11, let v1 = e12, p2 <- e13 | q1 <- e21, let v2 = e22, q2 <- e23] => [ e | ((x1, .., xn), (y1, ..., ym)) <- zip [(x1,..,xn) | p1 <- e11, let v1 = e12, p2 <- e13] [(y1,..,ym) | q1 <- e21, let v2 = e22, q2 <- e23]] where (x1, .., xn) are the variables bound in p1, v1, p2 (y1, .., ym) are the variables bound in q1, v2, q2 In the translation below, the ParStmt branch translates each parallel branch into a sub-comprehension, and desugars each independently. The resulting lists are fed to a zip function, we create a binding for all the variables bound in all the comprehensions, and then we hand things off the desugarer for bindings. The zip function is generated here a) because it's small, and b) because then we don't have to deal with arbitrary limits on the number of zip functions in the prelude, nor which library the zip function came from. The introduced tuples are Boxed, but only because I couldn't get it to work with the Unboxed variety. -} deListComp :: [ExprStmt GhcTc] -> CoreExpr -> DsM CoreExpr deListComp [] _ = panic "deListComp" deListComp (LastStmt body _ _ : quals) list = -- Figure 7.4, SLPJ, p 135, rule C above ASSERT( null quals ) do { core_body <- dsLExpr body ; return (mkConsExpr (exprType core_body) core_body list) } -- Non-last: must be a guard deListComp (BodyStmt guard _ _ _ : quals) list = do -- rule B above core_guard <- dsLExpr guard core_rest <- deListComp quals list return (mkIfThenElse core_guard core_rest list) -- [e | let B, qs] = let B in [e | qs] deListComp (LetStmt binds : quals) list = do core_rest <- deListComp quals list dsLocalBinds binds core_rest deListComp (stmt@(TransStmt {}) : quals) list = do (inner_list_expr, pat) <- dsTransStmt stmt deBindComp pat inner_list_expr quals list deListComp (BindStmt pat list1 _ _ _ : quals) core_list2 = do -- rule A' above core_list1 <- dsLExprNoLP list1 deBindComp pat core_list1 quals core_list2 deListComp (ParStmt stmtss_w_bndrs _ _ _ : quals) list = do { exps_and_qual_tys <- mapM dsInnerListComp stmtss_w_bndrs ; let (exps, qual_tys) = unzip exps_and_qual_tys ; (zip_fn, zip_rhs) <- mkZipBind qual_tys -- Deal with [e | pat <- zip l1 .. ln] in example above ; deBindComp pat (Let (Rec [(zip_fn, zip_rhs)]) (mkApps (Var zip_fn) exps)) quals list } where bndrs_s = [bs | ParStmtBlock _ _ bs _ <- stmtss_w_bndrs] -- pat is the pattern ((x1,..,xn), (y1,..,ym)) in the example above pat = mkBigLHsPatTupId pats pats = map mkBigLHsVarPatTupId bndrs_s deListComp (RecStmt {} : _) _ = panic "deListComp RecStmt" deListComp (ApplicativeStmt {} : _) _ = panic "deListComp ApplicativeStmt" deBindComp :: OutPat GhcTc -> CoreExpr -> [ExprStmt GhcTc] -> CoreExpr -> DsM (Expr Id) deBindComp pat core_list1 quals core_list2 = do let u3_ty@u1_ty = exprType core_list1 -- two names, same thing -- u1_ty is a [alpha] type, and u2_ty = alpha let u2_ty = hsLPatType pat let res_ty = exprType core_list2 h_ty = u1_ty `mkFunTy` res_ty -- no levity polymorphism here, as list comprehensions don't work -- with RebindableSyntax. NB: These are *not* monad comps. [h, u1, u2, u3] <- newSysLocalsDs [h_ty, u1_ty, u2_ty, u3_ty] -- the "fail" value ... let core_fail = App (Var h) (Var u3) letrec_body = App (Var h) core_list1 rest_expr <- deListComp quals core_fail core_match <- matchSimply (Var u2) (StmtCtxt ListComp) pat rest_expr core_fail let rhs = Lam u1 $ Case (Var u1) u1 res_ty [(DataAlt nilDataCon, [], core_list2), (DataAlt consDataCon, [u2, u3], core_match)] -- Increasing order of tag return (Let (Rec [(h, rhs)]) letrec_body) {- ************************************************************************ * * \subsection[DsListComp-foldr-build]{Foldr/Build desugaring of list comprehensions} * * ************************************************************************ @dfListComp@ are the rules used with foldr/build turned on: \begin{verbatim} TE[ e | ] c n = c e n TE[ e | b , q ] c n = if b then TE[ e | q ] c n else n TE[ e | p <- l , q ] c n = let f = \ x b -> case x of p -> TE[ e | q ] c b _ -> b in foldr f n l \end{verbatim} -} dfListComp :: Id -> Id -- 'c' and 'n' -> [ExprStmt GhcTc] -- the rest of the qual's -> DsM CoreExpr dfListComp _ _ [] = panic "dfListComp" dfListComp c_id n_id (LastStmt body _ _ : quals) = ASSERT( null quals ) do { core_body <- dsLExprNoLP body ; return (mkApps (Var c_id) [core_body, Var n_id]) } -- Non-last: must be a guard dfListComp c_id n_id (BodyStmt guard _ _ _ : quals) = do core_guard <- dsLExpr guard core_rest <- dfListComp c_id n_id quals return (mkIfThenElse core_guard core_rest (Var n_id)) dfListComp c_id n_id (LetStmt binds : quals) = do -- new in 1.3, local bindings core_rest <- dfListComp c_id n_id quals dsLocalBinds binds core_rest dfListComp c_id n_id (stmt@(TransStmt {}) : quals) = do (inner_list_expr, pat) <- dsTransStmt stmt -- Anyway, we bind the newly grouped list via the generic binding function dfBindComp c_id n_id (pat, inner_list_expr) quals dfListComp c_id n_id (BindStmt pat list1 _ _ _ : quals) = do -- evaluate the two lists core_list1 <- dsLExpr list1 -- Do the rest of the work in the generic binding builder dfBindComp c_id n_id (pat, core_list1) quals dfListComp _ _ (ParStmt {} : _) = panic "dfListComp ParStmt" dfListComp _ _ (RecStmt {} : _) = panic "dfListComp RecStmt" dfListComp _ _ (ApplicativeStmt {} : _) = panic "dfListComp ApplicativeStmt" dfBindComp :: Id -> Id -- 'c' and 'n' -> (LPat GhcTc, CoreExpr) -> [ExprStmt GhcTc] -- the rest of the qual's -> DsM CoreExpr dfBindComp c_id n_id (pat, core_list1) quals = do -- find the required type let x_ty = hsLPatType pat let b_ty = idType n_id -- create some new local id's b <- newSysLocalDs b_ty x <- newSysLocalDs x_ty -- build rest of the comprehesion core_rest <- dfListComp c_id b quals -- build the pattern match core_expr <- matchSimply (Var x) (StmtCtxt ListComp) pat core_rest (Var b) -- now build the outermost foldr, and return mkFoldrExpr x_ty b_ty (mkLams [x, b] core_expr) (Var n_id) core_list1 {- ************************************************************************ * * \subsection[DsFunGeneration]{Generation of zip/unzip functions for use in desugaring} * * ************************************************************************ -} mkZipBind :: [Type] -> DsM (Id, CoreExpr) -- mkZipBind [t1, t2] -- = (zip, \as1:[t1] as2:[t2] -- -> case as1 of -- [] -> [] -- (a1:as'1) -> case as2 of -- [] -> [] -- (a2:as'2) -> (a1, a2) : zip as'1 as'2)] mkZipBind elt_tys = do ass <- mapM newSysLocalDs elt_list_tys as' <- mapM newSysLocalDs elt_tys as's <- mapM newSysLocalDs elt_list_tys zip_fn <- newSysLocalDs zip_fn_ty let inner_rhs = mkConsExpr elt_tuple_ty (mkBigCoreVarTup as') (mkVarApps (Var zip_fn) as's) zip_body = foldr mk_case inner_rhs (zip3 ass as' as's) return (zip_fn, mkLams ass zip_body) where elt_list_tys = map mkListTy elt_tys elt_tuple_ty = mkBigCoreTupTy elt_tys elt_tuple_list_ty = mkListTy elt_tuple_ty zip_fn_ty = mkFunTys elt_list_tys elt_tuple_list_ty mk_case (as, a', as') rest = Case (Var as) as elt_tuple_list_ty [(DataAlt nilDataCon, [], mkNilExpr elt_tuple_ty), (DataAlt consDataCon, [a', as'], rest)] -- Increasing order of tag mkUnzipBind :: TransForm -> [Type] -> DsM (Maybe (Id, CoreExpr)) -- mkUnzipBind [t1, t2] -- = (unzip, \ys :: [(t1, t2)] -> foldr (\ax :: (t1, t2) axs :: ([t1], [t2]) -- -> case ax of -- (x1, x2) -> case axs of -- (xs1, xs2) -> (x1 : xs1, x2 : xs2)) -- ([], []) -- ys) -- -- We use foldr here in all cases, even if rules are turned off, because we may as well! mkUnzipBind ThenForm _ = return Nothing -- No unzipping for ThenForm mkUnzipBind _ elt_tys = do { ax <- newSysLocalDs elt_tuple_ty ; axs <- newSysLocalDs elt_list_tuple_ty ; ys <- newSysLocalDs elt_tuple_list_ty ; xs <- mapM newSysLocalDs elt_tys ; xss <- mapM newSysLocalDs elt_list_tys ; unzip_fn <- newSysLocalDs unzip_fn_ty ; [us1, us2] <- sequence [newUniqueSupply, newUniqueSupply] ; let nil_tuple = mkBigCoreTup (map mkNilExpr elt_tys) concat_expressions = map mkConcatExpression (zip3 elt_tys (map Var xs) (map Var xss)) tupled_concat_expression = mkBigCoreTup concat_expressions folder_body_inner_case = mkTupleCase us1 xss tupled_concat_expression axs (Var axs) folder_body_outer_case = mkTupleCase us2 xs folder_body_inner_case ax (Var ax) folder_body = mkLams [ax, axs] folder_body_outer_case ; unzip_body <- mkFoldrExpr elt_tuple_ty elt_list_tuple_ty folder_body nil_tuple (Var ys) ; return (Just (unzip_fn, mkLams [ys] unzip_body)) } where elt_tuple_ty = mkBigCoreTupTy elt_tys elt_tuple_list_ty = mkListTy elt_tuple_ty elt_list_tys = map mkListTy elt_tys elt_list_tuple_ty = mkBigCoreTupTy elt_list_tys unzip_fn_ty = elt_tuple_list_ty `mkFunTy` elt_list_tuple_ty mkConcatExpression (list_element_ty, head, tail) = mkConsExpr list_element_ty head tail {- ************************************************************************ * * \subsection[DsPArrComp]{Desugaring of array comprehensions} * * ************************************************************************ -} -- entry point for desugaring a parallel array comprehension -- -- [:e | qss:] = <<[:e | qss:]>> () [:():] -- dsPArrComp :: [ExprStmt GhcTc] -> DsM CoreExpr -- Special case for parallel comprehension dsPArrComp (ParStmt qss _ _ _ : quals) = dePArrParComp qss quals -- Special case for simple generators: -- -- <<[:e' | p <- e, qs:]>> = <<[: e' | qs :]>> p e -- -- if matching again p cannot fail, or else -- -- <<[:e' | p <- e, qs:]>> = -- <<[:e' | qs:]>> p (filterP (\x -> case x of {p -> True; _ -> False}) e) -- dsPArrComp (BindStmt p e _ _ _ : qs) = do filterP <- dsDPHBuiltin filterPVar ce <- dsLExprNoLP e let ety'ce = parrElemType ce false = Var falseDataConId true = Var trueDataConId v <- newSysLocalDs ety'ce pred <- matchSimply (Var v) (StmtCtxt PArrComp) p true false let gen | isIrrefutableHsPat p = ce | otherwise = mkApps (Var filterP) [Type ety'ce, mkLams [v] pred, ce] dePArrComp qs p gen dsPArrComp qs = do -- no ParStmt in `qs' sglP <- dsDPHBuiltin singletonPVar let unitArray = mkApps (Var sglP) [Type unitTy, mkCoreTup []] dePArrComp qs (noLoc $ WildPat unitTy) unitArray -- the work horse -- dePArrComp :: [ExprStmt GhcTc] -> LPat GhcTc -- the current generator pattern -> CoreExpr -- the current generator expression -> DsM CoreExpr dePArrComp [] _ _ = panic "dePArrComp" -- -- <<[:e' | :]>> pa ea = mapP (\pa -> e') ea -- dePArrComp (LastStmt e' _ _ : quals) pa cea = ASSERT( null quals ) do { mapP <- dsDPHBuiltin mapPVar ; let ty = parrElemType cea ; (clam, ty'e') <- deLambda ty pa e' ; return $ mkApps (Var mapP) [Type ty, Type ty'e', clam, cea] } -- -- <<[:e' | b, qs:]>> pa ea = <<[:e' | qs:]>> pa (filterP (\pa -> b) ea) -- dePArrComp (BodyStmt b _ _ _ : qs) pa cea = do filterP <- dsDPHBuiltin filterPVar let ty = parrElemType cea (clam,_) <- deLambda ty pa b dePArrComp qs pa (mkApps (Var filterP) [Type ty, clam, cea]) -- -- <<[:e' | p <- e, qs:]>> pa ea = -- let ef = \pa -> e -- in -- <<[:e' | qs:]>> (pa, p) (crossMap ea ef) -- -- if matching again p cannot fail, or else -- -- <<[:e' | p <- e, qs:]>> pa ea = -- let ef = \pa -> filterP (\x -> case x of {p -> True; _ -> False}) e -- in -- <<[:e' | qs:]>> (pa, p) (crossMapP ea ef) -- dePArrComp (BindStmt p e _ _ _ : qs) pa cea = do filterP <- dsDPHBuiltin filterPVar crossMapP <- dsDPHBuiltin crossMapPVar ce <- dsLExpr e let ety'cea = parrElemType cea ety'ce = parrElemType ce false = Var falseDataConId true = Var trueDataConId v <- newSysLocalDs ety'ce pred <- matchSimply (Var v) (StmtCtxt PArrComp) p true false let cef | isIrrefutableHsPat p = ce | otherwise = mkApps (Var filterP) [Type ety'ce, mkLams [v] pred, ce] (clam, _) <- mkLambda ety'cea pa cef let ety'cef = ety'ce -- filter doesn't change the element type pa' = mkLHsPatTup [pa, p] dePArrComp qs pa' (mkApps (Var crossMapP) [Type ety'cea, Type ety'cef, cea, clam]) -- -- <<[:e' | let ds, qs:]>> pa ea = -- <<[:e' | qs:]>> (pa, (x_1, ..., x_n)) -- (mapP (\v@pa -> let ds in (v, (x_1, ..., x_n))) ea) -- where -- {x_1, ..., x_n} = DV (ds) -- Defined Variables -- dePArrComp (LetStmt lds@(L _ ds) : qs) pa cea = do mapP <- dsDPHBuiltin mapPVar let xs = collectLocalBinders ds ty'cea = parrElemType cea v <- newSysLocalDs ty'cea clet <- dsLocalBinds lds (mkCoreTup (map Var xs)) let'v <- newSysLocalDs (exprType clet) let projBody = mkCoreLet (NonRec let'v clet) $ mkCoreTup [Var v, Var let'v] errTy = exprType projBody errMsg = text "DsListComp.dePArrComp: internal error!" cerr <- mkErrorAppDs pAT_ERROR_ID errTy errMsg ccase <- matchSimply (Var v) (StmtCtxt PArrComp) pa projBody cerr let pa' = mkLHsPatTup [pa, mkLHsPatTup (map nlVarPat xs)] proj = mkLams [v] ccase dePArrComp qs pa' (mkApps (Var mapP) [Type ty'cea, Type errTy, proj, cea]) -- -- The parser guarantees that parallel comprehensions can only appear as -- singleton qualifier lists, which we already special case in the caller. -- So, encountering one here is a bug. -- dePArrComp (ParStmt {} : _) _ _ = panic "DsListComp.dePArrComp: malformed comprehension AST: ParStmt" dePArrComp (TransStmt {} : _) _ _ = panic "DsListComp.dePArrComp: TransStmt" dePArrComp (RecStmt {} : _) _ _ = panic "DsListComp.dePArrComp: RecStmt" dePArrComp (ApplicativeStmt {} : _) _ _ = panic "DsListComp.dePArrComp: ApplicativeStmt" -- <<[:e' | qs | qss:]>> pa ea = -- <<[:e' | qss:]>> (pa, (x_1, ..., x_n)) -- (zipP ea <<[:(x_1, ..., x_n) | qs:]>>) -- where -- {x_1, ..., x_n} = DV (qs) -- dePArrParComp :: [ParStmtBlock GhcTc GhcTc] -> [ExprStmt GhcTc] -> DsM CoreExpr dePArrParComp qss quals = do (pQss, ceQss) <- deParStmt qss dePArrComp quals pQss ceQss where deParStmt [] = -- empty parallel statement lists have no source representation panic "DsListComp.dePArrComp: Empty parallel list comprehension" deParStmt (ParStmtBlock _ qs xs _:qss) = do -- first statement let res_expr = mkLHsVarTuple xs cqs <- dsPArrComp (map unLoc qs ++ [mkLastStmt res_expr]) parStmts qss (mkLHsVarPatTup xs) cqs deParStmt (XParStmtBlock{}:_) = panic "dePArrParComp" --- parStmts [] pa cea = return (pa, cea) parStmts (ParStmtBlock _ qs xs _:qss) pa cea = do -- subsequent statements (zip'ed) zipP <- dsDPHBuiltin zipPVar let pa' = mkLHsPatTup [pa, mkLHsVarPatTup xs] ty'cea = parrElemType cea res_expr = mkLHsVarTuple xs cqs <- dsPArrComp (map unLoc qs ++ [mkLastStmt res_expr]) let ty'cqs = parrElemType cqs cea' = mkApps (Var zipP) [Type ty'cea, Type ty'cqs, cea, cqs] parStmts qss pa' cea' parStmts (XParStmtBlock{}:_) _ _ = panic "dePArrParComp" -- generate Core corresponding to `\p -> e' -- deLambda :: Type -- type of the argument (not levity-polymorphic) -> LPat GhcTc -- argument pattern -> LHsExpr GhcTc -- body -> DsM (CoreExpr, Type) deLambda ty p e = mkLambda ty p =<< dsLExpr e -- generate Core for a lambda pattern match, where the body is already in Core -- mkLambda :: Type -- type of the argument (not levity-polymorphic) -> LPat GhcTc -- argument pattern -> CoreExpr -- desugared body -> DsM (CoreExpr, Type) mkLambda ty p ce = do v <- newSysLocalDs ty let errMsg = text "DsListComp.deLambda: internal error!" ce'ty = exprType ce cerr <- mkErrorAppDs pAT_ERROR_ID ce'ty errMsg res <- matchSimply (Var v) (StmtCtxt PArrComp) p ce cerr return (mkLams [v] res, ce'ty) -- obtain the element type of the parallel array produced by the given Core -- expression -- parrElemType :: CoreExpr -> Type parrElemType e = case splitTyConApp_maybe (exprType e) of Just (tycon, [ty]) | tycon == parrTyCon -> ty _ -> panic "DsListComp.parrElemType: not a parallel array type" -- Translation for monad comprehensions -- Entry point for monad comprehension desugaring dsMonadComp :: [ExprLStmt GhcTc] -> DsM CoreExpr dsMonadComp stmts = dsMcStmts stmts dsMcStmts :: [ExprLStmt GhcTc] -> DsM CoreExpr dsMcStmts [] = panic "dsMcStmts" dsMcStmts (L loc stmt : lstmts) = putSrcSpanDs loc (dsMcStmt stmt lstmts) --------------- dsMcStmt :: ExprStmt GhcTc -> [ExprLStmt GhcTc] -> DsM CoreExpr dsMcStmt (LastStmt body _ ret_op) stmts = ASSERT( null stmts ) do { body' <- dsLExpr body ; dsSyntaxExpr ret_op [body'] } -- [ .. | let binds, stmts ] dsMcStmt (LetStmt binds) stmts = do { rest <- dsMcStmts stmts ; dsLocalBinds binds rest } -- [ .. | a <- m, stmts ] dsMcStmt (BindStmt pat rhs bind_op fail_op bind_ty) stmts = do { rhs' <- dsLExpr rhs ; dsMcBindStmt pat rhs' bind_op fail_op bind_ty stmts } -- Apply `guard` to the `exp` expression -- -- [ .. | exp, stmts ] -- dsMcStmt (BodyStmt exp then_exp guard_exp _) stmts = do { exp' <- dsLExpr exp ; rest <- dsMcStmts stmts ; guard_exp' <- dsSyntaxExpr guard_exp [exp'] ; dsSyntaxExpr then_exp [guard_exp', rest] } -- Group statements desugar like this: -- -- [| (q, then group by e using f); rest |] -- ---> f {qt} (\qv -> e) [| q; return qv |] >>= \ n_tup -> -- case unzip n_tup of qv' -> [| rest |] -- -- where variables (v1:t1, ..., vk:tk) are bound by q -- qv = (v1, ..., vk) -- qt = (t1, ..., tk) -- (>>=) :: m2 a -> (a -> m3 b) -> m3 b -- f :: forall a. (a -> t) -> m1 a -> m2 (n a) -- n_tup :: n qt -- unzip :: n qt -> (n t1, ..., n tk) (needs Functor n) dsMcStmt (TransStmt { trS_stmts = stmts, trS_bndrs = bndrs , trS_by = by, trS_using = using , trS_ret = return_op, trS_bind = bind_op , trS_bind_arg_ty = n_tup_ty' -- n (a,b,c) , trS_fmap = fmap_op, trS_form = form }) stmts_rest = do { let (from_bndrs, to_bndrs) = unzip bndrs ; let from_bndr_tys = map idType from_bndrs -- Types ty -- Desugar an inner comprehension which outputs a list of tuples of the "from" binders ; expr' <- dsInnerMonadComp stmts from_bndrs return_op -- Work out what arguments should be supplied to that expression: i.e. is an extraction -- function required? If so, create that desugared function and add to arguments ; usingExpr' <- dsLExpr using ; usingArgs' <- case by of Nothing -> return [expr'] Just by_e -> do { by_e' <- dsLExpr by_e ; lam' <- matchTuple from_bndrs by_e' ; return [lam', expr'] } -- Generate the expressions to build the grouped list -- Build a pattern that ensures the consumer binds into the NEW binders, -- which hold monads rather than single values ; let tup_n_ty' = mkBigCoreVarTupTy to_bndrs ; body <- dsMcStmts stmts_rest ; n_tup_var' <- newSysLocalDsNoLP n_tup_ty' ; tup_n_var' <- newSysLocalDs tup_n_ty' ; tup_n_expr' <- mkMcUnzipM form fmap_op n_tup_var' from_bndr_tys ; us <- newUniqueSupply ; let rhs' = mkApps usingExpr' usingArgs' body' = mkTupleCase us to_bndrs body tup_n_var' tup_n_expr' ; dsSyntaxExpr bind_op [rhs', Lam n_tup_var' body'] } -- Parallel statements. Use `Control.Monad.Zip.mzip` to zip parallel -- statements, for example: -- -- [ body | qs1 | qs2 | qs3 ] -- -> [ body | (bndrs1, (bndrs2, bndrs3)) -- <- [bndrs1 | qs1] `mzip` ([bndrs2 | qs2] `mzip` [bndrs3 | qs3]) ] -- -- where `mzip` has type -- mzip :: forall a b. m a -> m b -> m (a,b) -- NB: we need a polymorphic mzip because we call it several times dsMcStmt (ParStmt blocks mzip_op bind_op bind_ty) stmts_rest = do { exps_w_tys <- mapM ds_inner blocks -- Pairs (exp :: m ty, ty) ; mzip_op' <- dsExpr mzip_op ; let -- The pattern variables pats = [ mkBigLHsVarPatTupId bs | ParStmtBlock _ _ bs _ <- blocks] -- Pattern with tuples of variables -- [v1,v2,v3] => (v1, (v2, v3)) pat = foldr1 (\p1 p2 -> mkLHsPatTup [p1, p2]) pats (rhs, _) = foldr1 (\(e1,t1) (e2,t2) -> (mkApps mzip_op' [Type t1, Type t2, e1, e2], mkBoxedTupleTy [t1,t2])) exps_w_tys ; dsMcBindStmt pat rhs bind_op noSyntaxExpr bind_ty stmts_rest } where ds_inner (ParStmtBlock _ stmts bndrs return_op) = do { exp <- dsInnerMonadComp stmts bndrs return_op ; return (exp, mkBigCoreVarTupTy bndrs) } ds_inner (XParStmtBlock{}) = panic "dsMcStmt" dsMcStmt stmt _ = pprPanic "dsMcStmt: unexpected stmt" (ppr stmt) matchTuple :: [Id] -> CoreExpr -> DsM CoreExpr -- (matchTuple [a,b,c] body) -- returns the Core term -- \x. case x of (a,b,c) -> body matchTuple ids body = do { us <- newUniqueSupply ; tup_id <- newSysLocalDs (mkBigCoreVarTupTy ids) ; return (Lam tup_id $ mkTupleCase us ids body tup_id (Var tup_id)) } -- general `rhs' >>= \pat -> stmts` desugaring where `rhs'` is already a -- desugared `CoreExpr` dsMcBindStmt :: LPat GhcTc -> CoreExpr -- ^ the desugared rhs of the bind statement -> SyntaxExpr GhcTc -> SyntaxExpr GhcTc -> Type -- ^ S in (>>=) :: Q -> (R -> S) -> T -> [ExprLStmt GhcTc] -> DsM CoreExpr dsMcBindStmt pat rhs' bind_op fail_op res1_ty stmts = do { body <- dsMcStmts stmts ; var <- selectSimpleMatchVarL pat ; match <- matchSinglePat (Var var) (StmtCtxt DoExpr) pat res1_ty (cantFailMatchResult body) ; match_code <- handle_failure pat match fail_op ; dsSyntaxExpr bind_op [rhs', Lam var match_code] } where -- In a monad comprehension expression, pattern-match failure just calls -- the monadic `fail` rather than throwing an exception handle_failure pat match fail_op | matchCanFail match = do { dflags <- getDynFlags ; fail_msg <- mkStringExpr (mk_fail_msg dflags pat) ; fail_expr <- dsSyntaxExpr fail_op [fail_msg] ; extractMatchResult match fail_expr } | otherwise = extractMatchResult match (error "It can't fail") mk_fail_msg :: DynFlags -> Located e -> String mk_fail_msg dflags pat = "Pattern match failure in monad comprehension at " ++ showPpr dflags (getLoc pat) -- Desugar nested monad comprehensions, for example in `then..` constructs -- dsInnerMonadComp quals [a,b,c] ret_op -- returns the desugaring of -- [ (a,b,c) | quals ] dsInnerMonadComp :: [ExprLStmt GhcTc] -> [Id] -- Return a tuple of these variables -> SyntaxExpr GhcTc -- The monomorphic "return" operator -> DsM CoreExpr dsInnerMonadComp stmts bndrs ret_op = dsMcStmts (stmts ++ [noLoc (LastStmt (mkBigLHsVarTupId bndrs) False ret_op)]) -- The `unzip` function for `GroupStmt` in a monad comprehensions -- -- unzip :: m (a,b,..) -> (m a,m b,..) -- unzip m_tuple = ( liftM selN1 m_tuple -- , liftM selN2 m_tuple -- , .. ) -- -- mkMcUnzipM fmap ys [t1, t2] -- = ( fmap (selN1 :: (t1, t2) -> t1) ys -- , fmap (selN2 :: (t1, t2) -> t2) ys ) mkMcUnzipM :: TransForm -> HsExpr GhcTcId -- fmap -> Id -- Of type n (a,b,c) -> [Type] -- [a,b,c] (not levity-polymorphic) -> DsM CoreExpr -- Of type (n a, n b, n c) mkMcUnzipM ThenForm _ ys _ = return (Var ys) -- No unzipping to do mkMcUnzipM _ fmap_op ys elt_tys = do { fmap_op' <- dsExpr fmap_op ; xs <- mapM newSysLocalDs elt_tys ; let tup_ty = mkBigCoreTupTy elt_tys ; tup_xs <- newSysLocalDs tup_ty ; let mk_elt i = mkApps fmap_op' -- fmap :: forall a b. (a -> b) -> n a -> n b [ Type tup_ty, Type (getNth elt_tys i) , mk_sel i, Var ys] mk_sel n = Lam tup_xs $ mkTupleSelector xs (getNth xs n) tup_xs (Var tup_xs) ; return (mkBigCoreTup (map mk_elt [0..length elt_tys - 1])) }